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Abstract 
A development of the “initial stiffness alter ratio” (ISAR) of conventional high-rise buildings is presented. The proposed 
methodology has been developed to provide accurate structural health estimation in case of the highest limitation in 
operational modal analysis - identification of an input set of one modal eigenpair, consisting of one modal frequency and 
the corresponding mode shape, which is usually the first eigenpair. The approach provides locating and estimating 
structural damages or strengthening effects in buildings. The methodology is based on identifying initial stiffness of 
structures and its deviation over a certain time period. The ISAR method is based on results obtained by operational modal 
analysis of miultistorey buildings as a non-convergent which means that the accuracy does not depend on the number of 
eigenpairs included in the structural health state estimation process. The non-convergence of the proposed method 
excludes the need and the difficulties of identifying multiple eigenpairs, required in any convergent structural diagnosis 
approach. Identification of only one eigenpair is considered as sufficient. The calculation of ISAR is a straight-forward 
numerical procedure for comparison between the parameters of undamaged, damaged and repaired or strengthened 
structures. Theoretically the range of possible ISAR value stretches from -1 to + infinity. A positive value of ISAR 
represents a strengthened structure, a value between -1 and 0 represents a damaged structure and an ISAR value -1 
represents a total stiffness deterioration and collapse of the structure. The accuracy and the reliability of the proposed 
structural health assessment approach has been verified through numerical and experimental test. The numerical test 
consists of comparison of the results of two simple lumped mass dynamical models with same stiffness properties, 
different storey mass distribution and same storey damage simulation. The accuracy and the reliability of ISAR and its 
limitations in the numerical test are elaborated in detail. The experimental test consists of ISAR accuracy evaluation on 
the structure of a scaled laboratory model of a traditional masonry building, tested on a shaking table in the Institute of 
Earthquake Engineering and Engineering Seismology (IZIIS) in Skopje. The results have shown that the proposed ISAR, 
based on the first modal eigenpair, can be applied as an instant damage or strengthening evaluation method in structural 
health monitoring of multistorey buildings, providing the location and severity of structural damage, or the achieved 
effects of strengthening techniques applied on real structures. 
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1. Introduction 
The process of Structural Health Monitoring (SHM) covers taking measures, registering and analyzing data 
that relates to the structure’s behavior over a measured time frame and concludes whether the behavior had 
been within the predictions from the structural design process, initial state right after being constructed, or that 
the structure is completely operational and non-life or material goods threatening. SHM is used to estimate the 
present state of the structure alongside with potential for further exploitation, or eventual need for repair, by 
determining the effective structure’s behavior pattern or possible structural damages. SHM strategies are 
generally classified in four different levels, depending on the information about the structural damage they can 
provide [1, 2]: level 1 (structural damage ascertaining), level 2 (level 1 + structural damage location), level 3 
(level 2 + structural damage severity), level 4 (level 3 + prediction of the remaining structure’s lifetime). 

The SHM approach includes on site registering the structure's behavior by using multiple electronic 
equipment - sensors, data transmission and analysis and extraction of the damage or strengthening sensitive 
aspects of the data. Considering in situ experimental testing, ambient and forced vibration testing methods 
prevailed, being applicable for all types of structures, components and materials [3]. Detecting structural 
damages typically warrants the initial state and the altered state of the structures, to be compared. The 
availability of these comparisons provides tracing sequential changes of the damage sensitive structural 
parameters and estimating eventual damages and their severity. 

Structural dynamic principles include the dynamic properties of the structure - the eigen frequencies and 
the corresponding mode shapes, which dependent on the structure’s mass and stiffness distribution. The 
changes of mass distribution are rare, and in almost all cases, insignificant over the period of structure’s 
exploitation. The change in stiffness distribution is impact-full on the structural health state and significantly 
impacts the dynamic properties and structural behavior under dynamic excitations. 

Structural damage and strengthening result in stiffness changes of the bearing structural components. 
The change in eigen frequencies indicates alterations in the initial stiffness. However, when observed 
independently, their practical applications have their limits. Detecting small shifts in frequencies caused by 
damage in buildings, especially on higher levels of the structures, requires severe damage. For instance, critical 
damages of vital structural elements result with less than 5% of frequency shifts [4]. Local spatial deviation in 
stiffness, especially on upper floors, cannot be determined by the eigen frequency value of the lower modes 
because it is a general global property of the structure. However, higher eigen frequencies, which are usually 
impossible to be identified through operational modal analysis, are associated with local responses [2]. When 
the SHM process is based only on eigen frequency shifts, it can barely exceed any higher level of SHM than 
the level 1. Furthermore, various environmental factors (e.g., temperature) can change natural frequency of 
structures without any damage in the structure [5]. It remains difficult to determine even the damage location 
just by observing only the changes of modal frequencies [6, 7]. 

