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Abstract

A development of the “initial stiffness alter ratio” (ISAR) of conventional high-rise buildings is presented. The proposed
methodology has been developed to provide accurate structural health estimation in case of the highest limitation in
operational modal analysis - identification of an input set of one modal eigenpair, consisting of one modal frequency and
the corresponding mode shape, which is usually the first eigenpair. The approach provides locating and estimating
structural damages or strengthening effects in buildings. The methodology is based on identifying initial stiffness of
structures and its deviation over a certain time period. The ISAR method is based on results obtained by operational modal
analysis of miultistorey buildings as a non-convergent which means that the accuracy does not depend on the number of
eigenpairs included in the structural health state estimation process. The non-convergence of the proposed method
excludes the need and the difficulties of identifying multiple eigenpairs, required in any convergent structural diagnosis
approach. Identification of only one eigenpair is considered as sufficient. The calculation of ISAR is a straight-forward
numerical procedure for comparison between the parameters of undamaged, damaged and repaired or strengthened
structures. Theoretically the range of possible ISAR value stretches from -1 to + infinity. A positive value of ISAR
represents a strengthened structure, a value between -1 and O represents a damaged structure and an ISAR value -1
represents a total stiffness deterioration and collapse of the structure. The accuracy and the reliability of the proposed
structural health assessment approach has been verified through numerical and experimental test. The numerical test
consists of comparison of the results of two simple lumped mass dynamical models with same stiffness properties,
different storey mass distribution and same storey damage simulation. The accuracy and the reliability of ISAR and its
limitations in the numerical test are elaborated in detail. The experimental test consists of ISAR accuracy evaluation on
the structure of a scaled laboratory model of a traditional masonry building, tested on a shaking table in the Institute of
Earthquake Engineering and Engineering Seismology (1Z11S) in Skopje. The results have shown that the proposed ISAR,
based on the first modal eigenpair, can be applied as an instant damage or strengthening evaluation method in structural
health monitoring of multistorey buildings, providing the location and severity of structural damage, or the achieved
effects of strengthening techniques applied on real structures.
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1. Introduction

The process of Structural Health Monitoring (SHM) covers taking measures, registering and analyzing data
that relates to the structure’s behavior over a measured time frame and concludes whether the behavior had
been within the predictions from the structural design process, initial state right after being constructed, or that
the structure is completely operational and non-life or material goods threatening. SHM is used to estimate the
present state of the structure alongside with potential for further exploitation, or eventual need for repair, by
determining the effective structure’s behavior pattern or possible structural damages. SHM strategies are
generally classified in four different levels, depending on the information about the structural damage they can
provide [1, 2]: level 1 (structural damage ascertaining), level 2 (level 1 + structural damage location), level 3
(level 2 + structural damage severity), level 4 (level 3 + prediction of the remaining structure’s lifetime).

The SHM approach includes on site registering the structure's behavior by using multiple electronic
equipment - sensors, data transmission and analysis and extraction of the damage or strengthening sensitive
aspects of the data. Considering in situ experimental testing, ambient and forced vibration testing methods
prevailed, being applicable for all types of structures, components and materials [3]. Detecting structural
damages typically warrants the initial state and the altered state of the structures, to be compared. The
availability of these comparisons provides tracing sequential changes of the damage sensitive structural
parameters and estimating eventual damages and their severity.

Structural dynamic principles include the dynamic properties of the structure - the eigen frequencies and
the corresponding mode shapes, which dependent on the structure’s mass and stiffness distribution. The
changes of mass distribution are rare, and in almost all cases, insignificant over the period of structure’s
exploitation. The change in stiffness distribution is impact-full on the structural health state and significantly
impacts the dynamic properties and structural behavior under dynamic excitations.

