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Abstract 

In the last years, with the development of performance based seismic design, extensive research on damage free systems 

such as self-centering has been conducted. The ability of these systems to eliminate residual drifts was found to be 

beneficial from an economic point of view. This is due to the reduced amount of damage and repair costs with the end of 

the seismic event. Self-Centering Concentrically Braced Frames (SC-CBF) showed high performance in previous 

experimental studies. They survived experimental ground shakes with reduced damage to the primary structural elements 

while eliminating residual drifts. Generally, column uplift is allowed at the base of SC-CBFs and Post-Tensioned (PT) 

tendon is provided to create a flexural moment in the opposite direction to the overturning moment. This leads to a 

reduction in the residual displacements. The behavior of the system is nonlinear elastic while the energy dissipation (ED) 

is achieved by different types of dampers provided at the rocking sections (e.g. metallic yield dampers or viscous 

dampers).  

Higher vibration mode effects may lead to large shear force and flexural moment demands through the building height. 

Following the capacity design philosophy, these high demands could lead to the design of large structural members and 

an increase in the building cost. Adding rocking sections at higher levels, where the flexural moments from the higher 

vibration modes are expected to be large, could reduce significantly the design force demands. To date, rocking systems 

have been modeled either by using a simplified nonlinear rotational spring-based element or by using displacement-based 

finite-element methods (FEM). Using the first approach, a spring-based element is formulated to describe the global flag-

shaped behavior of the self-centering mechanism. While this approach is computationally efficient, it is not suitable for 

modeling multiple rocking sections. This is due to the coupling between the rocking sections and its substantial effect on 

the PT elongation. In addition, it cannot analyze rocking structures subjected to varying external axial loads. Using the 

second approach, modeling of zero length contact elements is required. Thus, in order to prevent instability issues of the 

analysis and to ensure convergence, small time step sizes may be needed. This may be attributed to the abrupt stiffness 

change at the time of contact and its dependence on the relative displacements between the rocking sections due to columns 

uplifts. While small time step sizes are generally required when rocking is analyzed, this is more pronounced when 

multiple rocking locations exist in the structure. In view of the above, more robust time integration schemes that can 

analyze systems with multiple rocking sections are needed. 

To overcome this gap, a new model based on the Mixed Lagrangian Formulation (MLF) is proposed. MLF was originally 

developed for the analysis of skeletal structures including plastic and geometrically nonlinear behavior. Later a gap 

element was added to describe contact behavior. It has been shown in previous research that the MLF has many advantages 

for the solution of dynamic problems especially when contact is expected and causing an abrupt change in the contact 

force. Hamilton’s principle is discretized in time to produce an optimization problem at each time step. This optimization 

problem has a quadratic form and its solution is straightforward with the available numerical tools. The formulation of 

new systems in MLF is not yet straightforward. In this study, a new model is developed for rocking structures with 

multiple rocking sections. Both the internal forces and the global displacements are essential state variables in the MLF, 

and momentum conservation is considered automatically. Therefore, the proposed model shows high convergence 

stability even with relatively large time steps. 

Keywords: Mixed-Lagrangian-Formulation, Self-Centering, Higher Mode Effects, Multiple Rocking Systems, Rocking 

Walls

.
2c-0060

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2c-0060 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

2 

1. Introduction 

Recent earthquakes have shown that buildings are exposed to large damage [1–3]. This damage causes high 

economic losses. These losses consist of direct and indirect losses. The former includes the damage to the 

building and its restoration costs. The latter includes business interruption and loss of the functionality of the 

building [4]. In addition, the restoration of these buildings is occasionally not feasible or even not possible. 

This is due to the existence of permanent residual deformations in the structural elements due to plastic 

behavior [5]. 

Damage free self-centering systems have shown experimentally negligible damage when subjected to 

seismic excitation [6,7]. Furthermore, their self-centering capability ensures that the residual deformations are 

negligible. Self-Centering-Concentrically Braced Frames (SC-CBFs) are an example of such systems [8]. In 

these systems, column uplift is permitted usually at the base of the building at the connection with the 

foundation. Post-tensioned cable is usually provided to ensure the self-centering behavior of such a system. 

