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Abstract 
Pulse-like earthquake ground motions have been observed near earthquake source faults during large-scale earthquakes, 
e.g. the Northridge earthquake in 1994, the Hyogo-ken Nanbu earthquake in 1995, the Chi-Chi (Taiwan) earthquake in
1999 and the Kumamoto earthquake in 2016. Structural damages have been reported after such inland earthquake
events. On the other hand, long-period and long-duration ground motions have been observed during large earthquake
events such as the Niigata-ken Chuetsu earthquake in 2004 and the Tohoku earthquake in 2011, and some high-rise
buildings were in resonance with these ground motions.

In this paper, the double and multiple impulses are introduced for substituting the pulse-like ground motions, which can 
be represented by a few series of sinusoidal wavelets, and the long-duration ground motions, which can be represented 
by harmonic waves [1, 2]. Then the critical and non-critical elastic-plastic responses subjected to the double impulse 
and the multiple impulse are derived in closed form. The critical responses represent the resonance, and the proposed 
method enables an explicit evaluation of the resonant response of inelastic systems that requires complex procedures in 
conventional methods [1, 2]. The response to the impulse input can be expressed by the instantaneous increase of the 
velocity of mass, and the system exhibits free vibration after each impulse. The closed-form solutions for the critical 
elastic-plastic responses under the double and multiple impulses can be derived by finding the critical timing and using 
the energy balance law, where the kinetic energy imparted at the impulse acting point is equal to the sum of the elastic 
strain energy and the energy dissipation by the plastic deformation. The critical timing of the second impulse of the 
double impulse input is found to be the zero-restoring force timing after the first impulse for the inelastic single-degree-
of-freedom system. Similarly, the critical timing of each impulse of the multiple impulse input is found to be the zero-
restoring force timing after the previous impulse. It is noted that the elastic strain energy is zero at the critical impulse 
timing. On the other hand, the inelastic response under the non-critical double and multiple impulses can also be 
derived in closed form by using the energy balance law and the free-vibration response after the previous impulse.  

It is further shown that an approximate elastic-plastic response spectrum for a pulse-like near-fault ground motion can 
be obtained analytically, i.e. without time-history response analysis. Although strength-modified iterative calculation 
without reliable convergence confirmation for a specified ductility factor is necessary to obtain the elastic-plastic 
response spectrum for actually recorded ground motions in the conventional procedure, the proposed closed-form 
expression provides an analytical and efficient evaluation for the elastic-plastic response spectrum for the characterized 
pulse-like ground motion. In detail, the proposed critical and non-critical inelastic response expressions enable the 
derivation of closed-form natural periods for a specific ductility factor with respect to strength parameter. Then the 
natural periods for various strength parameters under a constant ductility factor lead to the plot of the elastic-plastic 
response spectrum without unreliable iterative procedures. The validity of the elastic-plastic response spectrum for the 
double impulse representing pulse-like ground motions is investigated through the comparison with the elastic-plastic 
response spectra for actual recorded pulse-like ground motions.  

Keywords: Critical Response; Elastic-plastic Response; Near-fault Ground Motion; Double Impulse; Multiple Impulse  
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1. Introduction

Pulse-like earthquake ground motions have been observed near earthquake source faults during large-scale 
earthquakes including the Northridge earthquake in 1994, the Hyogo-ken Nanbu earthquake in 1995, the 
Chi-Chi (Taiwan) earthquake in 1999 and the Kumamoto earthquake in 2016. Structural damages have been 
reported after such inland earthquake events. Near-fault pulse-like ground motions can be roughly classified 
into the fling-step and forward-directivity inputs, and the main part of these two pulse-like inputs can be 
expressed by a few wavelet combinations [3]. In the recent papers, the fling-step input can be represented by 
a one-cycle sinusoidal wave and the forward-directivity input can be modelled by three series of sinusoidal 
wavelets or Ricker wavelet [3, 4]. Furthermore, it should be noted that these ground motions cause large 
plastic deformations of building structures during large inland earthquake events, and the effects of pulse-
like inputs on building structures have been studied recently [3, 4]. Alternatively, long-period and long-
duration ground motions have been recorded during earthquake events with large magnitude such as the 
Niigata-ken Chuetsu earthquake in 2004 and the Tohoku earthquake in 2011 [5]. In the 1970s, these long-
period and long-duration ground motions were not expected in the structural design of base-isolation 
buildings and super high-rise buildings, whose natural periods are longer than 4.0[sec], and such long-period 
building structures may be damaged or collapse due to resonance with such long-period and long-duration 
ground motions. Therefore, it is necessary to investigate the resonant phenomenon of long-period buildings 
to such ground motions. In previous works, the main part of these long-duration ground motions can be 
modeled by multi-cycle sinusoidal waves, and the resonant phenomenon and elastic-plastic responses of the 
building structures have been checked by using such equivalent long-duration ground motions [6]. 

