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Abstract 

The purpose of performance-based earthquake engineering is to design structures for predictable and controlled seismic 

performance within established levels of risk. Rigorous quantification of seismic performance requires computing the 

seismic demand hazard, this is, the risk of incurring a certain level of seismic demand. However, risk-based assessments 

are not feasible in engineering practice because of the large number of nonlinear response history analyses required for 

such purpose. Alternatively, an estimate of the level of seismic demand for a specified risk can be obtained from an 

intensity-based assessment (IBA), i.e., from an ensemble of ground motions scaled to a fixed value of a single 

conditioning intensity measure (IM). Evidently, the accuracy of the estimate provided by an IBA depends on how well 

the conditioning IM can predict the response in terms of the demand measure of interest. The choice of the conditioning 

IM is limited among those for which a ground motion models are available. The reason for this is that the ground motion 

models are required to compute the seismic hazard at the site in terms of IM and select a hazard consistent ensemble of 

records that allows to obtain an unbiased estimate of the conditional response. As a result, practical IMs usually consist 

of spectral accelerations, which obviously have a limited capability for predicting the response of complex nonlinear 

multi-degree-of-freedom structures. This paper presents a ground motion selection procedure that allows to conduct IBAs 

conditioned upon IMs or predictors of response for which ground motion models are not available. The procedure relies 

on the empirical characterization of the seismic hazard at the site in terms of the predictor by means of a large set of 

ground motions, and on the deaggregation of results to identify a reduced set of records to compute the conditional 

response. The procedure is demand-oriented in the sense that it provides, for each demand measure of interest, a unique 

ensemble of ground motions to obtain an accurate estimate of the level of demand for a specified risk at a reduced 

computational cost. 

Keywords: seismic performance assessment, ground motion selection, predictors of response 
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1. Introduction 

The purpose of performance-based earthquake engineering is to design structures for predictable and controlled 

seismic performance within established levels of risk. This implies the need for defining performance 

objectives (PO), which specify the acceptable risk of incurring a certain level of seismic demand. A general 

PO for a given measure of structural response or Engineering Demand Parameter 𝐸𝐷𝑃 can be expressed as 

𝜆𝐸𝐷𝑃(𝑒𝑑𝑝𝑎) < 𝜈𝑓, where 𝜆𝐸𝐷𝑃 is the annual rate of exceedance of a certain level of demand for the parameter 

𝐸𝐷𝑃, 𝑒𝑑𝑝𝑎 is the allowable level of seismic demand, and 𝜈𝑓 is the target rate of failure.1 Alternatively, the same 

PO can be expressed more explicitly as 

𝑒𝑑𝑝𝑓 < 𝑒𝑑𝑝𝑎 (1) 

where 𝑒𝑑𝑝𝑓 is the level of demand for the target rate of failure, this is, 𝜆𝐸𝐷𝑃(𝑒𝑑𝑝𝑓) = 𝜈𝑓 [1]. Both expressions 

are equivalent, and the difference lies only on the quantity that needs to be determined for conducting the 

design check. For example, suppose that the response measure of interest is the maximum floor acceleration 

𝑀𝐹𝐴, and that the design is intended to ensure that the probability of 𝑀𝐹𝐴 exceeding 𝑚𝑓𝑎𝑎 = 1g is less than 

2% in 50 years (equal to an annual exceedance rate of 0.0004yr−1). In such case, the PO can be expressed 

either as 𝜆𝑀𝐹𝐴(1g) < 0.0004yr−1 or 𝑚𝑓𝑎𝑓 < 1g, with 𝜆𝑀𝐹𝐴(𝑚𝑓𝑎𝑓) = 0.0004yr−1. 

Evaluation of such probabilistic POs requires conducting response history analyses (RHA) of a realistic 

(and therefore sophisticated) structural model to an ensemble of earthquake ground motions. This is necessary 

not only for deriving numerical values, but also for improving the understanding of the system so that 

performance can be potentially improved. Due to the great deal of uncertainties induced by the highly complex 

nature of earthquakes, rigorous quantification of seismic performance requires a probabilistic approach in 

which uncertainties can be explicitly accounted for. This type of assessment is referred to as a probabilistic 

seismic demand analysis (PSDA). Its primary output is the seismic demand hazard curve 𝜆𝐸𝐷𝑃, which gives 

the rate of exceedance of all possible demand values, and therefore allows to verify immediately POs expressed 

in terms of equation (1). Despite the conceptual benefits, conducting a PSDA involves (at least) hundreds of 

RHAs, which hinders its application in engineering practice [2, 3]. For this reason, current practice of 

earthquake engineering [e.g. 4] relies on intensity based assessments (IBA), in which seismic performance 

criteria is prescribed on the basis of the seismic demand obtained from an ensemble of ground motions scaled 

to a specified level of intensity. Interestingly, the use of IBAs for probabilistic performance assessment can be 

justified on the fact that they provide an estimate of the level of demand corresponding to the target rate of 

failure, 𝑒𝑑𝑝𝑓 [1, 5–8], therefore allowing to conduct design checks as that in equation (1). In this context, we 

will refer to the quantity of interest 𝑒𝑑𝑝𝑓 as the target demand. 