Different solutions for Energy Dissipation (ED) are available and they can be designed at the rocking section 

or in other places of the structural system. This includes metallic yield bars or plates [9,10], fluid viscous 

dampers [6], shear fuses [11], etc. The hysteretic behavior of the rocking sections is usually referred to as flag 

shaped for the case of metallic yield dampers. 

It has been shown that in traditional designs where the rocking behavior is concentrated at the base of 

the structural system, large flexural moment and shear force demands can develop through the height of the 

SC-CBF [12]. This phenomenon is attributed to the higher vibration modes effect. Therefore, additional 

rocking sections can be potentially added at higher levels of the SC-CBF. It has been shown that this solution 

can reduce significantly the shear force and flexural moment demands while preserving acceptable 

deformations [13]. This reduction is expected to lead to more economic designs [14]. 

Several analytical models were proposed for the analysis of rocking systems [15] and multiple rocking 

systems [12,13]. In general, these models have been developed based on the Finite Element Method (FEM). 

The rocking behavior includes contact between the two adjacent rocking sections. This behavior is modeled 

usually using contact gap elements. These elements include a nonlinear behavior that depends explicitly on the 

relative displacement between the surfaces of the rocking sections. An infinite stiffness is provided to the latter 

to describe the rigid contact in the compression phase. These elements have zero stiffness in tension which 

describes the vertical column uplifts.  

Large numbers are often used to describe numerically the infinite stiffness. This may cause an ill-

condition stiffness matrix. Therefore, the contact elements can be replaced by constraints on the displacements 

of the contact surface [16]. However, in both methods the behavior depends explicitly on the relative 

displacement between the contact surfaces. In rocking behavior, the duration of the contact can be very small. 

This leads to the need for small time-increments to ensure convergence.  

Computationally efficient macro models have been proposed for systems with multiple rocking sections. 

In these models, rotational springs are added at the rocking surfaces with flag shaped hysteretic behavior [12]. 

The latter is calculated based on the properties of the rocking section prior to the analysis. Therefore, variable 

axial loads are not considered. In addition, the interaction between the different rocking sections is neglected 

in these models. This might cause unconservative estimations of the behavior in the case where the same cable 

is provided to more than one rocking section [13]. 

The existing models for SC-CBFs are usually based on FEM formulations. In the later, the behavior of 

the structural elements is related to the relative displacement. This might cause convergence issues when the 

duration of the contact is small such in SC-CBFs. Other models are more computationally efficient; however, 

they neglect the interaction between the rocking sections. Therefore, in this paper, a new model for the analysis 

of such systems is proposed. 
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The proposed model is developed based on the Mixed-Lagrangian-Formulation (MLF). The main 

advantage of the latter is that the state variables considered include both forces and displacements. In this 

formulation, an optimization problem is solved at each time step to calculate the internal forces in the elements. 

This formulation was first proposed for the transient analysis of skeletal structure including plastic behavior 

[17,18]. Later, it was extended for the analysis of progressive collapse [19], thermoelectricity [20] and for base 

isolated structures [21]. 

A one dimensional (1-D) gap element has been developed and added in order to consider contact 

behavior [22]. The behavior of this element does not depend explicitly on the relative displacement between 

the two surfaces of the contact. This element is an additional function to the Lagrangian which describes the 

conservative components in the structural system. It has been shown that large time increments can be used 

and yet to maintain the convergence of the model.  

In this paper, MLF is used to develop a numerical model for the analysis of SC-CBFs including multiple 

rocking joints. The gap element mentioned earlier is used to model the contact behavior at the rocking sections. 

In this model, the interaction between rocking sections sharing the same cable is considered automatically. 

The proposed model is used for the analysis of fifteen-story buildings, both with a traditional base rocking 

section and a building with multiple rocking sections. The proposed model showed a good convergence even 

when large time increments were used. This led to a relatively small computation time. In addition, it is shown 

that the flexural moments can be reduced significantly by applying the multiple rocking solution with a 

negligible effect on the displacements. 

2. Numerical model for SC-CBF 

2.1 General 

A new model is developed for the analysis of SC-CBFs with multiple rocking joints based on MLF. MLF starts 

with the formulation of the Lagrangian and dissipation function of the dynamic system [18]. These functions 

describe the conservative and nonconservative characteristics of the system, respectively. The state variables 

in this formulation include a mixed description of forces and displacements in the dynamical system. 