It has been concluded that the shifts in mode shapes are slightly sensitive to damage, but the uncertainties 
are present [8, 9]. A particular case is the presumption is the case in which all the storeys of an observed 
building suffer the same damage or strengthening (same percentage of stiffness decrease or increase), all the 
identified mode shapes of the damaged or strengthened structure do not differ from the ones of the structure in 
its initial state. Mode shape changes-based stiffness alter identification approaches do not detect stiffness shifts 
in this situation. 

2. Storey Pseudo-Stiffness - Theory and Application 

2.1 Definition of the Storey Pseudo-Stiffness 

In systems with multiple degrees of freedom in one direction, the stiffness matrix [K] (Eq. (1)) is obtained 
applying identified and then mass-normalized mode vectors, grouped in a mode shapes matrix [Φ] and squared 
angular frequency matrix [Λ] containing squared angular frequency values as main diagonal members, and 

.
2c-0054

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2c-0054 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

3 

zeros as non-main diagonal members. Mode shape vectors must be normalized in a form providing the product 
[Φ]T[M][Φ] to be an identity matrix [I]. The mode shape matrix [Φ] contains the column vectors {ϕ}i which 
are a normalized mode shape of every mode in the observed direction. 

[𝐾𝐾] ≅ ([𝛷𝛷][𝛬𝛬]−1[𝛷𝛷]𝑇𝑇)−1 (1) 
 

To obtain the exact storey stiffness values by direct application of Eq. (1), all the system’s modal 
eigenpairs (one eigen frequency in a certain direction and the corresponding mode shape) in one direction must 
be identified. Identifying higher modes is practically impossible applying system identification methods for 
operational modal analysis. Basically, only the first, and eventually the second eigenpair can be identified 
reliably. The storey stiffness obtained has a lower numerical value than the actual storey stiffness. The 
introduced pseudo-stiffness matrix [�̄�𝐾] contains parameters that differ from actual stiffness. However, the 
pseudo-stiffness and the actual stiffness are closely related. The order of the storey pseudo-stiffness matrix is 
the number of considered mode shapes in the analysis. The pseudo-stiffness matrix is obtained by using Moore 
and Penrose inverse matrix [10], which is a generalized inverse matrix. In this case the number of degrees of 
freedom is higher than the identified eigenpairs (the mode shape vector matrix [Φ] is not a square matrix). The 
storey stiffness of the n-storey structure is estimated from the pseudo-stiffness matrix [�̄�𝐾] multiplying by a 
generalized relative displacement vector {j}s (Eq. (2)) [11]. The matrix of generalized relative displacement 
column vectors [j] is presented in Eq. (3).  

�̄�𝑘𝑠𝑠 = {𝑗𝑗}𝑠𝑠𝑇𝑇[�̄�𝐾]{𝑗𝑗}𝑠𝑠 (2) 

[𝑗𝑗] = [{𝑗𝑗}𝑛𝑛 {𝑗𝑗}𝑛𝑛−1 {𝑗𝑗}𝑛𝑛−2 . . . {𝑗𝑗}1] =

⎣
⎢
⎢
⎢
⎡
1 1 1 ⋯ 1
0 1 1 ⋯ 1
0 0 ⋱ ⋯ ⋮
⋮ ⋮ ⋮ 1 1
0 0 ⋯ 0 1⎦

⎥
⎥
⎥
⎤
 (3) 

 

The matrix [�̄�𝐾] is calculated by applying Eq. (1) considering the pseudo-inversion of the matrices [Φ] 
and [Φ]T as non-square matrices of normalized identified mode shapes and the matrix [Λ] containing the 
squared angular frequencies corresponding to the identified mode shapes. Finally, the storey pseudo-stiffness 
value (Eq. (2)) is introduced as a parameter which is closely related to the corresponding storey real stiffness. 
The parameter �̄�𝑘𝑠𝑠  represents the sth storey pseudo-stiffness of an order equal to the number of identified 
eigenpairs in one direction and its value is lower than the actual stiffness. Increasing the storey pseudo-stiffness 
order, its value converges to the actual storey stiffness – a storey pseudo-stiffness value of higher order 
represents a closer value of the storey pseudo-stiffness to the exact value of the actual storey stiffness. In other 
words, in case when all modal frequencies and mode shapes in one direction (translational or rotational) are 
identified, the nth order storey pseudo-stiffness obtained is equal to the actual storey stiffness, which means 
that the highest possible order is the number of degrees of freedom in the corresponding direction. 

