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Abstract 
Due to their superior physical and mechanical properties, ultra-high strength (UHS) reinforcement rebars (with yield 
stress over 1000MPa) have recently found wider and wider applications in high earthquake-resistant structures and high-
resilient concrete reinforced (RC) components as longitudinal reinforcement. Buckling of longitudinal rebars in RC beams 
and columns is one of the important issue needed to be addressed when designing and evaluating seismic properties of 
concrete structures located in earthquake-prone zones such as Japan and China because the buckled rebars will decrease 
their axial load-resisting capacity, initiating the degradation in lateral load-carrying capacity and deformability of the RC 
components. To reasonably trace and accurately evaluate the post-peak seismic behavior of RC components, a complete 
compressive stress-strain model capable of capturing the post-buckling properties of the longitudinal rebars, both normal-
strength and high-strength, is indispensable. While there have been numerous studies on the post-buckling behavior of 
reinforcement bars and several stress-strain models have been proposed in the literature, the previous studies mainly 
focused on normal-strength rebars with yield stress ranging from 300 MPa to 500MPa, and the models have been 
developed based on the experimental results of bare rebar specimens. There have been few, if any, information on the 
post-buckling behavior of UHS rebars embedded in concrete, neither a reliable compressive stress-strain model that can 
reliably evaluate the post-buckling behavior of UHS rebars.  

This paper presents information on the post-buckling behavior of UHS rebars with yield stress of as high as about 
1400 MPa and a complete compressive stress-strain model for the UHS rebars embedded in RC columns. Based on the 
so-called DM model and the experimental results, the complete stress-strain model for UHS rebars was developed. To 
validate the proposed stress-strain model, twelve short concrete columns were tested under monotonic axial compression 
with the spacing of transverse normal-strength reinforcement and the concrete grade as primary experimental variables. 
Comparison between the experimental results and theoretical predictions by the proposed model has indicated that the 
proposed model can satisfactorily simulate the compressive load-deformation response of UHS rebars reinforced concrete 
columns with consideration of post-buckling behavior of UHS rebars. 
Keywords: Ultra high-strength rebar, reinforced concrete column, buckling, complete stress-strain model. 
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1. Introduction 
A large amount of seismic damage investigations has indicated that reinforced concrete (RC) components 
exposed to severely seismic loads are vulnerable to failure by longitudinal rebars buckling. Owing to the weak 
capacity of the buckled longitudinal rebars in resisting the axial deformations, the occurrence of the rebar 
buckling usually results in the reduction of the ductility and energy dissipation capacity of RC components 
under the combination of gravity and lateral loads during earthquakes. Therefore, it is of particular importance 
to accurately evaluate the post-peak deformation response of RC components. In the last decades, extensive 
studies have been carried out in an attempt to develop the relevant material stress-strain models that are capable 
of capturing the post-buckling behavior of longitudinal rebars. Papia et al. [1] proposed a criterion to evaluate 
the peak load of the longitudinal rebars of compressed RC components. They found that a single parameter, 
which is proportional to the ratio between the stirrup stiffness and the shear stiffness of longitudinal rebar, was 
fairly suitable for determining the buckling length of the rebars. Monti and Nuti [2] experimentally and 
theoretically studied the stress-strain relations of the compressed bare rebars by considering the inelastic 
buckling effects. It was found that the ratios between unsupported length to rebar diameter significantly affect 
the post-buckling behavior of compressed rebars. Gomes and Appleton [3] modified the Menegotto-Pinto 
cyclic stress-strain model of steel rebars and successfully applied the modified model to consider the effect of 
the inelastic buckling of the longitudinal rebars. Based on the Gomes-Appleton model, Yang et al. [4] 
introduced an average stress reduction coefficient to take into account the core concrete expansion effects on 
the buckling behavior of reinforcement rebars. Dhakal and Maekawa [5] used the well-known tensile response 
parameters in defining the compressive response of reinforcement rebars and proposed a simple and accurate 
compressive stress-strain model with general applicability. Massone and Moroder [6] investigated the effect 
of initial imperfection on the buckling behavior of rebars and proposed a compressive stress-strain model with 
the capability of capturing initial imperfection effects. Many other studies [7,8] with respect to longitudinal 
rebar buckling have also been reported, however, most of them only focused on the normal-strength 
reinforcement rebars with yield stress ranging from 300 MPa to 500MPa. 