In the case where energy dissipation and contact exist, the Lagrangian and dissipation functions take 

the following [22]:  

( ) ( )
1 1

, , ,
2 2

T T T T T
L g= + + + +u J u J u Mu J AJ J B u P u J (1) 

( ) ( )
1

,
2

T
 = +u J u Cu J (2) 

where 𝐌 is the mass matrix in the global degrees of freedom (DOFs); 𝐀 is the flexibility matrix in the local 

DOFs; 𝐁 is equilibrium matrix that transfers the forces from the local DOFs to the global DOFs; 𝐂 is damping 

matrix in the global DOFs; 𝐮 is a vector of displacements in the global DOFs; 𝐉 is a vector of impulses (time 

integral of forces) in the local DOFs; 𝐏 is a vector of known external time dependent forces in the global DOFs; 

𝜑(�̇�) is a function describes the potential of the dissipative elements as shown in Fig.1-a for elastic perfectly 

plastic material; 𝑔(�̇�) is a function describes the gap element in the system as shown in Fig.1-b and upper dot 

represent time derivative. 

The equations of motion and compatibility can be obtained when substituting the Lagrangian and the 

dissipation function into the Euler-Lagrange equations: 
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where Eqs. 3 and 4 represent the dynamic equilibrium and the compatibility of the velocities of the system, 

respectively. It has been shown [18] that these equations hold also when geometric nonlinearity is considered. 

Therefore, the proposed model can be easily extended to include geometrically nonlinear effects. However, 

this is beyond the scope of the current paper.  

 
Fig.1 – Dissipation and gap functions in MLF: (a) 1-D dissipation function for elastic perfectly plastic 

material and (b) 1-D gap function for compression only element. 

2.2 Implementing MLF for SC-CBF 

In this paper, the MLF is adopted to develop a numerical scheme for the dynamic analysis of SC-CBFs with 

multiple rocking sections as shown schematically in Fig.2. The global DOFs represent the nodal displacements 

in the system. Each node includes two degrees of freedom representing the horizontal and the vertical 

displacements of each node. The local DOFs represent the internal forces in the structural elements at their 

local DOFs. The proposed model includes representation of the truss elements, ED elements, and cable 

elements. 1-D gap elements [22] are used to describe the column uplift at the rocking sections.  

It is assumed that the energy dissipation in this system is concentrated at the rocking sections. 

Therefore, the truss elements are assumed to remain in their elastic region. Thus, these elements are modeled 

as 1-D elastic truss elements. Plastic behavior for the truss elements can be easily included by adding slider 

elements in series with the truss elements. Metallic yield dampers are added at each section, these elements 

are modeled using slider elements describing the plastic behavior in series with elastic springs describing the 

behavior of the ED elements in their elastic region as shown in Fig.2. The PT cables are modeled similarly to 

the truss elements. The force due to pre-stressing in these cables is added to the internal forces in the first time-

step. The gap is assumed to be rigid in compression, and its behavior is described as shown in the previous 

section for 1-D gap element. Rigid link elements are added to prevent shear slide at the story levels. These 

elements are added as truss bars with large stiffness connecting horizontally the columns at the rocking levels. 

The vector of internal forces includes the forces in the elements described above in their local DOFs 

and it is collected as follows: 𝐅 = {𝐅𝑇 , 𝐅𝑁, 𝐅𝐶 , 𝐅𝐸𝐷}𝑇; where 𝐅𝑇, 𝐅𝑁, 𝐅𝐶 and 𝐅𝐸𝐷 are vectors of internal forces 

in the truss, cable, gap and ED elements, respectively. It is noted the shear link elements, in this case, are 
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included with the truss elements. These elements can be replaced using constraints; however, these methods 

are not in the scope of this paper. 

 
Fig.2 – Schematic representation of the proposed model and internal forces. 

The equilibrium matrix includes the transformations of the internal forces of each type of element to 

the global degrees of freedom. These transformations include equilibrium equations and geometrical 

transformations. The general equilibrium matrix 𝐁 is collected to include the structural elements as follows: 

𝐁 = {𝐁𝑇 , 𝐁𝑁 , 𝐁𝐶 , 𝐁𝐸𝐷}𝑇; where 𝐁𝑇 is a matrix that transforms the internal forces in the truss elements shown 

in Fig.2 to the global DOFs; 𝐁𝑁 transforms the internal force in the cable elements to the global DOFs, and it 

should be noted that several cables can be included in this formulation with different configurations; 𝐁𝐶 is a 

matrix that transforms the internal forces in the gap element to the rocking surface and 𝐁𝐸𝐷 is a matrix that 

transforms the internal forces in the ED elements to the rocking sections. 