Structural damage and strengthening result in stiffness changes of the bearing structural components.
The change in eigen frequencies indicates alterations in the initial stiffness. However, when observed
independently, their practical applications have their limits. Detecting small shifts in frequencies caused by
damage in buildings, especially on higher levels of the structures, requires severe damage. For instance, critical
damages of vital structural elements result with less than 5% of frequency shifts [4]. Local spatial deviation in
stiffness, especially on upper floors, cannot be determined by the eigen frequency value of the lower modes
because it is a general global property of the structure. However, higher eigen frequencies, which are usually
impossible to be identified through operational modal analysis, are associated with local responses [2]. When
the SHM process is based only on eigen frequency shifts, it can barely exceed any higher level of SHM than
the level 1. Furthermore, various environmental factors (e.g., temperature) can change natural frequency of
structures without any damage in the structure [5]. It remains difficult to determine even the damage location
just by observing only the changes of modal frequencies [6, 7].

It has been concluded that the shifts in mode shapes are slightly sensitive to damage, but the uncertainties
are present [8, 9]. A particular case is the presumption is the case in which all the storeys of an observed
building suffer the same damage or strengthening (same percentage of stiffness decrease or increase), all the
identified mode shapes of the damaged or strengthened structure do not differ from the ones of the structure in
its initial state. Mode shape changes-based stiffness alter identification approaches do not detect stiffness shifts
in this situation.

2. Storey Pseudo-Stiffness - Theory and Application

2.1 Definition of the Storey Pseudo-Stiffness
In systems with multiple degrees of freedom in one direction, the stiffness matrix [K] (Eg. (1)) is obtained

applying identified and then mass-normalized mode vectors, grouped in a mode shapes matrix [&®] and squared
angular frequency matrix [4] containing squared angular frequency values as main diagonal members, and
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zeros as non-main diagonal members. Mode shape vectors must be normalized in a form providing the product
[®]"[M][@] to be an identity matrix [I]. The mode shape matrix [&] contains the column vectors {¢}i which
are a normalized mode shape of every mode in the observed direction.

(K] = ([@][A]7H[e]) ™ 1)

To obtain the exact storey stiffness values by direct application of Eq. (1), all the system’s modal
eigenpairs (one eigen frequency in a certain direction and the corresponding mode shape) in one direction must
be identified. Identifying higher modes is practically impossible applying system identification methods for
operational modal analysis. Basically, only the first, and eventually the second eigenpair can be identified
reliably. The storey stiffness obtained has a lower numerical value than the actual storey stiffness. The
introduced pseudo-stiffness matrix [K] contains parameters that differ from actual stiffness. However, the
pseudo-stiffness and the actual stiffness are closely related. The order of the storey pseudo-stiffness matrix is
the number of considered mode shapes in the analysis. The pseudo-stiffness matrix is obtained by using Moore
and Penrose inverse matrix [10], which is a generalized inverse matrix. In this case the number of degrees of
freedom is higher than the identified eigenpairs (the mode shape vector matrix [&] is not a square matrix). The
storey stiffness of the n-storey structure is estimated from the pseudo-stiffness matrix [K] multiplying by a
generalized relative displacement vector {j}s (Eq. (2)) [11]. The matrix of generalized relative displacement
column vectors [j] is presented in Eqg. (3).

ks = U (K13 (2)
11 1 1
0 1 1 1
1= -1 Gz o Ghl=]0 0 - (3)
P 11
0 0 0 1

The matrix [K] is calculated by applying Eq. (1) considering the pseudo-inversion of the matrices [®]
and [®]" as non-square matrices of normalized identified mode shapes and the matrix [4] containing the
squared angular frequencies corresponding to the identified mode shapes. Finally, the storey pseudo-stiffness
value (Eq. (2)) is introduced as a parameter which is closely related to the corresponding storey real stiffness.
The parameter k, represents the s™ storey pseudo-stiffness of an order equal to the number of identified
eigenpairs in one direction and its value is lower than the actual stiffness. Increasing the storey pseudo-stiffness
order, its value converges to the actual storey stiffness — a storey pseudo-stiffness value of higher order
represents a closer value of the storey pseudo-stiffness to the exact value of the actual storey stiffness. In other
words, in case when all modal frequencies and mode shapes in one direction (translational or rotational) are
identified, the n™ order storey pseudo-stiffness obtained is equal to the actual storey stiffness, which means
that the highest possible order is the number of degrees of freedom in the corresponding direction.