The resonance and critical responses of inelastic structural systems subjected to pulse-like or long-
duration inputs are important in the earthquake-resistant design, and a great number of theoretical 
investigations on inelastic responses under earthquake ground motions have been accumulated. Caughey 
derived a resonance curve of a single-degree-of-freedom (SDOF) bilinear hysteretic system. In this study, the 
resonance curve can be calculated by the equivalent linearization method based on a least-squares 
approximation [7]. On the other hand, Iwan derived the exact solution for the steady-state response of an 
undamped SDOF bilinear hysteretic system and an approximate solution for that of an undamped two DOF 
bilinear hysteretic system subjected to the harmonic wave [8]. However, these two methods are too 
complicated to calculate the resonant response of elastic-plastic structures, because the resonant responses of 
the elastic-plastic structures have to be calculated for a specific input level, e.g. the acceleration amplitude 
and the velocity amplitude, by changing the input frequency.    

To overcome such difficulty, Kojima and Takewaki have introduced double, triple and multiple 
impulse inputs substituting the fling-step input, forward-directivity input and long-duration ground motion [1, 
2, 9-11]. The critical elastic-plastic responses, which represent the resonant responses, subjected to these 
impulse inputs are derived in closed form, and the proposed method enables an explicit evaluation of the 
resonant responses of inelastic systems that requires complex procedures in conventional methods [1, 2, 9-
11]. The closed-form solutions for the critical inelastic responses subjected to such impulse train inputs can 
be derived by finding the critical timing and using the energy balance law. The response to such impulse 
inputs can be represented by the free vibration with the instantaneous increase of velocity of mass, and the 
kinetic energy imparted at the impulse acting point is equal to the sum of the elastic strain energy and the 
energy dissipation by the plastic deformation at the point where the system reaches the maximum 
displacement. The critical timing of the subsequent impulse of the impulse inputs is found to be the timing 
when the restoring force becomes zero after the previous impulse for the inelastic SDOF system. It is noted 
that the elastic strain energy is zero at the critical timing.  

In this paper, the double and multiple impulse inputs are introduced for substituting the pulse-like 
ground motions, which can be represented by a few combinations of sinusoidal wavelets, and the long-
duration ground motions, which can be expressed by harmonic waves [1, 2, 9-11]. Then the critical and non-
critical inelastic responses subjected to the double and multiple impulse inputs are obtained in closed form. 
The inelastic responses to the non-critical double and multiple impulses can also be derived in closed form 
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by using the energy balance law and the free-vibration response after the previous impulse. It is further 
shown that an approximate elastic-plastic response spectrum for a pulse-like near-fault input can be obtained 
analytically. Although strength-modified iterative calculation without reliable convergence confirmation for 
a specified ductility factor is necessary to calculate the elastic-plastic response spectrum for actually 
recorded ground motions, the proposed closed-form expression provides an analytical and efficient 
evaluation for the inelastic response spectrum for the characterized pulse-like ground motion. The validity of 
the proposed response spectrum for the double impulse representing pulse-like ground motions is checked 
through the comparison with the inelastic response spectra for actual recorded pulse-like inputs. 

2. Double and multiple impulse inputs

2.1 Double impulse input

The acceleration of the fling-step input, which is the fault-parallel component of near-fault ground motions, 
can be characterized by a one-cycle sine wave as shown in Fig.1(a), and the double impulse input has been 
introduced to substitute the fling-step inputs [1, 9].  