Even if the great reduction in the computational effort makes IBAs practical, their adequacy for 

estimating 𝑒𝑑𝑝𝑓 depends significantly on the intensity measure (IM) adopted for defining the conditioning 

intensity level. While it is well-known that the accuracy of the estimate of the target demand increases as the 

conditioning IM improves its ability to predict the response parameter 𝐸𝐷𝑃, practical IMs have very limited 

prediction capabilities, and therefore cannot always provide meaningful results for decision-making. The 

reason for this is that the choice of the conditioning IM is restricted to those for which ground motion models 

are available; this is, (i) a ground motion prediction equation (GMPE) to compute the seismic hazard at the 

site and define the conditioning intensity level, and (ii) the correlation coefficients between such IM and others 

that significantly contribute to the building’s response. This is necessary to select an ensemble of records that 

is consistent with the conditional hazard of those other IMs and obtain an unbiased estimate of the conditional 

demand. As a result, the conditioning IM typically consists of the spectral acceleration at a given period 𝑆𝑎(𝑇), 

for which ground motion models are widely available [e.g. 9, 10]. There are two main problems with this 

approach. First, because it is usually not possible to identify the most convenient spectral period 𝑇 before 

conducting the calculations, multiple IBAs may need to be conducted in order to obtain the best possible 

 

1 Uppercase symbols represent variables, and lowercase symbols denote realizations of their uppercase counterpart. 
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estimate of 𝑒𝑑𝑝𝑓  [5, 6]. And second, since spectral accelerations are defined in terms of the maximum 

displacement of an elastic single-degree-of-freedom (SDOF) oscillator, they tend to be inefficient predictors 

for different measures of response of a complex nonlinear multi-degree-of-freedom (MDOF) system, 

particularly when damage concentration occurs. As a result, in some cases even a worst-case approach can 

result in considerable underestimation of the target demands [8]. 

This paper presents a ground motion selection procedure that allows to conduct IBAs conditioned upon 

advanced IMs or predictors of response for which the necessary ground motion models are not available. This 

enables to specifically develop such IM or predictor for the structure and response parameter of interest. The 

procedure relies on the empirical characterization of the seismic hazard at the site in terms of the predictor by 

means of a large set of ground motions, and on the deaggregation of results to identify a reduced set to compute 

the conditional response. The procedure is demand-oriented in the sense that it returns, for each demand 

measure of interest, a single ensemble of ground motions for obtaining an accurate estimate of the target 

demand and additional insight into understanding the system to support probabilistic performance assessment. 

2.  Conditional ground motion selection 

In this paper, we will refer to the conditional intensity measure for conducting an IBA as 𝑋 to highlight the 

fact that, theoretically, any type of measure can be considered for this purpose. The problem of estimating the 

level of demand with a specified rate of failure 𝜈𝑓  has been addressed by Loth and Baker [1, 7]. Using a 

structural reliability framework, it is showed that a lower bound estimate of 𝑒𝑑𝑝𝑓 is obtained from the median 

demand of an IBA conditioned upon 𝑋 reaching its level of intensity associated to 𝜈𝑓 , this is, 𝑥∗ such that 

𝜆𝑋(𝑥∗) = 𝜈𝑓. The approach is justified on the fact that the seismic intensities considered in an IBA are an 

approximation to the checking (or design) point, i.e., the set of amplitudes most likely to cause failure of the 

system. Scalar IMs are always insufficient for 𝐸𝐷𝑃, meaning that the response is sensitive to other features of 

the ground motion. Therefore, in order to obtain an accurate or unbiased estimate of the response conditional 

on 𝑋 = 𝑥∗, it is necessary to conduct RHAs for a set of ground motions that faithfully represents the conditional 

distribution of other IMs that have a significant effect on the response. When only the median response is of 

interest, as it is in this paper, the conditional mean spectrum (CMS) [11] is the most efficient target spectrum 

for ground motion selection [6, 12]. Also, the CMS is consistent with the concept of checking point, since it is 

the most likely response spectrum given the specified level of intensity. 

In this section, we will present an approach to approximate the CMS and select the corresponding set of 

ground motions when the necessary ground motion models for 𝑋 are not available. The proposed procedure 

relies on the empirical characterization of the seismic hazard at the site in terms of 𝑋 by means of a large set 

of ground motions, and on the deaggregation of results to identify the reduced set of 𝑁𝑔𝑚 records with the 

largest contribution to 𝑋 equaling the intensity level of interest 𝑥∗. Noting the analogy with the concept of 

checking point and considering that these records are specifically selected to conduct a specified design check, 

we will refer to them as the checking ground motions (CGM).  

