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Abstract 

Twelve triangular pile caps were tested under uniaxial load until failure. The pile caps were scaled versions of one another, 
with effective depths of 250mm, 500mm, or 1000mm, shear span ratios of one, and either one or three layers of bottom 
reinforcement. This paper is the second in a two-part series discussing the test results. Part one presents a summary of the 
experiment results, and discussion of pile caps failing at small bottom reinforcement strains. This part discusses the effect 
of the area of bottom reinforcement on strength. In all the specimens, the strain of the reinforcement did not reach the 
yield strain. The observed strains in the bottom reinforcement agreed with the predictions of the strut-and-tie model 
irrespective of the reinforcement ratio. The strengths of the specimens with three-layers reinforcement were 1.4 times 
those with one-layer reinforcement. Noting that 31/3 = 1.4, we may conclude that the strength of the pile caps was 
proportional to the reinforcement ratio to the power of 1/3 as assumed in the equation for the shear strength of RC beam 
of ACI 318-19. However, this result is not consistent with the conclusion of the strut-and-tie model if we assume the 
strength of each strut to be independent of the strain of the reinforcement. If one assumes linearly-distributed strains with 
inclined neutral axes located at the lower borders of the struts, one gets strengths of the specimens similar to the 
observations, as the depths of the struts increased with the amount of bottom reinforcement. 
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1. Introduction 

This paper is the second of a two-part series discussing the experimental program and results. Part one presents 
the experimental program and results for triangular footings with three layers of bottom reinforcement. The 
footings were constructed at three scales (S: a=d=250mm, M: a=d=500mm, and L: a=d=1000mm) and with 
two different bottom reinforcement configurations (1 layer or 3 layers). This paper discusses the effect of the 
amount of reinforcement on the strength of pile cap. The test results are compared with the strut-and-tie model 
and a model considering the strain. 

2. Equilibrium of strut-and-tie model and steel strain 

Figure 1 shows the equilibrium between the vertical load, P, the reaction, Q, the compressive forces of concrete, 
C, and the tensile forces of reinforcement, T. The equilibrium leads to the following equation for the tensile 
force and the vertical load. 

 6 cos30P T  or 
6cos30

P
T       (1) 

The inclined orange line in Fig. 2 shows the strain of the bottom reinforcement predicted by Eq. 1 for specimen 
L1 with one layer of reinforcement. The other lines in Fig. 2 show the observed strains at the locations in Fig. 
3. The observed strains agree with the prediction beyond approximately 1000 με. The strains of the other 
specimens also agreed with the prediction. 

Because the reinforcement did not yield in any specimens, the model shown in Fig. 1 also leads to the following 
equation for the strength of the specimens. 

 3 sin 45u cP Af          (2) 

where A is the area of each strut and fc is the strength of concrete. However, Eq. 2 does not agree with the 
observation reported in Part 1 paper in two aspects.  

(1) Equation 2 does not depend on the amount of the reinforcement. Nevertheless, specimens with three layers 
of reinforcement were observed to be 1.4 times stronger than those with one layer of reinforcement. Noting 
that 31/3 = 1.4, one may conclude that fc above is not the actual concrete strength but is an effective strength 
which is proportional to the third root of the amount of the reinforcement. In ACI code [1], it is assumed 
that the shear strength of RC beam is proportional to the reinforcement ratio to the power of 1/3. 

(2) Pu in Equation 2 is proportional to the concrete strength. However, the strength of specimen L3H was 1.4 
times that of specimen L3a, whereas the concrete compressive strength of specimen L3H was 1.9 times 
that of specimen L3a. Noting 1.91/2 = 1.4, one may again conclude that fc is not the real concrete strength 
but is an effective strength which is proportional to the square root of the actual concrete strength. 

In the following sections, we will introduce a new method where we do not need the notion of “effective 
strength”. 
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Fig. 1 – Strut-and-tie model 

 

Fig. 2 – Strain vs. vertical load of specimen L1. 

 

Fig. 3 – Locations of strain gages (specimen L1). 

 

3. Observed Cracks 

Figures 4 and 5 show the cracks in specimen L3H at the peak load and after testing, respectively. Fig. 6 and 
Fig. 7 show the cracks in specimen L1 at the same stages. The flexural cracks indicated by 1 in Fig. 4 occurred 
first. Second, the inclined cracks indicated by 2 in Fig. 4 occurred. After the peak load, the horizontal cracks 
indicated by 3 in Fig. 5 were prominent as shown in the photograph in Fig. 8. The cracks of specimen L1 were 
similar to those of specimen L3H, except that the flexural cracks were more prominent. Fig. 9 shows specimen 
L1 after the test. The pink circle shows the location of the top loading plate. The inclined surface of the concrete 
appeared as a result of the spalling of the concrete connecting the top loading plate and the anchor plates of 
the bottom reinforcement. The implication of Fig. 9 will be discussed later. Fig. 10 shows the sinking of the 
top plate. Similar sinking was observed in all specimens.  