A ground acceleration g ( )u t  of the double impulse as shown in Fig.1(a) is expressed by 

g 0( ) ( ) ( )u t V t V t t     (1) 

where V denotes the velocity provided by the first and second impulses (the velocity amplitude), t0 represents 
the time interval between two impulses and (t) is the Dirac delta function. The comparison of the waveform 
of the double impulse input with a one-cycle sine wave is shown in Fig.1(a). A ground acceleration SW

g ( )u t  
of the one-cycle sine wave is expressed by 

SW
g p p p 0( ) sin( ) (0 2 )u t A t t T t     (2) 

where Ap denotes the acceleration amplitude of the sine wave and p (=2/Tp) denotes of the input circular 
frequency. The velocity amplitude V of the double impulse corresponds to the maximum velocity Vp = 2Ap 
/p of the corresponding one-cycle sine wave, and the time interval t0 is equal to a half of the period of the 
sine wave. To compare the inelastic response to the double impulse and that to the sine wave, the velocity 
amplitude V of the double impulse has to be adjusted to that Vp of the sine wave. In this paper, the velocity 
amplitudes of the two inputs are adjusted to make the maximum Fourier amplitude of the double impulse 
equal to that of the sine wave [9]. The ratio of Vp to V is 1.2222  based on the above adjustment method and 
the validity of this method has been investigated in the previous paper [9]. 

2.2 Multiple impulse input 

The long-duration ground motions are modelled by the multiple impulse input as shown in Fig.1(b) [2, 10]. 
A ground acceleration g ( )u t  of the multiple impulse input with the equal time interval is represented by  

g 0 0 0 0 0( ) 0.5 ( ) ( ) ( 2 ) ( 3 ) ( 1) { ( 1) } 0.5 ( )Nu t V t V t t V t t V t t V t N t V t Nt                    (3) 

where V denotes the velocity provided by each impulse (the velocity amplitude), t0 denotes the time interval 
between two consecutive impulses and N is the number of impulses (N is an even number). The comparison 
of acceleration, velocity and displacement of the multiple impulse input with the sine wave is shown in 
Fig.1(b). A ground acceleration SW

g ( )u t  of the multi-cycle sine wave is expressed by 

SW
g

0.5 sin( ) (0 0.5 ,0.5 0.5( )
( )

sin( ) (0.5 0.5 )
l l l l l

l l l l

A t t T NT t NT
u t

A t T t NT




   
   

  (4) 
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Fig. 1 – Simple ground motion models by impulse train inputs: (a) Pulse-like ground motion and double 
impulse [1,9,11], (b) Long-duration input and multiple impulse input [2,10] 

where Al represents the acceleration amplitude of the sine wave and l (=2/Tl) denotes the input circular 
frequency. The velocity amplitude V of the multiple impulse input corresponds to the that Vl = 2Al /l of the 
sine wave and the time interval t0 is equal to a half of the period of the sine wave. The velocity amplitude of 
the double impulse is also adjusted to that of the sine wave to compare the elastic-plastic responses. In this 
paper, Vl /V =2/ is adopted [10]. The ratio Vl /V =2/ has also been derived based on the equivalence of the 
maximum Fourier amplitude [10]. 

3. Inelastic response to double impulse  

3.1 Critical response of elastic-perfectly plastic SDOF system subjected to double impulse 

Consider an undamped SDOF elastic-perfectly plastic system as shown in Fig.2(a). The mass, stiffness, 
natural circular frequency and natural period of the SDOF system are denoted by m, k, 1 = /k m  and T1 
(=2/1), respectively. Let u and f denote the displacement of the mass relative to the ground and the 
restoring force (see Fig.2(a)). u  is equal to the deformation of the system. The yield deformation and yield 
force are denoted by dy and fy (=kdy), respectively, as shown in Fig.2(b).  

A closed-form expression has been derived for the inelastic response of the undamped elastic-perfectly 
plastic SDOF system subjected to the critical double impulse [1]. The maximum inelastic responses of the 
undamped system under the critical double impulse input can be obtained by an energy approach without 
solving directly the equation of motion. Furthermore, the critical timing of the second impulse can be found 
as the time when the restoring force becomes zero in the unloading range after the first impulse, and the 
maximum deformation after the second impulse is maximized by using such critical timing. The critical time 
interval t0

c can also be obtained analytically for the increasing velocity amplitude of the double impulse input. 
t0

c corresponds to a half of the inelastic resonant period of the sine wave. 