2.2 Application of the First Order Storey Pseudo-Stiffness in Structural Health Estimation 

2.2.1 Evaluation of First Order Storey Pseudo-stiffness 

The main objective of the “first order storey pseudo-stiffness” structural health estimation approach is the 
ability to accurately obtain the storey stiffness before and after the event that caused structural damage or 
strengthening using only one eigenpair - ωi and {ϕ}i for a particular direction. This is beneficial for practical 

.
2c-0054

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2c-0054 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

4 

applications since in in-situ operational modal analysis only the first few modal parameters can be reliably 
identified due to a noise contamination in the measurements [12]. The set with the highest signal-to-noise (S/N) 
ratio is chosen (of the first translational mode in each direction, including torsion). The first order pseudo-
stiffness matrix can be expressed by Eq. (4) (adequate to Eq. (1)). 

[�̄�𝐾]𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝({𝜙𝜙}𝑖𝑖𝑇𝑇)𝜔𝜔𝑖𝑖
2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝({𝜙𝜙}𝑖𝑖) (4) 

 

where ωi
2 is the squared chosen angular frequency of the structure; pinv({ϕ}i

T) and pinv({ϕ}i) are 
pseudoinverse of the normalized mode shape vector that corresponds to the chosen angular frequency. The 
first order pseudo-stiffness of any storey, obtained applying Eq. (2), has two essential properties [13]: 

- the square root of �̄�𝑘𝑠𝑠 is equal to the absolute value of the sum of mode shape values of the observed 
storey and the soreys above it, multiplied by a ratio of proportion ψi, constant for all the storeys for the 
actual structural health state (Eq. (5)), 

��̄�𝑘𝑠𝑠𝑖𝑖 = 𝜓𝜓𝑖𝑖 ��𝜙𝜙𝑗𝑗𝑖𝑖

𝑛𝑛

𝑗𝑗=𝑠𝑠

�                       𝜓𝜓𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 (5) 

 

- the sum of �̄�𝑘𝑠𝑠values for all the stories represents a uniformly distributed storey stiffness for which an 
imaginary structure’s eigen frequencies are equal or very close to the frequency ωi of the actual 
structure with the same mass distribution (Eq. (6)). 

𝑘𝑘𝑢𝑢𝑛𝑛𝑖𝑖 = ��̄�𝑘𝑠𝑠𝑖𝑖

𝑛𝑛

𝑠𝑠=1

 (6) 

 

In Fig. 1(a), two dynamic models of building structures are presented. The model on the left represents 
the actual structure with the actual values of storey stiffness (k1, k2,…kn) and actual lumped mass distribution 
(m1, m2,…mn). On the right, the model of the corresponding imaginary structure with the uniformly distributed 
storey stiffness (kuni) is presented. Both structures have the same or very similar eigen frequency for the same 
lumped mass distribution. 

2.2.2 Storey stiffness estimation 

Theoretically an infinite number of damage combinations can cause changes of the structure’s eigen frequency 
for a certain percentage. For instance, the first eigen frequency is decreased to a lower value after damage 
occurrence in the first storey, or in a higher storey with a larger stiffness loss, or due to damage occurrence in 
several stories. In another words, many possible damage combinations can cause the same frequency drop in 
a multistorey building. What makes any damage combination unique and recognizable is the corresponding 
mode shape shifts. As a repercussion to that, it is obvious that any eigenpair, or mode shape, combined with 
the corresponding eigen frequency, is a unique feature of only one structural damage combination. 