 Compared to a large number of investigations on the buckling of normal-strength reinforcement rebars, 
the study on the UHS reinforcement rebars is, if any, very few. Hu et al. [9] experimentally investigated the 
buckling behavior of the UHS reinforcement rebars using the bare rebar specimens and proposed an empirical 
model to predict the stress-strain curves of compressed UHS reinforcement rebars. However, the proposed 
model has not been proved to be applicable to UHS reinforcement rebars embedded in RC components.  

Due to their superior physical and mechanical properties, high-strength (HS) and ultra-high-strength 
(UHS) reinforcement rebars (with yield strength over 1000MPa) have been more and more widely adopted to 
the construction of high earthquake-resistant structures [10], and high resilient concrete columns [11] as well 
as walls [12]. The authors have experimentally verified that using SBPDN rebar, an UHS rebar with low bond 
strength, as longitudinal tensile and compressive reinforcement could assure sufficient drift-hardening 
capability to concrete columns and walls [11,12]. Meanwhile, the previous study also indicated that the lateral 
resistance of concrete walls reinforced by SBPDN rebars tended to decrease due to crushing of concrete in 
compressive zone and local buckling of SNPDN bars at so large drift levels as 3.0% [12]. Therefore, to more 
accurately evaluate the drift-hardening capability of concrete walls with SBPDN rebars, the complete 
compressive stress-strain relations for the UHS rebars embedded in RC columns are desirable. To this end, in 
the present study, a complete stress-strain model for UHS rebars was developed based on the so-called DM 
model and experimental results. Then, the proposed model was applied to evaluate the axial behavior of twelve 
short concrete columns tested under monotonic compression.  

2. Proposal of Stress-Strain Model  
2.1 Original Dhakal and Maekawa (DM) model 
To simulate the bare rebar buckling and develop a relevant stress-strain model, a series of three-dimensional 
nonlinear finite element analyses using the fiber technique were conducted by Dhakal and Maekawa [5]. The 
finite element model was first validated using the experimental results reported by some other researchers and 
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then used for the parametric investigation. The parametric analysis results indicated that the buckling behavior 
of bare bars was controlled by the coupled effect of yield stress and slenderness ratio (defined as the ratio of 
unsupported length to bare bar diameter) of rebars. Based on these results, an average monotonic compressive 
stress-strain model, whose general layout is illustrated in Fig. 1, was developed.  

 
Fig. 1  – Schematic of DM stress-strain model 

 The linear elastic stage of the DM model is consistent with the tensile stress-strain curve and is defined 
as Eq. (1),  

 σ = Es·ε; for ε ≤ εy (1) 
where εy is the yield strain, and Es is the Young’s modulus.  

 After the yield point (εy, σy), an intermediate point (εi, σi) is introduced to track the post-buckling 
behavior. Between the yield point and intermediate point, the average compressive stress-strain relationship is 
expressed as: 

𝜎
𝜎"
= 1 − 1 −

𝜎&
𝜎&"

𝜀 − 𝜀(
𝜀& − 𝜀(

; for	𝜀( < 𝜀 ≤ 𝜀&																																																						(2) 

in which σt and σit are the stresses of the tensile stress-strain curve corresponding to the current strain (ε) and 
the intermediate point strain (εi), respectively. The intermediate point (εi, σi) is determined by the expressions 
of Eqs. (3) and (4), which were obtained from the regression analysis for the data generated from the parametric 
study. 
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where L denotes the unsupported length and D denotes the bare rebar diameter. The coefficient α was used to 
account for the effect of different material hardening models. For the two most commonly used models, i.e., 
elastic-perfectly plastic model and linear hardening model, α was found to be 0.75 and 1.0, respectively. After 
the intermediate point (εi, σi), the average stress is assumed decreasing with a constant stiffness of 0.02Es until 
σ = 0.2σy and then keep constant as 0.2σy. 