Next, we present a detailed description of the proposed procedure, illustrating and validating each step 

with the results obtained for an ‘advanced’ IM for which the corresponding ground motion models are 

available. The implementation of nonlinear predictors will be discussed in the following section. The IM 

considered for this purpose is the average spectral acceleration over a specified period range, defined as 

𝑆𝑎
̅̅ ̅ = √∑ 𝑆𝑎(𝑇𝑖)

𝑁𝑇

𝑖=1

𝑁𝑇

 (2) 

where 𝑇𝑖  are 𝑁𝑇 = 13  periods in the range between 0.7s and 3.0s. The site considered is Berkeley, CA, 

assuming 600m/s as the shear wave velocity. The conditional intensity level corresponds to a hazard level of 

𝜈𝑓 = 0.001yr−1 (5% probability of exceedance in 50yr). The computation of the CMS conditioned upon the 

average spectral acceleration using ground motion models for single period spectral ordinates [9, 10] was first 
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introduced by Baker and Cornell [13]. For the purposes of this example, the set of ground motions selected to 

fit the CMS consists of the 11 records that most closely match the target spectrum in the period range 0.4—4s. 

2.1 Step 1: Compute the seismic hazard at the site in terms of 𝑋 

The first step consists on conducting a PSDA to characterize 𝑋 at the site of interest. Although alternative 

methods are available [3], we will focus on procedures that rely on a scalar conditioning intensity measure 𝐼𝑀⋆ 

so that 

𝜆𝑋(𝑥) = ∫ 𝐺𝑋|𝐼𝑀⋆(𝑥|𝑖𝑚⋆) |d𝐼𝑀⋆|
∞

0

 (3) 

where 𝐺𝑋|𝐼𝑀⋆(𝑥|𝑖𝑚⋆) is the complementary cumulative density function of 𝑋 conditioned upon 𝐼𝑀⋆, commonly 

described as lognormal. These approaches consist on computing (3) numerically by evaluating the integrand 

at a finite number of intensity levels. In order to do this, different ensembles of ground motions are selected 

using either the conditional spectra (CS) [14] or generalized conditional intensity measure (GCIM) [15] 

distributions at each of these intensity levels, and 𝐺𝑋|𝐼𝑀⋆(𝑥|𝑖𝑚⋆)  is obtained from statistical inference. 

Evidently, using a finite number of ground motions introduces error in the computation of the seismic hazard. 

One approach that has been proposed to assess whether the estimate of 𝜆𝑋  is accurate or not consists of 

comparing the seismic hazard curves resulting from different conditioning IMs. If the estimates are close to 

each other, then they are unbiased. As will become apparent later, this method will also be useful in the process 

of ground motion selection. 

 Step 1 is summarized as follows: (a) adopt 𝑛 conditioning scalar intensity measures 𝐼𝑀𝑖
⋆ for which their 

corresponding seismic hazard curves 𝜆𝐼𝑀𝑖
⋆ are readily available, with 𝑖 = 1, 2, . . . , 𝑛; (b) specify the hazard levels 

at which the integrand of (3) will be evaluated for each conditioning intensity measure and select the 

corresponding ensembles of ground motions using either the CS or GCIM-based approaches; (c) compute the 

seismic hazard curve in terms of 𝑋  as the arithmetic average of the hazard curves obtained for each 

conditioning intensity measure; and finally, (d) the intensity level corresponding to the target rate of interest 

𝜈𝑓 is extracted from the curve, this is, 𝑥∗ such that 𝜆𝑋(𝑥∗) = 𝜈𝑓. 

Application example: Suppose that we are interested in applying this procedure for 𝑋 ≡ 𝑆𝑎
̅̅ ̅. Three 

different conditioning periods are considered for conducting Step 1: 𝐼𝑀1
⋆ ≡ 𝑆𝑎(0.4𝑠), 𝐼𝑀2

⋆ ≡ 𝑆𝑎(2𝑠), and 𝐼𝑀3
⋆ ≡

𝑆𝑎(4𝑠). The hazard curves at the site of interest for each conditioning IM are computed in OpenSHA [16] using 

the GMPE by Campbell and Bozorgnia [9]. For each seismic hazard curve, eleven different intensity levels 

with probabilities of exceedance of 99, 80, 50, 20, 10, 5, 2, 1, 0.5, 0.2 and 0.1% in 50 years are considered. 

The corresponding hazard curves and intensity levels are shown in Fig. 1a. At each intensity level, 30 ground 

motions are selected via the GCIM approach to ensure hazard consistency with respect to 12 other intensity 

measures: the 5-75 significant duration, and the spectral accelerations at 0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 3, 

5 and 10 seconds. GCIM distributions are derived employing appropriate ground motion prediction equations 

[9, 17] and correlation models [10, 18]. A total of 3 × 11 × 30 = 990 ground motions are selected from the 

NGA-West1 database [19]. The estimate of the seismic demand hazard curve 𝜆𝑋 consists of the arithmetic 

average of the different curves obtained for each conditioning period. Fig. 1b shows the individual and average 

seismic hazard curves in terms of 𝑋, showing excellent agreement between the analytical and empirical results. 

