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Abstract 
In the process of parameter selection for slide bearings for the seismic performance-based design of bridges, there exist 
intrinsic tradeoffs between minimization of the response displacement of the bearings and that of the pier in strong 
earthquake events. However, difficulty in determining the optimal parameter combinations of these devices arises, caused 
by nonlinearity, complexity and requirement for computational resources for nonlinear time-history analysis. This paper 
proposes a stochastic-deterministic approach to achieve the multi-objective optimal design for two types of 
unconventional slide bearings, namely the uplifting slide shoe (UPSS) and functionally discrete bearings (FDB). The 
UPSS bearing is a simple and cost-effective sliding bearing consisting of one horizontal and two inclined plane sliding 
surfaces. This device is proposed to deal with the thermal problem of multi-span continuous girder bridges, as well as to 
control the excessive horizontal response displacement of the girder. The FDB system is a combination of the pure friction 
bearing and the elastomeric bearing set in parallel. Unlike the conventional rubber bearings, this system allows required 
period elongation of the structural systems and energy dissipation performance. To obtain the performance indices in the 
proposed procedure, seismic load is modeled as a stationary random process, whose characteristics are determined for the 
standard design ground motions in the Japanese codes, and the nonlinear behavior of the slide bearings is modeled as 
equivalent-linear elements by using the stochastic linearization technique. The objectives for optimization are defined in 
terms of the variance of stationary structural responses. As the result, a set of optimal parameter candidates is obtained as 
the Pareto-front solutions in the multi-objective function space. As the next step, the search of the optimal parameters is 
conducted by performing nonlinear time-history analysis only for the Pareto-front solution parameter sets to save the 
computational requirement. It is demonstrated that the seismic performance of the bridge for the case of the design 
parameters obtained by the proposed procedure is almost equivalent to the one with the optimal parameters found by the 
conventional exhaustive search approach. 

Keywords: slide bridge bearings; multi-objective optimization; seismic excitations; stochastic-deterministic approach 

1. Introduction
The bridge bearing with seismic functionality is recognized as a key component to facilitate the seismic 
performance. Through using these devices, elongation of the natural period and added supplementary energy 
dissipation capability are achieved so that both the bearing and pier responses are minimized under strong 
earthquakes. In addition, a better serviceability that includes the control of ambient vibration and the thermal 
problem of the girders can be achieved in regular maintenance and management. 

Recently, some unconventional bridge bearings have been proposed to provide more flexible and 
feasible options for the seismic performance enhancement of bridges. The uplifting slide shoe (UPSS) bearing 
[1, 2] is a new type of bearing consisting of multiple sliding surfaces, as shown in Fig. 1(a). When the 
superstructure supported by UPSS is sliding on different sliding surfaces, the horizontal sliding surface of 
UPSS is to accommodate the thermal effects and small vibration of continuous girders, while the inclined 
sliding surface is to provide extra restoring force to effectively mitigate the excessive horizontal displacement 
response of the girders under strong earthquake scenarios. The functionally discrete bearing (FDB) system is 
a combination of elastomeric bearings and sliding bearings to separately provide restoring force and energy 
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dissipation ability, as shown in Fig. 1(b). Unlike the conventional rubber bearings, this system allows required 
period elongation of the structural systems and the energy dissipation performance. 

 

 
(a) UPSS (b) FDB 

Fig. 1 Schematics of UPSS and FDB 

 

In the process of parameter selection for slide bearings for the seismic performance-based design of 
bridges, there exist intrinsic tradeoffs between minimization of bearing displacement and that of pier response 
for strong earthquake events. However, difficulty in determining the optimal parameter selection of these 
devices arises. Conventional exhaustive search method requires numerous computational resources to 
determine the optimal design of the slide bearings, since all of the possible parameter combinations are of a 
large number, whereas only a small number of the parameter combinations satisfy the optimal design criteria. 
On the other hand, the objective function of the optimization problem is usually unknown due to the complexity 
of nonlinear time-history analysis. Therefore, a fast search algorithm to determine the optimal parameter 
selection is required. 