2.3 Time discretization 

Eqs. 3 and 4 are discretized in time using the mid-point rule central differences. It has been shown that the 

latter leads to momentum conservation [17]. The discretized equations take the following after replacing �̇� 

with 𝐯 and �̇� with 𝐅: 
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In the proposed model, several DOFs do not include mass. This leads to a singular mass matrix. 

Eliminating the velocity vector 𝐯𝑀,𝑛+1  where the subscript 𝑀 represents the DOFs including mass gives: 

1 1
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where; 
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and, 

�̅� is a diagonal matrix including the nodal masses at global DOFs for nodes with concentrated mass; �̅� is the 

damping matrix; 𝐁𝑀  is a matrix including the M-th columns of the general equilibrium matrix 𝐁 and Δ𝑡 is the 

time increment in seconds. 

The compatibility equation takes the following after discretization substituting 𝐯𝑀,𝑛+1: 
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The initial prestress force is added as the value of 𝐅𝑁  at the first time-step. This is used to calculate the initial 

value of the vector �̅�.  

2.4 Time step solution 

The vector that includes the velocities of the system at the global DOFs 𝐯 (Eq. 7) is dependent explicitly on 

the internal forces 𝐅. Therefore, the main equation to be solved at each time increment is the compatibility 

equation (Eq. 9). In this equation, the matrix �̅� is positive semi-definite since it is obtained by summing positive 

matrices. Hence, it can be easily shown that this equation is the first optimality criteria of the following 

optimization problem: 
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The optimization problem in Eq. 12 includes the internal forces in the structural elements as design 

variables. The constraints of the optimization problem include the ED and gap elements. In addition, 

equilibrium at the degrees of freedom where dynamic forces do not present is received as equality constraints 

of the optimization problem. This optimization problem can be solved easily using available nonlinear 

optimization solvers such as fmincon in MATLAB [23]. 

2.5 Solution scheme 

The solution of the dynamic system starts with setting the initial conditions. The forces due to the pre-stress of 

the cable elements are substituted in the force vector 𝐅. Later, the matrix �̅� and the vector �̅� are calculated 

from the structural data. At this stage, an incremental solution starts with computing the internal forces in the 

structural elements by solving the optimization problem described in Eq. 12 for each time step.  

Table 1 – MLF Computational Procedure 

Calculation step

Calculate the initial vector of internal forces at t=0Step 1

Calculate the matrix �̅� and the vector �̅� from Eqs. 10 and 11Step 2

Calculate 
𝜕𝜑

𝜕𝐅
|

𝑛+1
and 

𝜕𝑔

𝜕𝐅
|

𝑛+1
by substituting the values of the vector 𝐅𝑛+1 in the derivative of the

dissipation and gap functions, respectively.
Step 3

Calculate the velocities in DOFs without dynamic forces using the Lagrange multipliers of the 

equality constraints of the optimization problem from Eq. 12.
Step 4

Solve Eq. 7 for calculating the velocities in DOFs with dynamic forces.Step 5

Calculate the displacements and velocities at current time step using Eqs. 13 and 14 respectively.Step 6

Return to step 2 for calculating the next time step.Step 7

With the vector of internal forces at hand, the vectors 
𝜕𝜑

𝜕𝐅
|

𝑛+1
and 

𝜕𝑔

𝜕𝐅
|

𝑛+1
can be calculated by 

substituting the values of the vector 𝐅 in the dissipation and gap functions and calculating the derivative. It has 

been shown that the velocities at DOFs without dynamic forces can be obtained from the Lagrange multipliers 

of the equality constraints [17]. The velocity at DOFs with dynamic forces can be calculated by solving Eq. 7. 