The modal parameters can be identified by applying any proposed system identification technique. 
Modal frequencies can be identified precisely. However, the mode shapes are often identified as non-
dimensional numerical values in “initial form”, depending on the applied system identification method. For 
further application, the mode shapes values need to be normalized. 
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The first normalization is carried out in order the product [Φ]T[M][Φ] to be an identity matrix [I]. {ϕ}i(1) 
represents the raw (non-normalized) form of the ith  identified mode shape, extracted from the system 
identification of the observed structure. The normalized form of the raw non-normalized mode shape {ϕ}i(2) 
can be obtained applying Eq. (7) [14]. The first order pseudo-stiffness matrix [�̄�𝐾] can be obtained applying 
Eq. (8), and the first order storey pseudo-stiffness �̄�𝑘𝑖𝑖 is obtained applying Eq. (2) for each storey. 

{𝜙𝜙}𝑖𝑖(2) =
{𝜙𝜙}𝑖𝑖(1)

�{𝜙𝜙}𝑖𝑖(1)
𝑇𝑇 [𝑀𝑀]{𝜙𝜙}𝑖𝑖(1)

 (7) 

[�̄�𝐾]𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�{𝜙𝜙}𝑖𝑖(2)
𝑇𝑇 �𝜔𝜔𝑖𝑖

2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�{𝜙𝜙}𝑖𝑖(2)� (8) 
 

Calculation of each storey’s actual stiffness can be performed by applying the “renormalized” mode 
shape vector {ϕ}i(3), Renormalization of the mode shape vector has to be performed so that the expression in 
Eq. (9) is true. The second normalization can be performed applying Eq. (10). The renormalized mode shape 
is represented in Eq. (11). 

{𝜙𝜙}𝑖𝑖(3)
𝑇𝑇 {𝜙𝜙}𝑖𝑖(3) = 1 (9) 

{𝜙𝜙}𝑖𝑖(3) =
{𝜙𝜙}𝑖𝑖(1)

�{𝜙𝜙}𝑖𝑖(1)
𝑇𝑇 {𝜙𝜙}𝑖𝑖(1)

=
{𝜙𝜙}𝑖𝑖(2)

�{𝜙𝜙}𝑖𝑖(2)
𝑇𝑇 {𝜙𝜙}𝑖𝑖(2)

 (10) 

{𝜙𝜙}𝑖𝑖(3)
𝑇𝑇 = {𝜙𝜙𝑛𝑛𝑖𝑖(3) 𝜙𝜙𝑛𝑛−1𝑖𝑖(3) . . . 𝜙𝜙2𝑖𝑖(3) 𝜙𝜙1𝑖𝑖(3)}𝑖𝑖 (11) 

 

The renormalized mode shape can then be applied for obtaining the “uniform lumped mass” (muni), for 
which, similarly to the equivalent uniformly distributed storey stiffness, an imaginary structure’s eigen 
frequencies are equal or very close to the eigen frequency of the actual structure for the real storey stiffness 
distribution (Eq. (12)). 

𝑚𝑚𝑢𝑢𝑛𝑛𝑖𝑖 = {𝜙𝜙}𝑖𝑖(3)
𝑇𝑇 [𝑀𝑀]{𝜙𝜙}𝑖𝑖(3) (12) 

 

In Fig. 1(b) two dynamical models of building structure are presented. The model on the left represents 
the actual structure with the actual storey stiffness (k1, k2,…kn) and actual lumped mass distribution (m1, 
m2,…mn). On the right, a model of the corresponding imaginary structure with the uniform lumped mass 
distribution (muni) is presented. Both models have the same or very similar modal eigen frequency for the same 
storey stiffness distribution. 

When only the ith eigen frequency of a particular structure and it’s corresponding raw mode shape {ϕ}i(1) 
are obtained applying system identification technique, the first order storey pseudo-stiffness and the value of 
the uniform mass distribution can be calculated. The real storey stiffness of the undamaged structure can be 
estimated by applying Eq. (13), considering that the values of the real lumped mass remain constant over time. 