The optimal design of structures can be achieved by different approaches according to previous studies. 
Feng et al. [3] derived the optimal parameters for the tall building with mega substructure configuration under 
white-noise excitations by minimizing the mean square of the responses of interest. A series solution of the 
𝐻" optimization problem and a closed-form algebraic solution of the 𝐻# optimization problem for the dynamic 
vibration absorber attached to linear systems were given by Asami et al. [4]. The optimal design of the 
unconventional tuned mass damper to individually minimize the response quantity of interest was investigated 
in Refs. [5, 6]. Specifically, Hoang and Fujino [5] investigated the optimal parameter design of rubber bearing 
for the seismic response mitigation of a long-span truss bridge in Japan. Under the consideration of nonlinear 
structural elements, the optimal parameter design of nonlinear base isolation systems was investigated by 
Reggio [7] and De Domenico [8] based on stochastic dynamic analysis. In addition, a performance-based 
optimization procedure for nonlinear structures subjected to random seismic excitations is proposed by Xu and 
Spencer [9] to deal with the optimal parameter design for competing performance objectives. 

In this study, a deterministic-stochastic approach is proposed to achieve the multi-objective design of 
slide bearings under seismic excitations. To obtain the performance indices, the seismic load is modeled as a 
stationary random process and the nonlinear behavior of the slide bearings is modeled as equivalent-linear 
elements using the stochastic linearization technique. As the result, a set of optimal parameter candidates is 
obtained as the Pareto-front solutions in the multi-objective function space. As the next step, the search of the 
optimal parameters is conducted by performing nonlinear time-history analysis only for the set of the Pareto-
front solution parameter sets to save the computational requirement. As a numerical example, the proposed 
method is applied to the optimal parameter selection of UPSS and FDB in a girder bridge. It is demonstrated 
that the seismic performance of the bridge for the case of the design parameters obtained by the proposed 
procedure is almost equivalent to the one with the optimal parameters found by the conventional exhaustive 
search approach. 

.
2b-0141

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2b-0141 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

3 

2. Modeling
A straight girder bridge supported by single columns with UPSS or FDB is studied. The dynamic behavior of 
the bridge in the longitudinal direction is simplified as a lumped-mass model with two horizontal degrees of 
freedom (DOF), as shown in Fig. 2. 

Fig. 2 Bridge model with the application of UPSS or FDB 

2.1 Equation of motion 
The governing equation of the system is given as: 

𝑴�̈� + 𝒈(𝒖, �̇�) = −𝝉�̈�1 (1) 

where 𝑴 = diag(𝑚7,𝑚#), 𝑚7 and 𝑚# are the masses of the pier and girder, respectively; 𝒖 = [𝑢7 𝑢#]: is 
the vector of the nodal displacements and �̇� = [�̇�7 �̇�#]: is the vector of the nodal velocities; 𝒈(𝒖, �̇�) is the 
reaction force vector, which can be linear or nonlinear; �̈�1  is the ground acceleration; 𝝉 = [1 1]:  is the 
excitation vector to couple the input and the structural DOFs. 

The mechanical behavior of UPSS and the superstructure can be simplified as a point mass sliding on 
three sliding surfaces, as shown in Fig. 3. Based on the dynamic equilibrium condition, the restoring force of 
UPSS is expressed as: 

𝑓# = =
𝜇𝑚#𝑔	sgn(�̇�C), −𝐿 < 𝑢C < 𝐿

𝑁 sin 𝜃 sgn(𝑢C) + 𝜇𝑁 cos 𝜃 sgn(�̇�C), 𝑢C < −𝐿	or	𝑢C > 𝐿 (2) 

where 𝑁 = 𝑚#𝑔 cos 𝜃  is the resistant force of the inclined sliding surface, and 𝑔  is the gravitational 
acceleration; 𝜇 is the friction coefficient of sliding interface; 𝜃 is the inclined angle of the inclined sliding 
surfaces from the horizontal direction;	𝐿 is the distance of the clearance length from the neutral position of the 
horizontal sliding surface to the beginning of the inclined sliding surface; 𝑢C is the relative displacement of 
the bearing with respect to the pier; and sgn(∙) is the signum function. 
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Fig. 3 Mechanism of UPSS  

 

Since FDB is a combination of rubber bearings and slide bearings, the mechanical behavior of FDB is 
expressed as the sum of that of the two types of bearings, as shown in Fig. 4. The slide bearing is represented 
by the Coulomb friction model, and the rubber bearing is represented by an elastic linear spring. The restoring 
force of FDB is expressed as: 

 

𝑓C = 𝑘C𝑢C + 𝜇𝑚#𝑔	sgn(�̇�C) (3) 

 

where 𝑘C = 𝑚#(2𝜋/𝑇C)# is the stiffness of the rubber bearing, and 𝑇C is the specified natural period when the 
superstructure is in the fixed bearing condition. 

 

 
Fig. 4 Mechanism of FDB 

 

The behavior of the RC pier supporting the bridge bearing is described by the Clough’s degrading 
stiffness model in the nonlinear time-history analysis. The initial stiffness of the RC pier is specified so that 
the elastic period for the fixed bearing condition is 0.5 sec, and the yielding strength is 0.66g lateral force.  