The intensity level for the target rate of interest 𝜈𝑓 extracted from the average curve is 𝑥∗ = 0.42g, which differs 

by only 2% with the analytical result obtained using the corresponding GMPE. 

2.2 Step 2: Characterize the probability of 𝐼𝑀𝑖
⋆ given 𝑋 = 𝑥∗ 

The CMS consists on the most likely target spectrum conditional upon 𝑋 = 𝑥∗. For the problem in hand, we 

can only compute accurately the most likely realization of a very specific vector of intensity measures IM⋆ =
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[𝐼𝑀1
⋆, … , 𝐼𝑀𝑛

⋆]. In order to do this, we need to deaggregate the characterization of 𝑋 conducted in Step 1. 

Recalling Bayes’ Theorem, the marginal probability density function of each conditioning IM is 

𝑓𝐼𝑀𝑖
⋆|𝑋(𝑖𝑚𝑖

⋆|𝑥∗) =
𝑓𝑋|𝐼𝑀𝑖

⋆(𝑥∗|𝑖𝑚𝑖
⋆) 𝑓𝐼𝑀𝑖

⋆(𝑖𝑚𝑖
⋆)

𝑓𝑋(𝑥∗)
 (4) 

Noting that 𝑓𝑋|𝐼𝑀𝑖
⋆(𝑥∗|𝑖𝑚𝑖

⋆) can be characterized with the ground motions selected in Step 1, equation (4) can 

be easily computed since 𝑓𝑋(𝑥∗) is a constant and, by definition, 𝑓𝐼𝑀𝑖
⋆(𝑖𝑚𝑖

⋆) = |d𝜆𝐼𝑀𝑖
⋆(𝑖𝑚𝑖

⋆)| 𝜆𝐼𝑀𝑖
⋆(0)⁄ . 

Application example: Fig. 2a—d illustrate the calculation of the marginal distribution 𝐼𝑀1
⋆|𝑋 = 𝑥∗. 

First, the probability density function of the conditioning intensity measure is obtained by taking the derivative 

of the corresponding seismic hazard curve (Fig. 2a). Next, the distribution of 𝑋|𝐼𝑀1
⋆ is characterized using the 

11 × 30 = 330 records selected in Step 1 with 𝐼𝑀1
⋆ as the conditioning intensity measure. Black dots in Fig. 2b 

show the fraction of ground motions for which 𝑋 > 𝑥∗ at each of the 11 intensity levels considered. With this 

data, the parameters of a lognormal are fitted using the maximum likelihood estimation. Fig. 2b shows the 

resulting cumulative density function 𝐹𝑋|𝐼𝑀1
⋆(𝑥∗|𝑖𝑚1

⋆)  and Fig. 2c the probability density function 

𝑓𝑋|𝐼𝑀1
⋆(𝑥∗|𝑖𝑚1

⋆). Finally, the marginal distribution 𝑓𝐼𝑀1
⋆|𝑋(𝑖𝑚1

⋆|𝑥∗) is computed as in (4) and presented in Fig. 2d. 

The procedure is repeated for the remaining conditioning intensity measures 𝐼𝑀2
⋆ and 𝐼𝑀3

⋆. Their cumulative 

distributions are shown with solid lines in Fig. 2e. These are compared to the lognormal distributions obtained 

using the corresponding GMPE and correlation coefficients for the mean rupture scenario (dashed lines). The 

results obtained with the proposed procedure show excellent agreement with the theoretical distributions. 

2.3 Step 3: Identify the checking ground motions 

After characterizing the conditional hazard in terms of IM⋆, the final step consists of identifying the CGM. 

Same as in the CMS-based approach, this set represents those ground motions with the largest contribution to 

𝑋 = 𝑥∗. When matching the CMS, however, prospective earthquake records are first amplitude scaled to reach 

the intensity level of interest. If this approach was followed herein, variable 𝑋 would be constrained to IMs 

that increase linearly with the scale factor. Recalling that 𝑋 is intended to be a structure-specific predictor of 

response, an alternative selection procedure that allows to consider nonlinear predictors is preferred.  

Instead of looking into a database, prospective ground motions will be determined from the large set of 

records selected in Step 1. Since no further amplitude scaling can be applied to them, the set is first screened 

to identify those records for which 𝑥∗ − 𝜖 < 𝑋 < 𝑥∗ + 𝜖, where 𝜖 is the level of tolerance specified by the user. 