One S3-type specimen was cut after core sampling as shown in Fig. 11. Fig. 12 shows the resulting cross 
section. Sliding of concrete was observed between the top and bottom plates as shown by the red arrows in 
this figure. 
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Fig. 4 – Cracks of L3H at peak load. 
 

Fig. 5 – Cracks of L3H after test. 

Fig. 6 – Cracks of L1 at peak load. 
 

Fig. 7 – Cracks of L1 after test. 

Fig. 8 – Specimen L3H after test. Fig. 9 – Specimen L1 after test indicating the struts.
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Fig. 10 – Sinking of top plate of specimen L3a. 

 

Fig. 11 – Cutting specimen S3. Fig. 12 – Section of specimen S3 (courtesy of Dr. Srinivas Mogili). 

 

4. Deformation of Specimens Inferred from Surface Measurements 

The measurement frame for L-type specimens is shown in blue in Fig. 13. The frame was supported by the 
bolts embedded in the narrower side surfaces of the specimen. The numbers in Fig. 13 show the locations of 
displacement meters. Meters 1~4 were attached from the measurement frame to the bottom face of the 
specimen as indicated in Table 1 and Fig. 13d to measure the deflection of the bottom surface relative to the 
sides. Meters 15~20 were attached from the measurement frame to the side faces of the specimen (Fig. 13a 
and b) to measure the rotation of the side surfaces. Meters 12~14 (Fig. 13a and b) were connected to bolts 
embedded in the top and bottom surfaces of the specimens to measure vertical widening caused by the cracks 
shown in Fig. 8. Meters 7, 8, 11 (Fig. 13c) were attached from the top plate to the adjacent surface of the 
concrete top to measure sinking of the top plate as shown in Fig. 11. Meters 21~26 (Fig. 13d) were attached 
from the bottom plate to measure the sinking of the bottom plate.  
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Table 1 – Locations of displacement meters. 

No. From To 
1 ~ 4 Frame Concrete bottom

5, 9, 10 BATS platen Concrete bottom
6 BATS platen Bottom plate side

7, 8, 11 Top plate Concrete top
12 ~ 14 Concrete top Concrete bottom
15 ~ 20 Frame Concrete side
21 ~ 26 Bottom plate Concrete bottom
27 ~ 28 Frame Concrete top

 

    

Fig. 13 – Locations of displacement meters for L-size specimens. 

Fig. 14 shows the deformation of specimen L3H at the section indicated in Fig. 12 inferred from the 
displacement transducers shown in Fig. 13 at the deflection of the peak load, p = 5.4 mm. The numbers in 
parentheses indicate the horizontal and vertical displacement relative to the measurement frame shown in Fig. 
13. Detail of the derivation of the displacements from the displacement sensors illustrated in Fig. 13 are 
described in Ref. [2]. The width of the flexural crack, 2.8 mm, indicates the total of the widths of all flexural 
cracks. For L3H, sinking of the top plate (3.5 mm) was 65 % of the total deflection (3.5/5.4 = 0.65).  

Fig. 15a shows the inferred deformation of L1 at p = 7.3 mm, where the sinking of the top plate increased to 
2.8 mm, which is 38 % of the total deflection (2.8/7.3 = 0.38), a much smaller portion than L3H. The sinking 
of the bottom plate was less than that of the top plate in both specimens. The red arrows in Fig. 14 and Fig. 
15a indicate sliding of concrete caused by the inclined compressive stresses shown in Fig. 1.  

It should be noted, however, that the volcano-shaped failure shown in Fig. 9 may lead to another interpretation 
of deformation as shown in Fig. 15b. Here, it is assumed that compressive strain was prominent up to the peak 
load and the sliding observed in Fig. 12 occurred after the peak. In the case of specimens L3H and L1, the 
measured sinking of the top plates at the peak deformation were 24 mm and 8 mm, respectively, which were 
much larger than those at the peak load. If the inclined cracks extending from the upper plate as shown in Fig. 
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15b are assumed to constitute the surface of a cone as indicated by the red lines in Fig. 16a and b, we obtain a 
curved crack as shown in Fig. 16c, which looks similar to Fig. 8. 

 

Fig. 14 – Deformation of specimen L3H at the peak load assuming sliding 

 

(a) Assuming sliding 

 

(b) Assuming inclined compressive strain 

Fig. 15 – Deformation of specimen L1 at the peak load  
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Fig. 16 – Specimen with an imaginary cone 

5. Assumed Strain Distribution  

Based on the assumptions shown in Fig. 15b, the strain distribution is assumed to be as depicted in Fig. 17. 
The regions shaded in gray are assumed to be rigid because they are under tri-axial compression. The regions 
shaded in pink are assumed to have tensile strain. The regions shaded in blue are assumed to have compressive 
strain. The lengths of these regions, atop, are approximated as follows: 

 2top bot topa a r r           (3) 

where a is shear span length and rbot and rtop are the radii of the bottom and top plates, respectively. Using the 
strain at the top of the compressive region, top, the deformation, etop in Fig. 18, is computed as: 

top top tope a          (4) 