2.2 Stochastic representation of seismic excitations 

The ground motion is represented by the modified Kanai-Tajimi model[10, 11]. In the time domain, this model 
can be expressed in a state-space form as Eq. (4). 

 

�̇�S = 𝑨S𝒙S + 𝑩S𝑤(𝑡) 

𝑝(𝑡) = 𝑪S𝒙S 
(4) 

 

where, 
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in which 𝑤(𝑡) is the bedrock Gaussian white-noise process; 𝜔1 and 𝜁1 are the fundamental circular frequency 
and damping ratio, respectively, of the surface soil layer in the Kanai-Tajimi model; 𝜔S  and 𝜁S  are the 
parameters of the second filter suggested by Clough-Penzien. 

The peak ground acceleration (PGA) is related to the spectral intensity of the white-noise [8] as Eq. (5): 

 

𝑆i =
0.141𝜁1�̈�1l#

𝜔1m1 + 4𝜁1#
 (5) 

 

The parameters of the modified K-T model are determined by the PSD of the standard design ground 
motions in the Japanese codes through the least-square method. 

2.3 Stochastic response of MDOF structures 

The above equation of motion can be substituted into an equivalent linearized form, if 𝒈(𝒖, �̇�) satisfies some 
smoothness requirement and the input is a zero-mean stationary Gaussian process so as to minimize the mean 
square error between the linearized counterpart and the original nonlinear system [12], as shown in Eq. (6): 

 

𝑴�̈� + n𝑪 + 𝑪opq�̇� + n𝑲 +𝑲opq𝒖 = −𝝉�̈�1 (6) 

 

where 𝑪 and 𝑲 are the damping matrix and stiffness matrix for linear elements, respectively; 𝑪op and 𝑲op are 
the equivalent linearized damping and stiffness matrix for nonlinear elements, respectively. 

Then the governing equation can be rewritten into a state-space form as: 

 

�̇�s = 𝑨s𝒙s + 𝑩s𝑤(𝑡) 

𝒚s = 𝑪s𝒙s + 𝑫s𝑤(𝑡) 
(7) 

 

where 𝒙s = [𝒖: �̇�:]: is the state vector, 𝒚s is the response vector, and 

 

𝑨s = v
𝟎x×x 𝑰x×x

−𝑴{7n𝑲 + 𝑲opq −𝑴{7n𝑪 + 𝑪opq
| , 𝑩s = }𝟎x×7

𝑴{7𝝉
~	 

 

the matrices 𝑪s and 𝑫s are the response matrices, which are determined by the specified outputs. 

Combined with the ground motion model, the state of the combined system can be expressed as Eq. (8): 
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�̇�� = 𝑨�𝒙� + 𝑩�𝑤(𝑡) 

𝒚s = 𝑪�𝒙� 
(8) 

 

where 𝒙� = �𝒙s: 𝒙S:�
:

 is the augmented state-space vector collecting displacement and velocities of both the 
system and the filter variables, and 

 

𝑨� = }
𝑨s 𝑩s𝑪S

𝟎�×#x 𝑨S
~ , 𝑩� = }

𝟎#x×7
𝑩S

~ , 𝑪� = �𝑪s 𝑫s𝑪S� 

 

in which 𝑟 = 4 is the number of the filter equations describing the modified K-T model. 

The second order moment of the stochastic structural response is considered as the performance 
objective, which is defined as 𝚪𝒙� = 𝐸[(𝒙� − 𝝁�)(𝒙� − 𝝁�):], where 𝝁� is the expected value vector and 𝐸[∙] 
denotes the expectation operator. In stationary cases, the covariance matrix is a constant matrix. With the 
assumption of a zero-mean Gaussian process as input and zero-mean initial conditions, the covariance of the 
structural response 𝚪𝒙� = 𝐸[𝒙�𝒙�:]  is governed by the following Lyapunov equation: 𝑨�𝚪𝒙� + 𝚪𝒙�𝑨�

: +
2𝜋𝑩�𝑆i𝑩�: = 0. Note that the solution of the above equation is implicit, since the determination of linearized 
coefficients is dependent on the corresponding second-order moment responses which are unknown. Hence, 
an iterative procedure should be performed until the convergence is reached by initializing the procedure with 
a linear system. 

2.3 Stochastic linearization 

If the structural responses are assumed to be stationary random processes, the equivalent linearized damping 
and stiffness can be determined through the stochastic linearization technique [12] as Eq. (9). 