𝑘𝑘𝑠𝑠 ≈
�̄�𝑘𝑠𝑠𝑖𝑖 ∑ 𝑚𝑚𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑠𝑠

𝑚𝑚𝑢𝑢𝑛𝑛𝑖𝑖(𝑝𝑝 − 𝑐𝑐 + 1)�𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖(3) ∑ 𝜙𝜙𝑗𝑗𝑖𝑖(3)
𝑛𝑛
𝑗𝑗=𝑠𝑠 �

 (13) 
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Δϕsi(3) is the difference between the renormalized mode shape value of the observed storey s and the mode 
shape value of the storey beneath (s-1): 

𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖(3) = (𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑠𝑠−1)𝑖𝑖(3) (14) 
 

The member ks represents the sth storey stiffness and n is the total number of storeys. The storey stiffness, 
obtained applying Eq. (13) is nearly equal to the exact value of the storey stiffness. Through numerical tests it 
has been concluded that the accuracy of the obtained storey stiffness depends inversely on the standard 
deviation of the mass distribution because the pseudoinverse of a rectangular matrix or a vector (the only 
identified mode shape vector) is an optimal statistical solution of an inconsistent least square system in a way 
that gives the minimum norm and therefore the closest solution [15]. Therefore, high variations in mass 
distribution can cause certain residual errors in the real storey stiffness calculation. The influence of these 
errors to the structural health estimation procedure’s final result has been investigated and discussed further. 

      
(a)                                                                                                (b) 

Fig. 1 – Dynamic model of real structure and imaginary structure: (a) - uniform storey stiffness, (b) - uniform 
storey mass 

 

The storey stiffness estimation can be furthermore simplified to straight forward calculation, avoiding 
the need of renormalizing and summing the mode shape values by implementing the constant relationship from 
Eq. (5) into Eq. (13). 

Considering that the storey pseudo-stiffness is a function of the storey stiffness distribution and the mode 
shape, for any structure with a specified mass and stiffness distribution, there is a constant numerical 
relationship among the mass, storey stiffness, mode shape, storey pseudo-stiffness and mode shape difference 
for every storey of the structure. The constant relationship, demonstrated in Eq. (5), is further developed in Eq. 
(15). Therefore, any storey’s stiffness can be derived as a function of the square root of the storey pseudo-
stiffness, mass distribution mode shape, multiplied by the constant ratio ψi (Eq. (16)). 

��̄�𝑘𝑠𝑠𝑖𝑖
�∑ 𝜙𝜙𝑗𝑗𝑖𝑖(3)

𝑢𝑢𝑛𝑛
𝑗𝑗=𝑠𝑠 �

=
𝑘𝑘𝑠𝑠𝑚𝑚𝑢𝑢𝑛𝑛𝑖𝑖(𝑝𝑝 − 𝑐𝑐 + 1)�𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖(3)�

��̄�𝑘𝑠𝑠𝑖𝑖 ∑ 𝑚𝑚𝑗𝑗
𝑛𝑛
𝑗𝑗=𝑠𝑠

= 𝜓𝜓𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐 (15) 
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𝑘𝑘𝑠𝑠 ≈ 𝜓𝜓𝑖𝑖
��̄�𝑘𝑠𝑠𝑖𝑖 ∑ 𝑚𝑚𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑠𝑠

𝑚𝑚𝑢𝑢𝑛𝑛𝑖𝑖(𝑝𝑝 − 𝑐𝑐 + 1)�𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖(3)�
(16) 

Considering that the ratio ψi is equal for every storey, the easiest way of deriving it is from the pseudo-
stiffness and the mode shape of the top (nth) storey. The stiffness of the top storey can be obtained applying 
Eq. (17). the ratio ψi can be derived applying Eq. (18). 

𝑘𝑘𝑛𝑛 = 𝜔𝜔𝑖𝑖
2𝑚𝑚𝑛𝑛 �

𝜙𝜙𝑛𝑛𝑖𝑖(3)

𝛥𝛥𝜙𝜙𝑛𝑛𝑖𝑖(3)
� = 𝜓𝜓𝑖𝑖

𝑚𝑚𝑛𝑛��̄�𝑘𝑛𝑛𝑖𝑖
𝑚𝑚𝑢𝑢𝑛𝑛𝑖𝑖�𝛥𝛥𝜙𝜙𝑛𝑛𝑖𝑖(3)�

(17) 

𝜓𝜓𝑖𝑖 =
𝜔𝜔𝑖𝑖
2�𝜙𝜙𝑛𝑛𝑖𝑖(3)�𝑚𝑚𝑢𝑢𝑛𝑛𝑖𝑖

��̄�𝑘𝑛𝑛𝑖𝑖
(18) 

The relationship among the mode shape values is always constant for specified state of the structure, 
regardless of the normalization applied. The storey stiffness can be obtained by implementing Eq. (18) into 
Eq. (16), which provides the mathematical expression of the storey stiffness as a function of mass, eigen 
frequency and storey pseudo-stiffness (Eq. (19)), where εs represents the residual error dependent on the 
lumped mass distribution. 