Prospective ground motions are then those included in that subset. Next, the selection of the CGM is conducted 

in the same way as done when matching a CMS; noting that each marginal distribution 𝐼𝑀𝑖
⋆|𝑋 = 𝑥∗ can be 

approximated as lognormal, its most likely realization 𝑖𝑚𝑖
⋆,∗ consists simply of the median value. Finally, the 

CGM are defined as the 𝑁𝑔𝑚 records that most closely match the vector of median intensities im⋆,∗. As in the 

 

Fig. 1 – (a) Seismic hazard curves for each 𝐼𝑀𝑖
⋆, and (b) Seismic hazard curves for 𝑋 = 𝑆𝑎

̅̅ ̅ 
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case of the CMS, the similarity between a certain ground motion 𝑔𝑚 and the target intensities is evaluated in 

terms of the sum of squared errors 𝑆𝑆𝐸 between the logarithm of the spectral ordinates of the ground motion 

im⋆,𝑔𝑚 and the natural logarithm of the median conditional intensities 

𝑆𝑆𝐸 = ∑[ln 𝑖𝑚𝑖
⋆,𝑔𝑚

− ln 𝑖𝑚𝑖
⋆,∗]

2
𝑛

𝑖=1

 (5) 

As in traditional procedures, the number of ground motions to be considered as the CGM depends on the 

expected variability and the required accuracy. 

Application example: Step 3 is now applied to identify the CGM for 𝑋 = 0.42g. For the purposes of this 

example, the tolerance level is specified as 𝜖 = 0.03g. Then, from the 990 records considered in Step 1, the 

number of prospective ground motions is reduced to just 53. Next, we compute the 𝑆𝑆𝐸 for each of these and 

define the CGM as the 𝑁𝑔𝑚 = 11 records that present the lowest error. Both the prospective ground motions 

and the CGM are shown in Fig. 3a. The choice of 11 ground motions is justified on the intention of keeping 

consistency with the set adopted to match the CMS using the traditional approach. 

The median and the standard deviation of the distribution of the CGM are presented in Fig. 3b and 3c, 

respectively. The results can be compared against those obtained with the traditional procedure. The median 

of the CGM shows excellent agreement with the analytical CMS in the range between 𝐼𝑀1
⋆ and 𝐼𝑀3

⋆. This 

implies that the choice of the conditioning intensity measures should consider the period range of interest, 

same as done when selecting ground motions using the CMS as the target spectrum. Compared to the set 

obtained using the CMS-based approach, the CGM present larger variability. This is reasonable considering 

that the number of prospective ground motions is significantly lower in this case. While the selection of the 

CGM was constrained to 53 records, in the CMS-based approach the reduced set of records was selected from 

a total of 1029.2 Naturally, this implies that, when the implementation of traditional procedure is possible, the 

response to the CGM will present larger dispersion, and therefore the estimate of the median demand will be 

 

2 Prospective ground motions were those in the NGA-West1 database with magnitude greater than 5.5 and shear wave 

velocity between 300m/s and 900m/s. Also, the maximum scale factor was limited to 10. 

 

Fig. 2 – Calculations for computing the probabilities distributions 𝐼𝑀𝑖
⋆|𝑋 = 𝑥∗ 
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less precise. 

The previous example shows that hazard consistent ground motion selection conditional upon an advanced 

IM in the absence of the corresponding ground motion models is feasible. The proposed procedure requires 

only two main inputs from the user: the choice of the conditioning intensity measures 𝐼𝑀𝑖
⋆ for conducting the 

PSDA of 𝑋, and the tolerance level 𝜖. The rest of the steps can be automatized. The input parameters will be 

further discussed in the next section, in which we will implement the procedure in the context of probabilistic 

performance assessment using nonlinear predictors of response. 

3. Demand-oriented ground motion selection in a realistic case study 

As previously discussed, an accurate estimate of the level of demand with a specified rate of failure can be 

obtained from the median response conditional upon 𝑋, where 𝑋 is a variable that presents a strong correlation 

with the demand measure of interest 𝐸𝐷𝑃. The main benefit of the procedure introduced in the previous section 

is that it allows to consider any type of IM or predictor as the conditioning variable 𝑋, as it bypasses the need 

of ground motion models for record selection. Evidently, this approach is only practical if the computational 

effort for characterizing 𝑋 is negligible compared to that required for characterizing 𝐸𝐷𝑃. Variable 𝑋 can be 

therefore understood as a proxy variable; it is not itself relevant but becomes important as it is easily computed 

and serves as an approximation to the checking point for performance assessment in terms of equation (1). 

 Considering this constraint imposed to 𝑋, it is reasonable to think of it as the response of a structural 

model that is a simplified version of the one used for characterizing 𝐸𝐷𝑃. While most of the IMs adopted in 

engineering practice are in fact defined in terms of the response of a very simple structural model (spectral 

accelerations, for example), in this case we will specifically develop such model considering the properties of 

the structure and demand measure being assessed. In the following, we will refer to the complex model used 

to characterize 𝐸𝐷𝑃 as the reference model; to the simplified version as the predictor model; and to its response 

𝑋 as the predictor response. Next, we will conduct a realistic case study comparing the results from a rigorous 

PSDA against the estimates of the target demands obtained by means of traditional IBAs, and alternative 

predictor models using the procedure introduced in this paper. 