 

𝐾op
(�,�) = 𝐸 v

𝜕𝑔�
𝜕𝑢�

| , 𝐶op
(�,�) = 𝐸 v

𝜕𝑔�
𝜕�̇��

| (9) 

 

Since the inclined surfaces of UPSS are responsible for controlling the excessive horizontal response 
under strong earthquakes, only the action of UPSS sliding on the inclined surfaces is considered here. The 
restoring force of UPSS in the horizontal direction can be simplified as Eq. (10). 

 

𝑓C = 𝑁 sin 𝜃 sgn(𝑢C) + 𝜇𝑁 cos 𝜃 sgn(�̇�C) (10) 

 

where the same definition applies to the symbols as mentioned above. 

Hence, the stochastic linearization coefficients for UPSS can be solved by Eq. (11). 

 

𝐾op
(C,C) = 𝐸 }

𝜕𝑓C
𝜕𝑢C

~ = 𝑁 sin 𝜃 𝐸 }
𝜕sgn(𝑢C)
𝜕𝑢C

~ = 𝑁 sin 𝜃 𝐸[2𝛿(𝑢C)] = 𝑁 sin 𝜃�
2
𝜋
1
𝜎��

 (11) 
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𝐶op
(C,C) = 𝐸 }

𝜕𝑓C
𝜕�̇�C

~ = 𝜇𝑁 cos 𝜃 𝐸 }
𝜕sgn(�̇�C)
𝜕�̇�C

~ = 𝜇𝑁 cos 𝜃 �
2
𝜋
1
𝜎�̇�

 

 

where 𝛿(∙) denotes Dirac delta function. 

Similarly, the stochastic linearization coefficients for FDB can be solved by Eq. (12). 

 

𝐾op
(C,C) = 𝑘C, 𝐶op

(C,C) = 𝜇𝑚#𝑔�
2
𝜋
1
𝜎�̇�

 (12) 

 

2.4 Stochastic and deterministic analysis 

The constraint conditions for parameter selection and the structural information for stochastic analysis are 
listed in the Table I. Since minimization of the pier response is considered to be one of the optimization 
objective, the stiffness and damping properties of the bridge pier are assumed to be constant in the stochastic 
analysis. On the other hand, the structural information for the NTHA is presented in Table II. 

 

Table I. Design variables and structural 
parameters for stochastic analysis 

 

Table II. Structural parameters for NTHA 

Mass ratio 𝑚#/𝑚7 3.0 Mass of girder 𝑚# 900 (tons) 

Pier 
Natural period 𝑇7 0.5 (sec) Mass of RC bridge pier 𝑚7 300 (tons) 

Damping ratio 𝜉7 0.02 Initial natural period of RC 
pier 𝑇l,7 0.5 (sec) 

Elastomeric 
bearing 

Natural period 𝑇C 1.0~2.0 (sec) Yield strength of RC pier 0.66g 

Damping ratio 𝜉C 0.03 Clearance of UPSS 𝐿 0.03 (m) 

Friction coefficient 𝜇 0.05~0.15   

UPSS inclined angle 𝜃 5 ~30 (°)   

3. Multi-objective design 
3.1 Pareto-front solutions 

Since minimization of both the bearing and bridge pier responses is a multi-objective optimization problem, 
the Pareto-front solution is introduced in the form of the 𝜀-Constraint method. This method is to minimize the 
pier response for a given bearing displacement demand as expressed by Eq. (13). 

 

min 𝐽� (𝒙) 

Subjected	to:													𝐽��(𝒙) < 𝜀 , 𝑚 = 1,2,3, … ,𝑀 

𝒙¤C < 𝒙 < 𝒙�C 

(13) 
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where the performance objectives 𝐽� and 𝐽�� are the second-order moment of the displacement response of the 
bridge pier and that of the bearing, respectively; 𝜀  is the constraint condition in terms of the bearing response; 
𝒙¤C and 𝒙�C are the lower and upper bounds of the design variable vector, as shown in Table I. 

3.2 Procedure for optimal parameter selection 

The procedure to determine the optimal design is given as follows and as Fig. 5: 

I. Determine the parameters of the modified K-T model for a given standard ground motion accelerogram of 
the Japanese codes. The PSD of the ground motion accelerogram is firstly determined by the Welch’s 
method, and then the paramters of the modified K-T model is determined by the least square method. 

II. Compute the second-order moment of the structural responses for all possible parameter combinations 
through stochastic dynamic analysis. 