𝑘𝑘𝑠𝑠 =
𝜔𝜔𝑖𝑖
2 ∑ 𝑚𝑚𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑠𝑠

(𝑝𝑝 − 𝑐𝑐 + 1) �
𝜙𝜙𝑛𝑛𝑖𝑖
𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖

� �
�̄�𝑘𝑠𝑠𝑖𝑖
�̄�𝑘𝑛𝑛𝑖𝑖

∗ 𝜀𝜀𝑠𝑠 (19) 

2.2.3 Storey stiffness alter ratio 

Finally, when both, the storey stiffness values of the damaged versus undamaged or repaired/strengthened 
versus undamaged structure are known, the initial stiffness alter ratio for the sth storey (ISARs) can be obtained 
in general form (Eq. (20)): 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠 =
𝑘𝑘𝑠𝑠∗

𝑘𝑘𝑠𝑠
𝜀𝜀𝑠𝑠∗

𝜀𝜀𝑠𝑠
− 1 (20) 

where the asterisk (*) represents the property of an altered state of the structure. In calculation of the ISAR, ks
* 

and ks are equal or nearly equal to the storey stiffness of the altered and initial structure respectively. Both 
residual errors εs and εs

* originate from the same source - the mass distribution, which is considered as constant. 
Therefore εs = εs

*, so they cancel each other out. The procedure results in a reliable ISAR calculation. 

By placing Eq. (19) into Eq. (20), the initial stiffness alter ratio can be expressed as in Eq. (21). 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠 =
𝜔𝜔𝑖𝑖
∗2

𝜔𝜔𝑖𝑖
2 �
𝜙𝜙𝑛𝑛𝑖𝑖∗ 𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖
𝜙𝜙𝑛𝑛𝑖𝑖𝛥𝛥𝜙𝜙𝑠𝑠𝑖𝑖∗

� �
�̄�𝑘𝑠𝑠𝑖𝑖∗ �̄�𝑘𝑛𝑛𝑖𝑖
�̄�𝑘𝑠𝑠𝑖𝑖�̄�𝑘𝑛𝑛𝑖𝑖∗

− 1 (21) 
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where n represents the property of the top storey and s represents the corresponding parameter of the observed 
storey. 

The parameters of the ISAR function from Eq. (21) are easily obtainable. One eigen frequency and the 
corresponding mode shape of the initial and altered structure can be easily identified by the system 
identification techniques, while the pseudo-stiffness values can be directly obtained by applying first Eq. (7), 
then Eq. (8) and finally Eq. (2). The range of possible ISAR-value stretches from -1 to +infinity (Fig. 2). 

 
Fig. 2 – Theoretical range of possible ISAR-value 

 

The characteristic values and subranges of ISAR are the following: 

- ISAR = -1 (a state of total stiffness deterioration and collapse); 
- -1 < ISAR < 0 (damaged structure); 
- ISAR = 0 (structure in its initial state - undamaged); 
- ISAR > 0 (strengthened structure). 

In practical cases, the operational modal analysis clearly identifies only the first translational mode (i = 1) 
in every orthogonal direction of building structure. Therefore, the first eigenpair is the most suitable for a 
storey health estimation. The Eq. (22) can be applied for ISAR calculation since in the first transitional mode 
there is no phase difference in the vibration between any two DOFs. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠 =
𝜔𝜔1
∗2𝜙𝜙𝑛𝑛1∗ 𝛥𝛥𝜙𝜙𝑠𝑠1
𝜔𝜔12𝜙𝜙𝑛𝑛1𝛥𝛥𝜙𝜙𝑠𝑠1∗

�
�̄�𝑘𝑠𝑠1∗ �̄�𝑘𝑛𝑛1
�̄�𝑘𝑠𝑠1�̄�𝑘𝑛𝑛1∗

− 1 (22) 

 

The accuracy of the proposed methodology for obtaining storey damage index has been tested. The 
testing results are further demonstrated and commented. 

3. Validation of the Initial Stiffness Alter Ratio 

3.1 ISAR accuracy test on numerical models 

The efficiency and accuracy of ISAR has been tested on two numerical dynamical models of a five storey shear 
building in a form of five degrees of freedom lumped mass dynamical systems (Model I and Model II). 