2.2 Application of the First Order Storey Pseudo-Stiffness in Structural Health Estimation

2.2.1 Evaluation of First Order Storey Pseudo-stiffness

The main objective of the “first order storey pseudo-stiffness” structural health estimation approach is the
ability to accurately obtain the storey stiffness before and after the event that caused structural damage or
strengthening using only one eigenpair - wi and {¢}; for a particular direction. This is beneficial for practical
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applications since in in-situ operational modal analysis only the first few modal parameters can be reliably
identified due to a noise contamination in the measurements [12]. The set with the highest signal-to-noise (S/N)
ratio is chosen (of the first translational mode in each direction, including torsion). The first order pseudo-
stiffness matrix can be expressed by Eq. (4) (adequate to Eq. (1)).

[K]; = pinv({¢}D wipinv({$}) (4)

where wi® is the squared chosen angular frequency of the structure; pinv({¢}') and pinv({¢};) are
pseudoinverse of the normalized mode shape vector that corresponds to the chosen angular frequency. The
first order pseudo-stiffness of any storey, obtained applying Eqg. (2), has two essential properties [13]:

- the square root of k, is equal to the absolute value of the sum of mode shape values of the observed
storey and the soreys above it, multiplied by a ratio of proportion i, constant for all the storeys for the
actual structural health state (Eq. (5)),

\/;si =1; i bji Y; = const (5)
7=s

- the sum of kgvalues for all the stories represents a uniformly distributed storey stiffness for which an
imaginary structure’s eigen frequencies are equal or very close to the frequency w; of the actual
structure with the same mass distribution (Eq. (6)).

n
kyni = Z l-(si (6)
s=1

In Fig. 1(a), two dynamic models of building structures are presented. The model on the left represents
the actual structure with the actual values of storey stiffness (ki, Kz,...kn) and actual lumped mass distribution
(m1, my,...my). On the right, the model of the corresponding imaginary structure with the uniformly distributed
storey stiffness (kuni) is presented. Both structures have the same or very similar eigen frequency for the same
lumped mass distribution.

2.2.2 Storey stiffness estimation

Theoretically an infinite number of damage combinations can cause changes of the structure’s eigen frequency
for a certain percentage. For instance, the first eigen frequency is decreased to a lower value after damage
occurrence in the first storey, or in a higher storey with a larger stiffness loss, or due to damage occurrence in
several stories. In another words, many possible damage combinations can cause the same frequency drop in
a multistorey building. What makes any damage combination unique and recognizable is the corresponding
mode shape shifts. As a repercussion to that, it is obvious that any eigenpair, or mode shape, combined with
the corresponding eigen frequency, is a unique feature of only one structural damage combination.

The modal parameters can be identified by applying any proposed system identification technique.
Modal frequencies can be identified precisely. However, the mode shapes are often identified as non-
dimensional numerical values in “initial form”, depending on the applied system identification method. For
further application, the mode shapes values need to be normalized.
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The first normalization is carried out in order the product [@]"[M][®] to be an identity matrix [1]. {¢}iq)
represents the raw (non-normalized) form of the i"" identified mode shape, extracted from the system
identification of the observed structure. The normalized form of the raw non-normalized mode shape {¢}i)
can be obtained applying Eq. (7) [14]. The first order pseudo-stiffness matrix [K] can be obtained applying
Eq. (8), and the first order storey pseudo-stiffness k; is obtained applying Eq. (2) for each storey.

ha
{d)}i(z) = 9 @ (7)
\/{cp}?m MI{d}icry
[K1; = pinv({p}] ) wipinv({d}i)) (8)

Calculation of each storey’s actual stiffness can be performed by applying the “renormalized” mode
shape vector {¢}i), Renormalization of the mode shape vector has to be performed so that the expression in
Eqg. (9) is true. The second normalization can be performed applying Eq. (10). The renormalized mode shape
is represented in Eq. (11).