III. Select a set of optimal parameter candidates through the Pareto solutions of the all stochastic responses. 
The constraint condition (𝜀 ) of the Pareto-front is ranging from the minimum bearing displacement to 
the maximum bearing displacment responses (𝜎��). 

IV. Search the optimal design for the given bearing displacement demand by performing nonlinear time-
history analysis to only the set of the optimal parameter candidates obtained in the previous step. 

 

Since the selected optimal parameter candidates are a subset of all possible parameter combinations, the 
computational resources are considerably reduced in comparison with the conventional exhaustive search 
approach. 

 

 
Fig. 5 Flowchart of the proposed procedure 

 

3.3 Numerical example 

An example to determine the optimal parameter selection for UPSS and FDB is presented. The corresponding 
structural parameters are given in section 2.  

The standard ground motion II-I-2 based on the Japanese Highway Bridges Design Specification [13] is 
selected. The corresponding time-history and the PSD of this ground motion are shown in Fig. 6.  As indicated 
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by this figure, the PSD of the modified K-T model determined by the least-square method has a good agreement 
with the PSD of the standard ground motion.  

Then, the optimal parameter candidates of the bearings are determined based on the Pareto solutions of 
the stochastic dynamic response of all possible parameter combinations, as shown in Fig. 7. 

Finally, the optimal design is searched by performing the nonlinear time-history analysis using the 
limited set of the Pareto solution parameters (optimal parameter candidates). For all possible bearing 
displacement demands, the maximum pier response ductility factors obtained by the proposed procedure are 
plotted in the Fig. 8 with red points. As indicated by this figure, the seismic performance of the bridge for the 
case of the assumed optimal design with red points are close to that of the conventional exhaustive search 
approach indicated with black points.  

  

(a) Time history of acceleration (b) PSD 

Fig. 6 Standard ground motion, case II-I-2 

 

 
(a) UPSS (b) FDB 

Fig. 7 Pareto solutions of stochastic analysis results, case II-I-2 
 

 
(a) UPSS (b) FDB 

Fig. 8 Comparison with conventional exhaustive search, case II-I-2 
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More specifically, for a given bearing displacement demand (200mm), the optimal design for UPSS is 
determined as 𝜇 = 0.11, 𝜃 = 5° and that for FDB is 𝜇 = 0.15, 𝑇C = 1.45 sec. The corresponding bridge 
responses are shown in Fig. 9. 

 

 
(a) Bearing response, UPSS (b) Bearing response, FDB 

 
(c) RC pier response, UPSS (d) RC pier response, FDB 

Fig. 9 Seismic response of the bridge for the optimal parameter selection, case II-I-2 

4. Effectiveness 
To validate the effectiveness of the proposed procedure compared with the conventional exhaustive search 
approach, the definition of the error is firstly given. In the ideal situation, the assumed Pareto solutions 
perfectly match with the exact Pareto solutions obtained by the conventional exhaustive search. However, the 
error appears, if the minimum pier response obtained from the proposed procedure is higher than the minimum 
value obtained from the conventional exhaustive search, for a given bearing displacement demand, as show in 
Fig. 10. Thus, the value of the error is defined as:  

 

error =
Δ𝑑
𝐷
× 100% (14) 

 

where Δ𝑑 is the difference between the two minimum pier responses obtained from the two approaches, and 
𝐷 denotes the difference between the maximum and minimum pier responses obtained from the conventional 
exhaustive search for the given bearing displacement demand. 

The results for UPSS and FDB under 18 standard ground motions covering three different soil conditions 
and two earthquake source types are shown in Fig. 11, where the horizontal axis is normalized by the maximum 
and minimum bearing displacements of each case. As indicated by this figure, the error of each ground motion 
case shows different precision depending on the characteristics of the ground motion.  The mean error over 
most of the bearing displacement range is lower than 4% for UPSS and is around 11.5% for FDB, while the 
mean error tends to rise when the bearing displacement demand is in the lower level.  
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Fig. 10 Illustration of error 

 

 
 Fig. 11 Error of the proposed 

method (18 standard ground 
motions in Japanese codes) 

5. Conclusions 
For the seismic design of bridges with unconventional slide bridge bearings, a stochastic-deterministic 
approach to determine bearing parameters is proposed to achieve the multi-objective optimal design that 
minimizes the bearing displacement as well as the pier response to save the computational requirement. A 
numerical example is given for the optimal design of slide bearings of two types, namely UPSS and FDB, 
under strong ground motions. It is demonstrated that the seismic performance of the bridge for the case of the 
design parameters obtained by the proposed procedure is almost equivalent to the one with the optimal 
parameters found by the conventional exhaustive search approach.  
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