The displacements and accelerations can be calculated from the velocities as shown in Eqs. 13 and 14. For 

convenience, a pseudo-code of the numerical integration scheme is summarized in Table. 1. 
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3. Case Study

A fifteen-story building with a lateral load resisting system of SC-CBFs was modeled using the proposed 

procedure. The plan of the building is shown in Fig.3. The wall was modeled using the planar model described 

in previous sections as shown in Fig.2.  The building was subjected to the ground acceleration LA07 in the 

horizontal direction. The story mass was 1000 [ton] and it is constant with the building height. It is assumed 

that this mass distributes equally between the four SC-CBFs in the horizontal direction. Therefore, the analyzed 

SC-CBF had a story mass of 250 [ton] at each story level. 

Fig.3 – Floor plan of 15 story building with SC-CBFs. 

Two models were built; in the first model, the rocking section was designed only at the base of the 

building. Additional rocking sections through the wall height were designed in the second building at the base 

of stories 5, 9 and 13. A single cable was connected to the top of the building and anchored to the foundation 

in both examples. The initial pre-stress was 50% of the ultimate stress of the PT cable material which has an 

ultimate strength of 1860 [𝑀𝑃𝑎]. Metallic yield dampers with a sectional area of 8 [𝑐𝑚2]  and yield stress of

400 [𝑀𝑃𝑎] were provided at each rocking section at the edges of the rocking sections. Initial stiffness 

proportional Rayleigh damping of 5% was assigned to the first and seconds vibration modes. 

The truss elements were designed to remain elastic during the seismic action. The yield was 

concentrated only at the ED material. The sectional area of the diagonal elements was 90 [𝑐𝑚2] and it was

constant through the building height. Similarly, the columns sectional area was constant through the wall height 

and it was 130 [𝑐𝑚2].
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Fig.4 – Structural response of SC-CBF with base rocking: the top plot shows the LA07 ground 

acceleration, the middle plot shows the displacement of the top story, the left-bottom plot shows the 

maximum displacements at each story level and the right-bottom plot shows the maximum moment at 

each story level. 

The analyses of both buildings were conducted using the proposed model with a constant time step 

size of 0.02 [𝑠𝑒𝑐]. This time increment was chosen based on the data of the ground acceleration. The analysis 

with smaller time step size did not affect the results; however, this validation is not presented herein due to 

space limitations. Fig.4 shows the results obtained for the case of base rocking SC-CBF. The ground 

acceleration is shown at the top plot of the figure and the displacement of the top story is shown in the middle 

plot. The maximum displacement at the top story was less than 1.5% of the building height. This displacement 

was the largest through the building height. In the left bottom plot of Fig.4, the maximum story displacements 

are presented. It is shown the displacement profile is approximately linear. This result was expected since the 

plastic rotations were designed only at the base of the building. The maximum flexural moments are shown in 

the right bottom plot of Fig.4. The higher vibration mode effects can be easily observed. The largest flexural 
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moment, in this case, was approximately 3 times larger than the moment at the rocking section and it was in 

the 9-th story. 

In the second example, multiple rocking sections were designed. The rocking sections at higher levels 

were designed at the base of stories 5, 9 and 13 in addition to the base rocking section. As expected, these 

additional rocking sections decreased significantly the flexural moments as shown in Fig.5. This caused a 

reduction in the internal forces in the truss elements. This reduction may reduce significantly the cost of the 

building. Moreover, only a negligible increase in the story displacements was observed. These results are in 

agreement with other studies on rocking walls or SC-CBFs with multiple rocking sections [12,13]. 

 
Fig.5 – Structural response of SC-CBF with multiple rocking sections: the top plot shows the displacement 

of the top story, the left-bottom plot shows the maximum displacements at each story level and the right-

bottom plot shows the maximum moment at each story level. 

5. Conclusions 

In this paper, a new model for the analysis of SC-CBFs with multiple rocking sections was developed. This 

model is based on the MLF in which the state variables include the displacements and the forces in the dynamic 

system. The contact behavior was described using 1-D gap elements which do not depend explicitly on the 

relative displacement between the adjacent surfaces of the rocking section. 

An example of fifteen-story building was presented, the results show that the behavior of such systems 

can be easily obtained using the proposed procedure. In MLF momentum conservation is automatically 

considered, therefore, convergence issues due to contact behavior at the rocking section are prevented. 
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Large time increments were used for the analysis when using the proposed model. Therefore, the 

calculation time is small. This is very important when excessive number of analysis is needed, such as in life 

cycle cost analysis or for building surrogate models. 

The presented formulation is robust, and it can be easily extended for the analysis of asymmetrical three-

dimensional buildings. 
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