WY (dhiz = 1 9)
(s = @iy Pl )
\/ DYl \/ DY
(P} = (Pnim Pr-1im) - P2m Puelk (11)

The renormalized mode shape can then be applied for obtaining the “uniform lumped mass” (myni), for
which, similarly to the equivalent uniformly distributed storey stiffness, an imaginary structure’s eigen
frequencies are equal or very close to the eigen frequency of the actual structure for the real storey stiffness
distribution (Eq. (12)).

Myni = {9} [MI{¢}ica) (12)

In Fig. 1(b) two dynamical models of building structure are presented. The model on the left represents
the actual structure with the actual storey stiffness (ki, ko,...kn) and actual lumped mass distribution (ms,
my,...my). On the right, a model of the corresponding imaginary structure with the uniform lumped mass
distribution (myni) is presented. Both models have the same or very similar modal eigen frequency for the same
storey stiffness distribution.

When only the i eigen frequency of a particular structure and it’s corresponding raw mode shape {¢}iq)
are obtained applying system identification technique, the first order storey pseudo-stiffness and the value of
the uniform mass distribution can be calculated. The real storey stiffness of the undamaged structure can be
estimated by applying Eq. (13), considering that the values of the real lumped mass remain constant over time.

- l_(si ?:s m;
Myni(n = s + D]Adsi(3) Xs djica)|

ks (13)
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Adsiz) is the difference between the renormalized mode shape value of the observed storey s and the mode
shape value of the storey beneath (s-1):

A¢si(3) = (¢s - ¢s—1)i(3) (14)

The member ks represents the s storey stiffness and n is the total number of storeys. The storey stiffness,
obtained applying Eq. (13) is nearly equal to the exact value of the storey stiffness. Through numerical tests it
has been concluded that the accuracy of the obtained storey stiffness depends inversely on the standard
deviation of the mass distribution because the pseudoinverse of a rectangular matrix or a vector (the only
identified mode shape vector) is an optimal statistical solution of an inconsistent least square system in a way
that gives the minimum norm and therefore the closest solution [15]. Therefore, high variations in mass
distribution can cause certain residual errors in the real storey stiffness calculation. The influence of these
errors to the structural health estimation procedure’s final result has been investigated and discussed further.

Fiin in Frin FRluni
kn km kn kn
Fin-t in-r Fin-1 FPlanii
\fms \fms \i\ms \fmmi
o (253
ks ~ Founi ks =~ ks
' 2 . iz . mn: . FRluni
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. 4¢3 . iz . F4< ¥ . FRluni
ki Founi ki ki
(a) (b)

Fig. 1 — Dynamic model of real structure and imaginary structure: (a) - uniform storey stiffness, (b) - uniform
storey mass

The storey stiffness estimation can be furthermore simplified to straight forward calculation, avoiding
the need of renormalizing and summing the mode shape values by implementing the constant relationship from
Eqg. (5) into Eq. (13).

Considering that the storey pseudo-stiffness is a function of the storey stiffness distribution and the mode
shape, for any structure with a specified mass and stiffness distribution, there is a constant numerical
relationship among the mass, storey stiffness, mode shape, storey pseudo-stiffness and mode shape difference
for every storey of the structure. The constant relationship, demonstrated in Eq. (5), is further developed in Eq.
(15). Therefore, any storey’s stiffness can be derived as a function of the square root of the storey pseudo-
stiffness, mass distribution mode shape, multiplied by the constant ratio wi (Eg. (16)).

\/]}_Sl. _ ksmMuni(n — s + 1)|4¢gi3)| _
|Z7]?=s ¢}li(3)| \/l-(_Sl ;’lzsmj

Y; = const (15)
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\/k_si ?:s m;

i (16)
muni(n —S+ 1)|A¢si(3)|

ks =9

Considering that the ratio v; is equal for every storey, the easiest way of deriving it is from the pseudo-
stiffness and the mode shape of the top (n™) storey. The stiffness of the top storey can be obtained applying
Eq. (17). the ratio y; can be derived applying Eq. (18).