2.2 Modified DM model for UHS rebars 

Tension

Compression

(εi, σit)

(εy, σy)

0.2σy

(εi, σi)
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Although the original DM model is applicable for a wide range of slenderness ratios and material properties, 
it is developed based on the results of normal-strength reinforcement rebars. It is noted that for the UHS rebars 
(with a yield stress of over 1400 MPa in this study), Eq. (3) is only viable for L/D values less than 5.5. In 
addition, the test results reported by Hu et al. [9] have indicated that the UHS rebars would buckle when the 
average stress less than the yield stress, which is significantly different from that for the normal-strength 
reinforcement rebars. Thus, the original DM model should be modified in order to suitable for UHS rebars. 

 Following the similar procedure used by Dhakal and Maekawa to develop the DM model, the 
intermediate points (εi, σi) for UHS rebars are determined by regression analysis for the test data obtained from 
the experiments on UHS rebars [9]. Fig. 2 shows the regression results for the determination of intermediate 
point coordinates. By doing so, for the UHS rebars, Eq. (3) and (4) are modified as follows, 

𝜀&
𝜀(
= 0.42 ∙ 𝛽CD.DE																																																																									(5)	

𝜎&
𝜎(

= 𝛼 −0.98𝛽H + 0.34𝛽 + 0.96 																																																							(6) 

in which β is defined as 0.01 JK
DLL

M
N

. It is noted that both εi/εy and σi/σy are less than 1.0 for larger β value, 

which implies that the UHS rebars with higher slenderness ratio are likely to buckle at the linear elastic stage. 
In such cases, the linear elastic stage of the DM model just continues to the buckle point (εb, σb) instead of the 
yield point (εy, σy), and the buckle point is consistent with the intermediate point determined by the means of 
Eq. (5) and (6). 

 
Fig. 2  – Determination of intermediate point coordinates for UHS rebars 

 After the intermediate point (εi, σi), for the cases of L/D < 10, the average stress is assumed linearly 
decreasing with a stiffness of α1Es, and the coefficient α1 is determined by, 

α1 = 0.231 β -0.032       (7) 

While, for the cases of L/D ≥ 10, the average stress nonlinearly decreases following the expression of Eq. (8). 

𝜎&
𝜎(

= 𝛼H
𝜀
𝜀(

OP
																																																																						(8) 

where the coefficients α2 and α3, which were determined based on the regression analysis, can be calculated 
by the means of, 

𝛼H = 	0.30𝛽CD.QR	and		𝛼Q = 	−0.48𝛽CL.DH																																												(9) 
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 Fig. 3 shows the comparison between the results obtained from the proposed stress-strain model and the 
experiments reported by Hu et al. [9]. As can be seen, the modified DM model is capable of regenerating the 
average stress-strain curves of bare UHS rebars under a monotonically compressive load. 

 
Fig. 3  – Comparison between the predicted and experiment stress-strain curves 

2.3 Effect of core concrete expansion 
It should be noted that the above-mentioned stress-strain models were developed based on the test results 
obtained from bare rebars. However, for the RC columns under compressive load, the core concrete tends not 
only to shorten lengthwise but also to expand laterally due to the Poisson effect. According to some previous 
investigations [3,4], the effect of core concrete expansion on the buckled rebars can be assumed as the 
distributed lateral force on acting on the longitudinal rebars. For simplicity, a correction coefficient as indicated 
in Eq. (10) can be introduced to consider the core concrete expansion effect on the average stresses of the 
longitudinal rebars,  

𝛺 = 1 −
𝑘U𝐾L
2𝜎(𝐴X

			𝑓 𝜀 																																																																			(10) 

where kc is the confinement effectiveness coefficient and K0 is the parameter relating to stirrup arrangement, 
and both can be calculated according to the formulae reported in [4]. Since the buckled rebar would separate 
from the core concrete after onset of buckling, the strain functions f(ε) with respect to different strain levels 
are determined by the means of,  

𝑓 𝜀 =
1 − 0.667 𝜀/𝜀&

2 − 𝜀/𝜀&
∙
1 − 𝜀
2

∙ 𝜀	for	𝜀 < 𝜀&																																																	(11) 

𝑓 𝜀 =
1 − 𝜀
6

∙ 𝜀&	for	𝜀 ≥ 𝜀&																																																															(12) 
 The average stresses of the buckled longitudinal rebars with considering the core concrete expansion 
can be obtained by multiplying the average stresses obtained from the modified DM model by the correction 
coefficient of Ω.  