Model I is a dynamical model with randomly lumped mass and storey stiffness distribution for 
undamaged and damaged state. The structural damage has been simulated by reducing the storey stiffness. 
Numerical modal analysis for the both undamaged and damaged structural state has been conducted. In Model 
II the storey stiffness values for undamaged and damaged state are the same as in Model I, but with uniform 
lumped mass distribution (14 tons on each floor). The ISAR for every storey for the first and the second 
eigenpair has been obtained and compared with the percentage of stiffness loss due to the simulated damage. 
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Table 1 – Storey lumped mass and stiffness (undamaged and damaged state) 

Storey 
No. 

Model I - Lumped 
mass (tons) 

Model II - Lumped 
mass (tons) 

Storey stiffness ks 
(kN/m) undamaged 

Storey stiffness ks* 
(kN/m) damaged 

5 8 14 70000 50000 

4 12 14 80000 70000 

3 14 14 80000 60000 

2 12 14 90000 60000 

1 16 14 120000 80000 

 

Table 2. Model I – Obtained ISAR values based on the first and the second eigenpair  

Storey No. Stiffnes reduction (%) ISAR(1) ISAR(2) 
5 28.6 -0.2855 -0.2856 

4 12.5 -0.1251 -0.1184 

3 25.0 -0.2524 -0.3103 

2 33.3 -0.3355 1.7833 

1 33.3 -0.3370 -0.3758 

 

Table 3. Model II – Obtained ISAR values based on the first and the second eigenpair  

Storey No. Stiffnes reduction (%) ISAR(1) ISAR(2) 
5 28.6 -0.2867 -0.2858 

4 12.5 -0.1243 -0.1249 

3 25.0 -0.2500 -0.2501 

2 33.3 -0.3331 -0.3334 

1 33.3 -0.3335 -0.3333 

 

From the results it is observed that the ISAR value, obtained from the first eigenpair (ISAR(1)) matches 
the exact stiffness reduction, while ISAR value of the Model I, obtained from the second eigenpair (ISAR(2)) is 
considered as accurate for the 5th storey, less accurate for the 4th story and unaccurate for the lower storeys, 
from which substantially inaccurate for the 2nd storey. 

The results demonstrate that both ISAR values, based on both eigenpairs match the exact percentage of 
stiffness loss when the uniform storey mass muni is equal to the real lumped mass, as in Model II. 

From the numerical tests of the ISAR accuracy, it is concluded that the obtained ISAR value based on 
the first eigenpair (ISAR(1)) can accurately detect and quantify the storey damage since it is not sensitive to the 
variation of the floor mass distribution. On the other hand, the obtained ISAR value based on higher eigenpairs 
(ISAR(i>1)) is sensitive to the variation of the floor mass distribution (which is a realistic case) and therefore it 

.
2c-0054

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2c-0054 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

10 

shows substantial errors in case of non-uniform mass distribution along the DOFs. Results from numerous 
numerical tests demonstrated that the ISAR value based on higher eigenpairs can be considered as reliable only 
for the storeys above the corresponding mode shape’s highest braking point (the highest local maximum of the 
mode shape value). Since the first mode shape doesn’t have a local maximum, the value of ISAR(1) is reliable 
all over the building’s height. 

3.2 Experimental accuracy test of ISAR on the laboratory model of a masonry structure 

The experimental test of the accuracy and reliability of ISAR(1) was performed as a parallel research applying 
microtremor tests during an investigation of innovative materials for seismic strengthening of existing masonry 
buildings within the research project "Experimental Verification of Innovative Technique for Seismic 
Upgrading of Traditional Masonry Building" [16], realized by the Institute of Earthquake Engineering and 
Engineering Seismology (IZIIS) in Skopje, in collaboration with the RÖFIX Company, Austria and the 
SINTEK Company, Skopje in the period February‐September 2013. The laboratory model was to a scale 1:2 
of hypothetical 2‐storey brick masonry building, constructed for a shaking table test (Fig. 3(a)). 

On the roof plate an additional concrete slab with a thickness of 12 cm is constructed with a unique 
function of additional mass on the roof panel. The model’s lumped mass before testing, after testing and after 
retrofitting, remains constant (12.7 tons on the roof slab and 15.1 tons on the first storey’s slab). Both storeys 
were constructed with the same bearing masonry walls, expected to possess the same storey stiffness. 