3.1 Building, reference model, site and PSDA 

The structural system selected is an eight-story three-bay steel special moment frame with reduced beam 

section connections. This building was designed as part of a study on the NIST evaluation of the FEMA P695 

methodology, where it was denoted with archetype ID number 4RSA [20]. Additional information on the 

geometry may be found in such reference. The reference structural model is drawn from Do’s PhD Dissertation 

[21]. The inelasticity of the frame is modeled using damage-plasticity based beam and column elements, with 

a damage formulation that allows to describe the main characteristics of steel components, including the 

accumulation of plastic deformations, the cyclic strength hardening in early cycles, low-cycle fatigue behavior, 

and the distinct deterioration rates in primary and follower half cycles. The column element is specifically 

formulated to capture the response under significant axial forces. The first three modal periods are 𝑇𝑛1 = 2𝑠, 

 

Fig. 3 – Selection of the CGM 
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𝑇𝑛2 = 0.72𝑠  and 𝑇𝑛3 = 0.4𝑠 . P-∆ effects from the gravity load that is not directly tributary to the column 

elements of the frame is captured by means of inflexible leaning columns adjacent to the frame. Rayleigh 

damping is used with the damping matrix proportional to the constant mass matrix and the tangent stiffness 

matrix for a damping ratio of 2.5%. 

Again, the site considered is Berkeley, CA, and the PSDA is conducted using the same set of ground 

motions considered in the application example of Step 1 in Section 2.1. The estimate of the seismic demand 

hazard curve 𝜆𝐸𝐷𝑃 consists of the arithmetic average of the different curves obtained for each conditioning 

intensity measure. Here, we will focus on two measures of demand: the maximum story drift ratio 𝑀𝑆𝐷𝑅, and 

the maximum floor acceleration 𝑀𝐹𝐴 along the height of the building. Setting 𝜈𝑓 = 0.001yr−1 (5% probability 

of exceedance in 50 years), the corresponding target demands are 𝑚𝑠𝑑𝑟𝑓 = 2.57% and 𝑚𝑓𝑎𝑓 = 0.80g. In the 

following, we will intend to estimate these levels of demand by means of intensity based assessments using 

both the traditional approach and the proposed demand-oriented procedure. 

3.2 Traditional IBAs 

Previous research shows that if drift ratios are of interest, ground motions should be conditioned upon vibration 

periods that are close to or larger than the building’s fundamental period; on the contrary, higher mode periods 

tend to capture better acceleration demands [6, 8]. Given that we are interested in both drifts and accelerations, 

and that it is not possible to determine a priori the best possible conditioning period in each case, we conduct 

a worst-case approach with the following periods: 𝑇𝑛3  and 𝑇𝑛2  for 𝑀𝐹𝐴, 𝑇𝑛1  and 2𝑇𝑛1  for 𝑀𝑆𝐷𝑅 . For each 

conditioning period, a set of records is selected so that it matches the corresponding CMS associated to 𝜈𝑓. In 

addition, we consider a fifth IBA in which the UHS associated to 𝜈𝑓 is the target spectrum adopted for ground 

motion selection. The UHS is not part of the worst-case approach. Instead, it is considered herein to test the 

hypothesis that it provides an upper bound estimate of the target demands. Based on the recommendations in 

ASCE 7-16 [4], 11 ground motions are adopted in each set. The estimate of the target demand provided by 

each IBA consists of the geometric mean of the response distribution. The use of the geometric mean as an 

estimator of the median demand is justified on the assumed lognormality of the response distribution.  

Fig. 4 summarizes the results obtained with traditional IBAs. First, we solely focus on the numerical 

values. As expected, traditional IBAs conditioned upon scalar IMs always underestimate the target demands. 

For 𝑀𝑆𝐷𝑅, the closest estimate is obtained from the IBA conditioned upon 𝑆𝑎(𝑇𝑛1), which underestimates 

𝑚𝑠𝑑𝑟𝑓  by 21%. On the other hand, the lower bound estimate of 𝑀𝐹𝐴  is obtained with 𝑆𝑎(𝑇𝑛2)  as the 

conditioning intensity measure, with an underestimation of 13%. Note that this approach not only provided 

inaccurate estimates of the target demands, it also resulted in significant waste of computational effort, as the 

RHAs associated to CMS(𝑇𝑛3) and CMS(2𝑇𝑛1) ended up being useless. Regarding the results from the UHS, 

for the target rate considered in this example, these are not ‘overly’ conservative as oftentimes stated. 

      

Fig. 4 – Comparison of results from PSDA and IBAs. GM: geometric mean. 𝜎: standard deviation 
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Interestingly, 𝑀𝑆𝐷𝑅 is overestimated by just 8% and 𝑀𝐹𝐴 is underestimated by 5%. 

After analyzing the numerical values, one might conclude that the UHS is the most adequate target 

spectrum for performance assessment in terms of equation (1) considering a target rate of failure of 0.001yr−1. 