3. Application to experiment evaluation 
3.1 Experimental program  
To validate the proposed monotonically compressive stress-strain model for UHS rebar, a total of twelve 
columns, including six square columns and six circular columns, were fabricated and tested in this study. All 
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columns are in height of 360 mm, with a cross-section side length of 150 mm for the square columns and a 
diameter of 150 mm for the circular columns. Fig. 4 shows the configurations of the test specimens. All the 
columns were reinforced by the UHS rebars (i.e., SBPDN). The nominal diameter of the SBPDN rebars was 
12.6 mm. The hoops, which were made from SD295 deformed steel round rebars with a nominal diameter of 
6.35 mm, were used to confine the core concrete and provide lateral restraints for the longitudinal rebars. The 
middle height regions of the columns were selected as the areas of interest to facilitate the investigation of 
buckling of longitudinal rebars. In the regions of concern, three different stirrup intervals, i.e., 50 mm, 75 mm, 
and 100 mm, were selected to yield the slenderness ratios of 4, 6, and 8, respectively. The stirrup interval 
decreased to 25 mm to ensure the longitudinal rebars would buckle at the middle height regions of the columns. 
The end plates, which were anchored on the longitudinal rebars using the bolt nuts, were used to facilitate the 
forming of the reinforcement cage. Both the end plates and bolt nuts would not be taken off and would be 
covered after casting concrete. After the columns were made, two steel jackets with the height of 95 mm were 
also mounted at two ends of each column to provide additional constraint for the concrete outside the concerned 
regions. By doing so, the columns were expected to be damaged only in the mid-height regions.  

 

 
Fig.4 – Configurations of the test specimens (unit: mm) 

 According to the tensile coupon tests for three samples, the average values of Young’s modulus (Es), 
yield stress (fy), yield strain (εy), tensile stress (fu), tensile strain (εu), and the strain at starting point of hardening 
branch (εsh) were obtained and listed in Table 1.  

 Two different grades of ready-mixed concrete made of Portland cement and coarse aggregates with the 
maximum particle size of 20 mm were used for constructing the columns. Based on the test results from three 
cylinders 100 × 200 mm in dimensions at 28 days after casting, the average values of compressive strength, 
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splitting tensile strength, Young’s modulus, and peak strain are 43.4 MPa, 3.2 MPa, 27.5 GPa, 0.0025 for the 
normal-strength grade concrete (C40) and 70.7 MPa, 6.1 MPa, 33.9 GPa, 0.0025 for the high-strength grade 
concrete (C60). Table 2 summarizes the matrix of testing specimens, in which D is the diameter of longitudinal 
rebar, d is the diameter of stirrup rebar, S is the stirrup spacing, S/D is the slenderness ratio, and fc' is the actual 
concrete compressive strength at the time of testing. 

Table 1 – Material properties of steel rebars 

Grade Es (MPa) fy (MPa) εy (%) εsh (%) fu (MPa) εu (%) 
SD295 191 400 0.21 1.52 523 20 
SBPDN 212 1397 0.86* / 1470 10 

           Note: * obtained from the 0.2% offset method. 

Table 2 – Matrix of testing specimens 

Specimens Longitudinal 
rebar 

Transverse 
stirrup 

D 
(mm) 

d 
(mm) 

S 
(mm) S/D Concrete 

grade 
𝑓U
, 

(MPa) 

S40-4 SBPDN SD295 12.6 6.35 50 4 C40 50.1 
S40-6 SBPDN SD295 12.6 6.35 75 6 C40 50.1 
S40-8 SBPDN SD295 12.6 6.35 100 8 C40 50.1 
S60-4 SBPDN SD295 12.6 6.35 50 4 C60 76.9 
S60-6 SBPDN SD295 12.6 6.35 75 6 C60 76.9 
S60-8 SBPDN SD295 12.6 6.35 100 8 C60 76.9 
C40-4 SBPDN SD295 12.6 6.35 50 4 C40 50.1 
C40-6 SBPDN SD295 12.6 6.35 75 6 C40 50.1 
C40-8 SBPDN SD295 12.6 6.35 100 8 C40 50.1 
C60-4 SBPDN SD295 12.6 6.35 50 4 C60 76.9 
C60-6 SBPDN SD295 12.6 6.35 75 6 C60 76.9 
C60-8 SBPDN SD295 12.6 6.35 100 8 C60 76.9 

 

 Axially monotonic compression load was applied to the columns using a universal testing machine with 
a capacity of 2000 kN. Four linearly variable differential transformers (LVDTs) were used to measure the 
overall axial displacements. The tests were stopped when the axial shortening reached to 4% of the length of 
the specimen (i.e., average overall axial displacement of about 14.4 mm). 