. k. .
b = 0y || g Tt (17)
A¢ni(3) Myni |A¢ni(3) |
wi _ wizl(pni(_3)|muni (18)

kni

The relationship among the mode shape values is always constant for specified state of the structure,
regardless of the normalization applied. The storey stiffness can be obtained by implementing Eq. (18) into
Eg. (16), which provides the mathematical expression of the storey stiffness as a function of mass, eigen
frequency and storey pseudo-stiffness (Eqg. (19)), where & represents the residual error dependent on the
lumped mass distribution.

k. = wiz Z?:smj ¢ni
S (m—s+1)I4g

(19)

2.2.3 Storey stiffness alter ratio

Finally, when both, the storey stiffness values of the damaged versus undamaged or repaired/strengthened
versus undamaged structure are known, the initial stiffness alter ratio for the s storey (ISARs) can be obtained
in general form (Eq. (20)):

ks e
ISARg = > =~ 1 (20)
S ¢S

*

where the asterisk (*) represents the property of an altered state of the structure. In calculation of the ISAR, ks
and ks are equal or nearly equal to the storey stiffness of the altered and initial structure respectively. Both
residual errors esand &~ originate from the same source - the mass distribution, which is considered as constant.
Therefore & = &, so they cancel each other out. The procedure results in a reliable ISAR calculation.

By placing Eq. (19) into Eq. (20), the initial stiffness alter ratio can be expressed as in Eq. (21).

wi? |riddsi

ISAR, =
* ¢niA¢;i

(21)

2
w;
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where n represents the property of the top storey and s represents the corresponding parameter of the observed
storey.

The parameters of the ISAR function from Eq. (21) are easily obtainable. One eigen frequency and the
corresponding mode shape of the initial and altered structure can be easily identified by the system
identification techniques, while the pseudo-stiffness values can be directly obtained by applying first Eq. (7),
then Eqg. (8) and finally Eg. (2). The range of possible ISAR-value stretches from -1 to +infinity (Fig. 2).

0 TR

ISAR

1
. H

strengthening

collapse
damage
Initial state

Fig. 2 — Theoretical range of possible ISAR-value

The characteristic values and subranges of ISAR are the following:

- ISAR = -1 (a state of total stiffness deterioration and collapse);
- -1 <ISAR <0 (damaged structure);

- ISAR = 0 (structure in its initial state - undamaged);

- ISAR > 0 (strengthened structure).

In practical cases, the operational modal analysis clearly identifies only the first translational mode (i = 1)
in every orthogonal direction of building structure. Therefore, the first eigenpair is the most suitable for a
storey health estimation. The Eq. (22) can be applied for ISAR calculation since in the first transitional mode
there is no phase difference in the vibration between any two DOFs.

wiz ¢:11A ¢sl
wlz ¢n1A¢;1

ISAR, = -1 (22)

The accuracy of the proposed methodology for obtaining storey damage index has been tested. The
testing results are further demonstrated and commented.

3. Validation of the Initial Stiffness Alter Ratio

3.1 ISAR accuracy test on numerical models

The efficiency and accuracy of ISAR has been tested on two numerical dynamical models of a five storey shear
building in a form of five degrees of freedom lumped mass dynamical systems (Model | and Model II).

Model | is a dynamical model with randomly lumped mass and storey stiffness distribution for
undamaged and damaged state. The structural damage has been simulated by reducing the storey stiffness.
Numerical modal analysis for the both undamaged and damaged structural state has been conducted. In Model
Il the storey stiffness values for undamaged and damaged state are the same as in Model I, but with uniform
lumped mass distribution (14 tons on each floor). The ISAR for every storey for the first and the second
eigenpair has been obtained and compared with the percentage of stiffness loss due to the simulated damage.
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Table 1 — Storey lumped mass and stiffness (undamaged and damaged state)