(a) 

um

k

                      (b)   

u

( )f u

yf

yd
1

k

 

Fig. 2 – Undamped elastic-perfectly plastic SDOF system: (a) SDOF system, (b) Elastic-perfectly plastic 
restoring force-deformation relation [9] 
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Fig.3 shows the restoring force-deformation relations to the critical double impulse. umax1 and umax2 in 
Fig.3 represent the maximum deformation after the first and second impulses. The inelastic responses under 
the critical double impulse can be divided into three cases, depending on the velocity amplitude and yielding 
stage. CASE 1 is the elastic case even after the second impulse, CASE 2 is the case where the system goes 
into the plastic range just after the second impulse and CASE 3 is the case where the system exceeds yield 
deformation after the first impulse. Fig.3(a)-(c) show a schematic diagram of CASEs 1-3. Vy =1dy is 
introduced to normalize the velocity amplitude V. The maximum deformation of the undamped SDOF 
system subjected to the single impulse with Vy just reaches the yield deformation dy. In this paper, the ratio 
V/Vy is used to express the input velocity level. The normalized maximum deformation umax1/dy and umax2/dy 
after the first and second impulses in CASEs 1-3 can be obtained by 

 max1
2

/ (0 / 1.0 : CASE 1,2)

0.5{1 ( / ) } (1.0 / : CASE 3)

y y

y y y

V V V Vu

d V V V V

  
 

 (5) 

 2max 2

2 / (0 / 0.5 : CASE1)

0.5{1 (2 / ) } (0.5 / 1.0 : CASE2)

1.5 ( / ) (1.0 / : CASE3)

y y

y y
y

y y

V V V V
u

V V V V
d

V V V V

 
   
  

 (6) 

The critical time interval t0
c in CASEs 1-3 can also be obtained by the following equations. 

 
c

0
2

1

0.5 (0 / 1.0 : CASE 1,2)

{arcsin( / ) ( / ) 1} / (2 ) 0.25 (1.0 / : CASE 3)

y

y y y

V Vt

T V V V V V V

  
   

 (7) 

Fig.4 shows the normalized maximum inelastic response umax/dy = max(umax1, umax2)/dy to the critical 
double impulse input with respect to the input level V/Vy. Fig.5 illustrates the critical time interval c

0t  
normalized by the natural period T1 with respect to the input level V/Vy. 

3.2 Non-critical response of elastic-perfectly plastic SDOF system subjected to double impulse 

A closed-form expression is derived for the response of the undamped elastic-perfectly plastic SDOF system 
subjected to the non-critical double impulse [11]. The inelastic response to the non-critical double impulse 
can also be derived in closed form by using the energy balance law and the expression on free vibration after 
the first impulse.  

First, consider the input level range 0≤ V/Vy <0.5, where the critical response is in the elastic range. 
The maximum deformation umax1/dy and umax2/dy after the first and second impulse can be obtained by 

1pu

yd

yf

yf

max 2u
max1u

yd

f

u
max 2umax1u

yd
yd

yf

yf
f

u

2pu

yd

yf

yf
f

uyd
max1u max 2u

2pu

(a) CASE 1（V/Vy<0.5) (b) CASE 2（0.5≤V/Vy<1) (c) CASE 3（1≤V/Vy)  
Fig. 3 – Maximum inelastic deformation of undamped SDOF system under critical double impulse input:  

(a) CASE 1, (b) CASE 2, (c) CASE 3 (●: first impulse, ▲: second impulse) [9] 
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Fig. 4 – Maximum response umax/dy to critical        Fig. 5 – Critical time interval t0

c/T1 
double impulse with V/Vy [1]                                 with respect to input level V/Vy [1] 

 max 2 0 1/ ( / ) 2 2cos(2 / )y yu d V V t T   (9) 

Second, consider the input level range 0.5≤ V/Vy <1.0, where the critical response goes into the plastic 
range just after the second impulse. Since umax1 does not exceed dy, umax1 in the input level range 0.5≤ V/Vy 

<1.0 can be also obtained from Eq. (8). When umax2 is in the elastic range, umax2/dy in this input level can also 
be derived by Eq. (9). When umax2 > dy, umax2/dy can be obtained by 

 2 2
max 2 0 1 0 1/ 0.5[1 ( / ) {2 2cos(2 / )}] (cos(2 / ) 1 0.5( / ) )y y yu d V V t T t T V V       (10) 

Finally, consider the input level range 1.0 ≤ V/Vy, where the critical response is in the plastic range 
after the first impulse. Figure 6 shows a schematic diagram of the inelastic response under the non-critical 
double impulse. umax1/dy can be obtained by 

0 1 0 1 OA 1

2 2 2max1
0 OA 1 0 OA 1 OA 1 0 1 OB

2
OB 1 0 1

( / )sin(2 / ) ( / / )