3.2 Load-displacement curves 
To predict the load-displacement curves of the tested columns, the stress-strain constitutive model proposed 
by Sun et al. [13] was applied to simulate the axial behavior of confined concrete. The stress-strain relationship 
of the core concrete loaded under compression can be written as follow [13]: 

𝑓U =
𝐴𝑋 + (𝐵 − 1)𝑋H

1 + 𝐴 − 2 𝑋 + 𝐵𝑋H
𝑓UU^ 																																																										(13) 

where X = εc / εcc, fcc’ and εcc are the stress and strain of confined concrete at the peak point; A = Ec / Esec, 𝐸U =
(0.69 + 0.34 𝑓U^)×10a is the Young’s modulus of concrete, 𝐸XbU = 𝑓UU^ /𝜀UU is the secant modulus at the peak; 
B is the parameter governing the slope of descending branch. The three parameters fcc’, εcc, and B are given as:  

𝑓UU^ = 𝑓U^ + 11.5𝜌d𝜎(d(
𝑑^

𝐶
)(1 −

𝑆
2𝐷U

)																																																	(14) 
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𝜀UU
𝜀Uh

= 1 + 4.7 𝐾 − 1 ,																		𝐾 ≤ 1.5
3.35 + 20 𝐾 − 1.5 ,									𝐾 > 1.5 																																												(15) 

𝐵 = 1.5 − 0.017𝑓U^ + 1.6
𝐾 − 1 𝑓U^

23
> 0.5																																															(16) 

in which fc’ is the actual concrete compressive strength at the time of testing (see Table 1); 𝜀Uh =
0.94(𝑓U^)L.Ha×10CQ is the strain of unconfined concrete at the peak stress point; 𝐾 = 𝑓UU^ /𝑓U^ is the strength 
enhancement ratio of confined concrete; 𝜌d, 𝜎(d, d’, C, and Dc are the parameters related to the lateral hoops 
[13]. Note that ρh = 0 corresponds to the case of unconfined concrete and can be used to simulate the case of 
cover concrete. 

 For the test results, the load was measured from the load cell and the displacement was measured as the 
average value of four LVDTs. For the predicted results, the total load (N) was calculated by considering the 
contributions of cover concrete (Ncov), core concrete (Ncor), and longitudinal rebars (Ns) as the following 
expression, 

N = Ncov + Ncor + Ns      (17) 

where Ncov and Ncor are calculated using Eq. (13) to (16), Ns is calculated using the stress-strain model proposed 
in Section 2. The comparison results between the test and predicted axial load-displacement curves of all the 
tested columns are shown in Fig. 5 to Fig. 8. For comparison purposes, the axial load-displacement curves 
without considering longitudinal rebar buckling are also plotted. It is clearly shown that the proposed stress-
strain model for considering the buckling of UHS rebars can track the load-displacement curves of square or 
circular RC columns with different concrete grades very well. 

 
Fig.5 – Axial load-displacement curves of square specimens with C40 concrete 

 
Fig.6 – Axial load-displacement curves of circular specimens with C40 concrete 
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Fig.7 – Axial load-displacement curves of square specimens with C60 concrete 

 
Fig.8 – Axial load-displacement curves of circular specimens with C60 concrete 

4. Conclusions 
To provide structural engineers a useful and powerful tool for evaluating the post-buckling behavior of RC 
components reinforced by UHS rebars, a monotonically compressive stress-strain model of UHS rebar 
considering buckling has been proposed. Comparisons with the previous tests have indicated that the proposed 
model is capable of regenerating the average stress-strain curves of bare UHS rebars under a monotonically 
compressive load. It has also been shown that the load-displacement curves based on the proposed stress-strain 
model agreed well with the test results generated from both square and circular stub columns fabricated using 
the concrete with different compressive strengths. These findings imply that the proposed stress-strain model 
provides structural engineering a useful and reliable tool to conduct reasonable design for RC components 
reinforced by UHS rebars considering the longitudinal rebar buckling. 
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