Storey | Model I - Lumped | Model Il - Lumped | Storey stiffness ks Storey stiffness ks*
No. mass (tons) mass (tons) (kN/m) undamaged (kN/m) damaged
5 8 14 70000 50000
4 12 14 80000 70000
3 14 14 80000 60000
2 12 14 90000 60000
1 16 14 120000 80000

Table 2. Model | — Obtained ISAR values based on the first and the second eigenpair

Storey No. | Stiffnes reduction (%) ISAR) ISAR)
5 28.6 -0.2855 -0.2856
4 125 -0.1251 -0.1184
3 25.0 -0.2524 -0.3103
2 333 -0.3355 1.7833
1 33.3 -0.3370 -0.3758

Table 3. Model Il — Obtained ISAR values based on the first and the second eigenpair

Storey No. | Stiffnes reduction (%) ISAR) ISAR)
5 28.6 -0.2867 -0.2858
4 125 -0.1243 -0.1249
3 25.0 -0.2500 -0.2501
2 333 -0.3331 -0.3334
1 33.3 -0.3335 -0.3333

From the results it is observed that the ISAR value, obtained from the first eigenpair (ISAR(1)) matches
the exact stiffness reduction, while ISAR value of the Model I, obtained from the second eigenpair (ISAR(y) is
considered as accurate for the 5™ storey, less accurate for the 4™ story and unaccurate for the lower storeys,
from which substantially inaccurate for the 2" storey.

The results demonstrate that both ISAR values, based on both eigenpairs match the exact percentage of
stiffness loss when the uniform storey mass myni is equal to the real lumped mass, as in Model I1.

From the numerical tests of the ISAR accuracy, it is concluded that the obtained ISAR value based on
the first eigenpair (ISAR(y)) can accurately detect and quantify the storey damage since it is not sensitive to the
variation of the floor mass distribution. On the other hand, the obtained ISAR value based on higher eigenpairs
(ISAR(>1) is sensitive to the variation of the floor mass distribution (which is a realistic case) and therefore it
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shows substantial errors in case of non-uniform mass distribution along the DOFs. Results from numerous
numerical tests demonstrated that the ISAR value based on higher eigenpairs can be considered as reliable only
for the storeys above the corresponding mode shape’s highest braking point (the highest local maximum of the
mode shape value). Since the first mode shape doesn’t have a local maximum, the value of ISAR(y is reliable
all over the building’s height.

3.2 Experimental accuracy test of ISAR on the laboratory model of a masonry structure

The experimental test of the accuracy and reliability of ISAR(;) was performed as a parallel research applying
microtremor tests during an investigation of innovative materials for seismic strengthening of existing masonry
buildings within the research project "Experimental Verification of Innovative Technique for Seismic
Upgrading of Traditional Masonry Building"” [16], realized by the Institute of Earthquake Engineering and
Engineering Seismology (1ZI1S) in Skopje, in collaboration with the ROFIX Company, Austria and the
SINTEK Company, Skopje in the period February-September 2013. The laboratory model was to a scale 1:2
of hypothetical 2-storey brick masonry building, constructed for a shaking table test (Fig. 3(a)).

On the roof plate an additional concrete slab with a thickness of 12 cm is constructed with a unique
function of additional mass on the roof panel. The model’s lumped mass before testing, after testing and after
retrofitting, remains constant (12.7 tons on the roof slab and 15.1 tons on the first storey’s slab). Both storeys
were constructed with the same bearing masonry walls, expected to possess the same storey stiffness.

Testing of the 1:2 scaled model was carried out using equipment which, operating as an integral system,
had to provide the following functions: generation of programmed motions, measurement and recording the
characteristic values of excitation, the dynamic behavior, data processing and presentation. The shaking table
mechanism enabled programmed generation of translational vibrations in both horizontal and vertical
direction.

The shaking table tests of the model required special testing program consisting of several test phases,
considering the expected information about the dynamic behavior of the prototype and the effectiveness and
justification of applied strengthening method and technology. The same testing procedure was applied for
original and for retrofitted model, consisting of two main phases [16]:

- tests for definition of dynamic characteristics of the model, before and after performing seismic tests
at each phase, in order to check stiffness degradation, caused by micro or macro cracks developed
during the tests;

- seismic testing by selected earthquake records until the model becomes heavily damaged.