The deformation, etop in Fig. 18 can be computed by multiplying the rotation of the compressive region, , and 
the depth of the compressive region, c: 

tope c           (5) 

Equations 4 and 5 lead to: 

top topa

c


            (6) 

Fig. 19 shows the deformation of the bottom face of the specimen. The solid red circle is assumed to expand 
to the dashed red circle. The expansion, esteel, is given by: 

(1 )steele k d           (7) 

where  is the rotation of the compressive region and (1 – k)d is the distance between the origin of the rotation 
and the reinforcement (Fig. 14). The strain in the red circle in Fig. 19, which is equal to the strain of the 
reinforcement, is: 

(1 )steel
steel

e k d

a a

  
         (8) 
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The tensile force of the reinforcement is: 

steel steel steelT A E           (9) 

where Asteel and Esteel are the cross-sectional area and Young’s modulus of the reinforcement, respectively. Fig. 
20 shows distributions of compressive stresses corresponding to strains of 0.001 and 0.003, where Ec is 
Young’s modulus of the concrete and: 

 
1

0.05 28
0.85 0.65

7
cfk


         (10) 

3 0.85k            (11) 

Fig. 21 shows the top plate divided into thirds, each of which supports a compressive strut. Because  is nearly 
equal to 3, the area of each part is nearly equal to rtop

2 as shown by the broken square in Fig. 21. Thus, it is 
assumed that the width of the compressive strut is equal to the radius of the top plate: 

e topb r           (12) 

The compressive force of the strut is: 

 If 0.001top   then 0.001 / 2c eC E b c       (13) 

 If 0.003top   then 1 3 c eC k k f b c       (14) 

Fig. 22 gives the relationship between the strut depth c and the angle of the rigid zone : 

 cos 45 cos
toprc

 



  or 

2

cos sin cos
toprc

  



 or 

2
tan 1

top

c

r
     (15) 

Fig. 22 also gives the relationship between the angle of the rigid zone  and the neutral axis depth kd: 

 tantopkd r           (16) 

The equilibrium shown in Fig. 1 is still valid and leads to the relationship between C and T: 

 2 2 cos30C T          (17) 

The vertical force corresponding to the strains of top = 0.001 or 0.003 is obtained as follows: 

1. Assume depth of compression region, c, such as 0.1d, 0.2d, 0.3d, or 0.4d. 

2. Compute tan using Eq. 15. 

3. Compute kd using Eq. 16. 

4. Compute T using Eq. 9. 

5. Compute C using Eq. 13 or 14. 

6. Check equilibrium using Eq. 17. If equilibrium is satisfied, compute  and P using Eqs. 6 and 1.  
If not, go back to step 1. 

Fig. 23 shows the computed compressive and tensile regions for top = 0.001 or 0.003 and for specimens L3b 
and L1. The triangles and rectangles shown in broken blue lines represent stress distributions. Note that the 
compressive zone of specimen L3b is wider than that of specimen L1, although their concrete strengths are 
similar. This difference is caused by the difference in amount of reinforcement. Fig. 24 compares the observed 
load-deflection curves with the computed curves. The computed strength of specimen L3b is larger than that 
of specimen L1, which corresponds to the different width of the compressive zone shown in Fig. 23. We may 
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conclude that the failure of the specimens was similar to that of over-reinforced beams under flexure. The 
broken lines in Fig. 24 show the computed load-deformation relationships. They agree with the observed ones 
shown by the solid curves. This conclusion is reminiscent of the work of Tureyen and Frosch [3], which stated 
that the shear strength of RC beam is proportional to the depth of neutral axis. 

Fig. 17 – Assumed strain distribution. 

 

Fig. 18 – Assumed deformation. 

          

Fig. 19 – Strain of bottom reinforcement 
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Fig. 20 – Compressive stress of concrete. 

 

Fig. 21 – Effective width of strut. 

 

Fig. 22 – Relationship between strut depth c and neutral axis depth kd. 

 

Fig. 23 – Computed neutral axes. 
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Fig. 24 – Observed and computed load-deformation relationships 

6. Conclusions 

(1) In all specimens, the bottom reinforcement did not yield. Observed strains in the bottom reinforcement 
agreed with the predictions of the strut-and-tie model regardless of reinforcement ratio. 

(2) Strengths of specimens with three layers of reinforcement were 1.4 times that of the strengths of specimens 
with one layer of reinforcement. Noting that 31/3 = 1.4, we may conclude that the strength of pile cap is 
proportional to the reinforcement ratio to the power of 1/3 as assumed in the equation for the shear strength of 
RC beam of ACI code [1]. However, this result is not consistent with the conclusion of the strut-and-tie model, 
assuming that the strength of each strut is independent of the strain of the reinforcement. 

(3) If one assumes the specimens deform as shown in Fig. 18, one can obtain estimates of strength similar to 
the observed values as shown in Fig. 24. This is because the depths of the struts increase as the amount of the 
bottom reinforcement increases as shown in Fig. 23. 
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