However, it is important to recall that deriving numerical values is not the only purpose when conducting 

RHA, probably not even the main one. Performance quantification should also provide further information to 

understand the system so that performance can be potentially improved. Suppose, for example, that after 

conducting the IBAs described above it is determined that the maximum story drift ratio is larger than the 

allowable level of demand for the exceedance rate of interest. In order to decide how to modify the design, it 

is then crucial to identify which stories suffer the largest drift demands. One possible way to do this is to 

analyze the peak story drift ratios 𝑃𝑆𝐷𝑅 along the height of the building for those ground motions for which 

𝑀𝑆𝐷𝑅 = 𝑚𝑠𝑑𝑟𝑓 . Fig. 5a shows the profiles that result from the 11 RHAs, among the 990 considered for 

conducting the PSDA, for which 𝑀𝑆𝐷𝑅 is closest to 𝑚𝑠𝑑𝑟𝑓. By analyzing the distribution of demand, it is clear 

that the largest drifts tend to occur in the first or the second story, with only 3 out 11 profiles reaching their 

maximum drift in the upper stories. Fig. 5b presents the results obtained from UHS, the only target spectrum 

that provided an accurate estimate of 𝑚𝑠𝑑𝑟𝑓. These profiles, however, do not allow to capture where the largest 

drift occur. As a result, it is concluded that neither of the IBAs considered provide meaningful information to 

aid in the process of decision-making for assessing or improving the design, and therefore are unsuitable for 

performance assessment in terms of POs as that in equation (1). 

 

Fig. 5 – Peak story drift ratio profiles along the height of the building for different sets of ground motions 

3.3 Demand-oriented procedure 

The key step for obtaining an accurate estimate of the target demands is the development of the predictor 

model. Engineering judgment is required to decide which are the main features of the structure that need to be 

captured. Because the correlation between 𝐸𝐷𝑃  and the predictor response 𝑋  usually decreases as further 

simplifications are made to the reference model, it is important to strike the right balance between 

computational costs and prediction capabilities. Next, we will consider two different predictor models for 

implementing the demand-oriented procedure: an equivalent SDOF system and a simplified MDOF model. 

Note that the purpose of adopting different models is not to conduct a worst-case approach. Instead, multiple 

models are considered only to show that predictor responses that provide accurate estimates of the target 

demands can be obtained using models of different degree of complexity.  

Equivalent SDOF systems determined from the nonlinear static response of the reference model have 

been widely adopted in previous research as predictors of structural response. However, the availability of 

GMPEs for describing the response of inelastic SDOF systems is limited to the special case of bilinear 

hysteretic behavior with post-yield stiffness equal to 5% of the initial stiffness [22]. With the purpose of further 

increasing the correlation with drift demands, we consider a SDOF system that is specifically developed 

considering the degrading hysteretic behavior of the reference model. This predictor model, denoted as 
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EqSDOF, is then formulated using the damage model developed by Do and Filippou [23], with damage 

parameters established in accordance with the pushover response of the reference model. Its maximum inelastic 

displacement is adopted as the predictor response for 𝑀𝑆𝐷𝑅.  

The second predictor model considered consists of an eight-story shear building with bilinear story 

shear–drift relationship. This model, denoted as SB, is able to capture how initial strength and stiffness vary 

along the height of the building, and is therefore intended to provide predictor responses for both 𝑀𝑆𝐷𝑅 and 

𝑀𝐹𝐴. At each story, the initial stiffness is defined in terms of the total floor mass, the first modal period and 

first mode shape of the reference model. The yield shear force and tangent stiffness for each story is obtained 

from the pushover response of the reference model to lateral forces proportional to the first-mode inertia forces. 

P–∆ effects are considered as the first order approximation by computing the geometric stiffness of each floor.  

The demand-oriented ground motion selection procedure is now conducted using different measures of 

response of the predictor models to estimate the target demands for 𝑀𝑆𝐷𝑅 and 𝑀𝐹𝐴. The first input that needs 

to be specified is the choice of the conditioning intensity measures 𝐼𝑀𝑖
⋆ for selecting the large ensemble of 

records for conducting PSDA with the predictor models. When following the traditional approach, ground 

motions are selected so that they match the target spectrum over a period range corresponding to the vibration 

periods that significantly contribute to the building’s dynamic response. ASCE 7-16, for example, specifies 

this range as 0.2𝑇𝑛1 to 2𝑇𝑛1 (in this case, 0.4—4s). With the purpose of ensuring hazard consistency within that 

range, the conditioning IMs are specified as 𝐼𝑀1
⋆ ≡ 𝑆𝑎(0.4𝑠) , 𝐼𝑀2

⋆ ≡ 𝑆𝑎(2𝑠) , and 𝐼𝑀3
⋆ ≡ 𝑆𝑎(4𝑠) . The large 

ensemble of records used for characterizing the predictor responses 𝑋 at the site of interest is then identical to 

that considered for conducting the PSDA with the reference model. However, the time required to complete 

the 990 RHAs using the simplified models described above is about three orders of magnitude smaller. In other 

words, for models EqSDOF and SB, the PSDA is completed in an amount of time that is similar to that required 

for obtaining a single realization of 𝐸𝐷𝑃. This is the key fact that makes the proposed procedure practical. 