The model has been subjected in its W-E direction to three characteristic earthquake effects (El Centro,
1940; Petrovac N-S, 1979, and Northridge, 1994). The dynamic properties of initial, damaged and retrofitted
model were checked by ambient vibration technique before being subjected to earthquake excitation.

The model was retrofitted by the innovative technique that was originally developed, and for this particular
case designed and applied (Fig. 3(b)). From the comparison of results, it was concluded that the repair and
retrofitting slightly increased not only the damaged model’s stiffness, but also the initial model’s stiffness.

10
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(@) (b)

Fig. 3 — Laboratory model — initial state before testing (a); retrofitting process between two tests (b)

The obtained ISAR-value has been compared with a previously verified damage detection method — a
storey damage index (SDI) [12]. Table 4 demonstrates the comparison between the ISAR(;) and SDl ).

Table 4 — Comparison between SDI) and ISAR() on the laboratory model

damaged vs. initial retrofitted vs. initial
Storey SDI ISAR SDI ISAR
2 0.17 -0.17 -0.37 0.37
1 0.41 -0.42 -0.36 0.35

4. Conclusions

The purpose of the presented research was realized by the development of a structural health monitoring
methodology based on in-situ operational modal analysis of high-rise buildings. The research was focused on
a development of a non-convergent methodology for precise detection, localization and quantification of
damages or strengthening effects in high-rise buildings by identifying one eigenpair. Applying the proposed
methodology, the limitations of convergent methods have been overcome. Changes in eigen frequencies and
mode shapes are indicators of damage or strengthening without precise details if analyzed independently one
from another. The eigen frequency may drop or rise equally for different combinations of damage or
strengthening of the structure (by intensity and location), but each combination of stiffness changes is followed
by a unique change in mode shapes. Generally, the mode shape, combined with the corresponding eigen
frequency, is a unique feature of only one storey stiffness distribution. Accordingly, the comparison of the
combinations of eigen frequencies and mode shapes, identified by two consecutive observations of a structure,
has a potential of a reliable indicator of damage or strengthening. The ISAR-ratio provides a reliable evaluation
of changes in storey stiffness when it is based on the identification of the first transient eigenpairs (ISARy).
However, negligible difference between the calculated and the actual ratio is possible. ISARu) possesses
considerable potential for wide practical application taking into account the fact that the greatest effective
modal mass of the objects from the high-build structure, and consequently damages, is a component of the first
translatory vibration mode, defined by the first eigenpair in translatory direction. Also, the first eigenpair in
translatory direction is the simplest for identification in operational modal analysis. The advantage of the ISAR-
based structural health estimation approach is that ISAR in its final mathematical form depends only on the
parameters of the floor of interest and the top floor, avoiding the dependence on the parameters on the other
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floors, which makes it suitable for quick and simple structural health estimation, as well as computer software
programming for a continuous and automated structural health monitoring process of a third level —
ascertaining structural damages, as so as estimating their location and severity. The presented methodology,
based on time synchronized registrations of ambient vibrations, enables the diagnosis of the current state of
the building structure based on time-de-aggregated measurements. The first measurement, performed on an
initial state of a building structure, is a reference for defining all possible successive states of the structure
complementary to the results of the later operational modal analysis.

5. References

[1] Rytter A (1993): Vibration Based Inspection of Civil Engineering Structures. Ph.D. Thesis, Dept. of Building
Technology and Structural Eng., Aalborg Univ., Denmark.

[2] Doebling, SW, Farrar CR, Prime MB, Shevitz DW (1996): Damage ldentification and Health Monitoring of
Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review. Los
Alamos National Laboratory report LA-13070-MS. Web. doi:10.2172/249299.

[3] Krstevska L, Tashkov Lj (2015): Importance of in situ experimental testing in estimation of seismic stability of
structures and implementation in structural health monitoring. Journal of Civil Structural Health Monitoring, 5
(2), 203-219.