Testing of the 1:2 scaled model was carried out using equipment which, operating as an integral system, 
had to provide the following functions: generation of programmed motions, measurement and recording the 
characteristic values of excitation, the dynamic behavior, data processing and presentation. The shaking table 
mechanism enabled programmed generation of translational vibrations in both horizontal and vertical 
direction.  

The shaking table tests of the model required special testing program consisting of several test phases, 
considering the expected information about the dynamic behavior of the prototype and the effectiveness and 
justification of applied strengthening method and technology. The same testing procedure was applied for 
original and for retrofitted model, consisting of two main phases [16]: 

- tests for definition of dynamic characteristics of the model, before and after performing seismic tests 
at each phase, in order to check stiffness degradation, caused by micro or macro cracks developed 
during the tests; 

- seismic testing by selected earthquake records until the model becomes heavily damaged. 

The model has been subjected in its W‐E direction to three characteristic earthquake effects (El Centro, 
1940; Petrovac N‐S, 1979, and Northridge, 1994). The dynamic properties of initial, damaged and retrofitted 
model were checked by ambient vibration technique before being subjected to earthquake excitation. 

The model was retrofitted by the innovative technique that was originally developed, and for this particular 
case designed and applied (Fig. 3(b)). From the comparison of results, it was concluded that the repair and 
retrofitting slightly increased not only the damaged model’s stiffness, but also the initial model’s stiffness. 
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(a)                                                            (b) 

Fig. 3 – Laboratory model – initial state before testing (a); retrofitting process between two tests (b) 

 
The obtained ISAR-value has been compared with a previously verified damage detection method – a 

storey damage index (SDI) [12]. Table 4 demonstrates the comparison between the ISAR(1) and SDI(1). 

Table 4 – Comparison between SDI(1) and ISAR(1) on the laboratory model 

  damaged vs. initial retrofitted vs. initial 
Storey SDI ISAR SDI ISAR 

2 0.17 -0.17 -0.37 0.37 

1 0.41 -0.42 -0.36 0.35 

 

4. Conclusions 
The purpose of the presented research was realized by the development of a structural health monitoring 
methodology based on in-situ operational modal analysis of high-rise buildings. The research was focused on 
a development of a non-convergent methodology for precise detection, localization and quantification of 
damages or strengthening effects in high-rise buildings by identifying one eigenpair. Applying the proposed 
methodology, the limitations of convergent methods have been overcome. Changes in eigen frequencies and 
mode shapes are indicators of damage or strengthening without precise details if analyzed independently one 
from another. The eigen frequency may drop or rise equally for different combinations of damage or 
strengthening of the structure (by intensity and location), but each combination of stiffness changes is followed 
by a unique change in mode shapes. Generally, the mode shape, combined with the corresponding eigen 
frequency, is a unique feature of only one storey stiffness distribution. Accordingly, the comparison of the 
combinations of eigen frequencies and mode shapes, identified by two consecutive observations of a structure, 
has a potential of a reliable indicator of damage or strengthening. The ISAR-ratio provides a reliable evaluation 
of changes in storey stiffness when it is based on the identification of the first transient eigenpairs (ISAR(1)). 
However, negligible difference between the calculated and the actual ratio is possible. ISAR(1) possesses 
considerable potential for wide practical application taking into account the fact that the greatest effective 
modal mass of the objects from the high-build structure, and consequently damages, is a component of the first 
translatory vibration mode, defined by the first eigenpair in translatory direction. Also, the first eigenpair in 
translatory direction is the simplest for identification in operational modal analysis. The advantage of the ISAR-
based structural health estimation approach is that ISAR in its final mathematical form depends only on the 
parameters of the floor of interest and the top floor, avoiding the dependence on the parameters on the other 
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floors, which makes it suitable for quick and simple structural health estimation, as well as computer software 
programming for a continuous and automated structural health monitoring process of a third level – 
ascertaining structural damages, as so as estimating their location and severity. The presented methodology, 
based on time synchronized registrations of ambient vibrations, enables the diagnosis of the current state of 
the building structure based on time-de-aggregated measurements. The first measurement, performed on an 
initial state of a building structure, is a reference for defining all possible successive states of the structure 
complementary to the results of the later operational modal analysis. 
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