Fig. 6a and 6b illustrates the steps followed to compute the median drift demand of the reference model 

conditional upon the maximum displacement of EqSDOF. The level of predictor response associated to 𝜈𝑓 is 

𝑥∗ = 15.9in, and the 40 prospective records in Fig. 6a are a result of specifying a tolerance level 𝜖 =  0.9in. 

Then, after computing equation (5) to the prospective records, the 𝑁𝑔𝑚  =  11 ground motions with the lowest 

𝑆𝑆𝐸 are adopted as the CGM. The choice of 𝑁𝑔𝑚  =  11 records is justified on keeping consistency with the 

traditional procedures previously considered. The CGM are then used to conduct RHAs with the reference 

model and estimate the median conditional response as shown in Fig. 6b, which in this case is 2.51%. 

 

Fig. 6 – Computation of response conditional upon nonlinear predictors 

The choice of the tolerance level 𝜖 should strike the right balance between the main purpose of the 

procedure (the fact that 𝑋 should be approximately equal to 𝑥∗) and the convenience of increasing the number 

of prospective ground motions. This last matter is necessary to ensure that the CGM fit the median of the 

conditional distribution and reduce the variability of spectral accelerations as much as possible. In this case 

study, at least 3 × 𝑁𝑔𝑚  prospective ground motions were necessary for such purpose, and the maximum 

tolerance level required was 0.08𝑥∗. To further illustrate the importance of matching the target intensities, Fig. 

6c and 6d summarize the implementation of the demand-oriented procedure for estimating 𝑀𝐹𝐴 using the 

maximum floor acceleration of SB as the predictor response. The comparison of the response distribution for 

the CGM and the prospective records in Fig. 6b and Fig. 6d shows that the structural demand conditioned upon 
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𝑋 = 𝑥∗ is not independent of spectral shape. Therefore, the fact that the CGM allow to match the median of 

𝐼𝑀𝑖
⋆ |𝑋 = 𝑥∗ and reduce the variability of the distribution of spectral ordinates is important for obtaining an 

unbiased estimate of the median demand conditioned upon 𝑋 at a reduced computational effort. 

The results obtained with the demand-oriented procedure are shown in Fig. 4 together with those for 

traditional IBAs. The proposed procedure not only provides very accurate estimates; more importantly, it 

allows to obtain such estimates at a reduced computational cost, since the procedure returns a single set of 

records for each 𝐸𝐷𝑃 considered. Comparing the standard deviations of the response distributions, it is noted 

that the dispersion of results obtained with the CGM is similar to that resulting from ground motions selected 

to match a traditional CMS. This implies that, for the same number of records, both methods are equally 

precise. Evidently, the key point is the identification of an adequate predictor response for the demand measure 

of interest. As an example, Fig. 7 shows the correlation between the predictor responses and the 𝑀𝑆𝐷𝑅. Clearly, 

compared to single period spectral ordinates, the prediction capabilities of the predictor responses considered 

is significantly stronger, which explains why the results are improved compared to the multiple-IBA approach. 

 

Fig. 7 - Relation between 𝑀𝑆𝐷𝑅, and different response predictors for the eight-story special moment frame 

In order to further evaluate the adequacy of the proposed procedure for the purpose of performance 

assessment, it is necessary to check whether the CGM provide additional insight into understanding the system 

at the demand level of interest. Fig. 5c shows the profiles of 𝑃𝑆𝐷𝑅 along the height of building obtained with 

the maximum story drift ratio of SB as the predictor response for 𝑀𝑆𝐷𝑅. In this case, the results allow to 

conclude that the maximum drifts are more likely to occur in the lower stories, as was demonstrated in Fig. 5a, 

providing valuable information for decision-making.  

4. Conclusions 

This paper deals with ground motion selection with the purpose of conducting probabilistic performance 

assessment. In this sense, the reduced set of records should provide an accurate estimate of the level of demand 

with a specified rate of exceedance, and additional insight into understanding the system so that performance 

can be potentially improved. An existing solution consists on conducting multiple IBAs, each conditioned 

upon a different IM and take the maximum response as the estimate of the target demand. This approach has 

two main problems. First, since it is usually not possible to determine beforehand the most convenient IM, 

multiple IBAs are sometimes required. Second, if none of the IMs considered is an efficient predictor of the 

demand measure of interest, even the worst-case approach will result in inaccurate estimates of the target 

demand. With the purpose of increasing the correlation with the response, we propose an alternative ground 

motion selection that bypasses the need for ground motion models for the conditioning IM. This allows to 

specifically develop such IM as predictor for the response measure of interest, and therefore ensuring that a 

single IBA will provide valuable information for conducting the design check.  

Using an eight-story building at a realistic site as a case study, the proposed procedure is shown to provide 

demand estimates that are more accurate and as precise as those obtained from analyzing the building with 

multiple IBAs. Also, since the predictor models considered allow to characterize the predictor response in an 

amount of time that is similar to that required for conducting a single RHA of the reference model, the proposed 
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procedure requires less computational effort than the multiple-IBA approach. 
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