[4] Zhou X (2004): Vibration-Based Damage Detection of Tall Building Structures, Ph.D. Thesis. Dept. of Civil and
Structural Engineering. Hong Kong Polytechnic University, Hong Kong.

[5] Kaya', Safak E (2013): Real-Time Structural Health Monitoring and Damage Detection. In: Catbas F., Pakzad S.,
Racic V., Pavic A., Reynolds P. (eds), Topics in Dynamics of Civil Structures, 4, Conference Proceedings of the
Society for Experimental Mechanics Series. Springer, New York, NY.

[6] Lieven N, Ewins D (1988): Spatial Correlation of Mode Shapes, the Coordinate Modal Assurance Criterion
(COMAC). 6™ International Modal Analysis Conference, 690-695, Bethel, CA, USA.

[7] Safak E, Cakti E, Kaya Y (2010): Recent Developments on Structural Health Monitoring and Data Analyses. In:
Garevski M., Ansal A. (eds) Earthquake Engineering in Europe. Geotechnical, Geological, and Earthquake
Engineering, 17, 331-355, Springer, Dordrecht.

[8] Ndambi JM, Vantomme J, Harri K (2002): Damage assessment in reinforced concrete beams using eigenfrequencies
and mode shapes derivatives. Engineering Structures, 24 (4), 501-515.

[9] Brasiliano A, Doz GN, Brito JLV (2004): Damage identification in continuous beams and frame structures using the
residual error method in the movement equation. Nuclear Engineering and Design, 227 (1), 1-17.

[10]Penrose R (1955): A Generalized Inverse for Matrices. Mathematical Proceedings of the Cambridge Philosophical
Society, 51 (3), 406-413.

[11] Morita K, Teshigawara M (2006): Structural Health Monitoring of an Existing 8-story Building Using Strong Motion
Observation Data and Structural Design Data. Smart Structures and Materials, Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems, SPIE, 6174, 575-583, San Diego, CA, USA.

[12]Wang JF, Lin CC, Yen SM (2007): A Story Damage Index of Seismically Excited Buildings Based on Modal
Frequency and Mode Shape. Engineering Structures, 29 (9), 2143-2157.

[13]Jekikj G, Garevski M (2016): Damage evaluation in high-rise buildings using one modal eigenpair. Advances in
Structural Engineering, SAGE Journals, 19 (10), 1661-1673, DOI: 10.1177/1369433216648433.

[14] Aenlle ML, Brincker R, Canteli AF (2005): Some Methods to Determine Scaled Mode Shapes in Natural Input Modal
Analysis. IMAC-XXIII: A Conference & Exposition on Structural Dynamics. Society for Experimental Mechanics,
Orlando, USA.

[15]MacAusland R (2014): The Moore-Penrose Inverse and Least Squares. MATH 420: Advanced Topics in Linear
Algebra, University of Puget Sound.

[16] Shendova V. (2013): 1Z11S-ROFIX Scientific Research Project on Experimental Verification of Inovative Technique
for Seismic Retrofitting of Traditional Masonry Building. Report 1ZI1S 2013-44, Skopje, Macedonia.

12

© The 17th World Conference on Earthquake Engineering - 2¢c-0054 -


http://link.springer.com/journal/13349
http://www.sciencedirect.com/science/journal/01410296/29/9
http://journals.cambridge.org/action/displayJournal?jid=PSP
http://journals.cambridge.org/action/displayJournal?jid=PSP
http://www.sciencedirect.com/science/journal/01410296
http://www.sciencedirect.com/science/journal/01410296/29/9
http://ase.sagepub.com/content/early/2016/05/19/1369433216648433.abstract
http://vbn.aau.dk/en/persons/rune-brincker(44cc3f48-2efb-4375-9222-a5cfc6613bbb).html

	Abstract
	1. Introduction
	2. Storey Pseudo-Stiffness - Theory and Application
	3. Validation of the Initial Stiffness Alter Ratio
	4. Conclusions
	5. References