[2 {( ) / } 2 { ( / ) 1}{( ) / } 1] ( / / )

0.5{1 ( / ) } ( / / )

y

y
y

y

V V t T t T t T

u
t t T V V t t T t T t T t

d
V V t T t T



 


        


 

 (11) 

where tOA= arcsin(Vy /V)/(2) and tAB= 2( / ) 1yV V  /(2) are the time interval between point O and point A 
and that between point A and point B in Fig.6, and tOB = tOA + tAB. When t0 < tOA as shown in Fig.6(a), 
umax2/dy in this input level can also be obtained by Eqs. (9) and (10). When tOA ≤ t0 < tOB as shown in Fig.6(b), 
the maximum response after the second impulse is in the plastic range and umax2/dy can be obtained as follows. 

(a) 0≤t0<tOA (b) tOA≤t0<tOB
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Fig. 6 – Maximum inelastic deformation under non-critical double impulse input for input level range 

1.0 / yV V : (a) 0 OAt t , (b) OA 0 OBt t t  , (c) OB 0t t  (●: first impulse, ▲: second impulse) 
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2 2
max 2 0 OA 1 0 OA 1

2 2

/ {(2 )( ) / } {( / ) 2 ( / ) 1}{(2 )( ) / }

0.5{( / ) ( / ) 1} 1

y y y

y y

u d t t T V V V V t t T

V V V V

      

   
(12) 

When tOB ≤ t0 as shown in Fig.6(c) and the maximum response after the second impulse is in the plastic 
range, umax2/dy can be expressed by 

max 2 0 OB 1/ 1.5 ( / )sin{(2 )( ) / }y yu d V V t t T    (13) 

When tOB ≤ t0 and the maximum response after the second is in the elastic range, umax2/dy can be obtained by 

2 2
max 2 0 OB 1/ 1 ( / ) 2( / )sin{2 ( ) / } 0.5{( / ) 1}y y y yu d V V V V t t T V V       (14) 

Fig.7 shows the maximum deformation umax/dy under the non-critical double impulse with respect to 
the time interval t0/T1. 

4. Steady-state inelastic response to multiple impulse

4.1 Critical steady-state response of elastic-perfectly plastic SDOF system under multiple impulse

The steady-state inelastic response has been derived analytically for an undamped SDOF elastic-perfectly 
plastic system subjected to the critical multiple impulse input [2]. The plastic deformation to the critical 
multiple impulse input can also be obtained by using an energy approach without solving directly the 
differential equation (equation of motion). The critical timing of each impulse can be characterized as the 
time when the restoring force attains zero in the unloading process after the previous impulse, and the plastic 
deformation becomes maximum to such critical input. The critical time interval t0

c corresponds to a half of 
the resonant period of the sine wave to the inelastic system and t0

c can be obtained as a function of V/Vy. 

A schematic diagram of the steady state inelastic responses to the critical multiple impulse input is 
shown in Fig.8. up in Fig.8 denotes the plastic deformation in steady state. The normalized plastic 
deformation up /dy can be obtained by 

2/ 0.5{2( / ) ( / ) }p y y yu d V V V V   (15) 

The critical timing t0
c of the multiple impulse input can also be expressed by 

c 1 2
0 1/ [arcsin{1 ( / )} ( / ) 2( / )] / (2 ) 0.25y y yt T V V V V V V      (16) 

Figs. 9 and 10 show the normalized plastic deformation up /dy and the critical time interval t0
c/T1 with 

respect to V/Vy for the multiple impulse input. 
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Fig. 7 – Maximum deformation umax/dy to non-critical double impulse with t0/T1 for varied V/Vy 
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Fig. 8 – Steady-state response to critical multiple impulse (●: acting points of impulses) [2] 
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Fig. 9 – Plastic deformation up/dy to critical        Fig. 10 – Critical time interval t0
c/T1 

multiple impulse with varied V/Vy [2]                         with respect to input level V/Vy [2] 

4.2 Non-critical response of elastic-perfectly plastic SDOF system under multiple impulse 

The plastic deformation in steady state to a non-critical multiple impulse input is derived. The steady state is 
assumed where the impulse acting point converges to the two points as shown in Fig.11. t* is defined as the 
time interval between point E’ and F’ in Fig.11.  d* and v* in Fig.11 can be obtained as follows. 

 1* cos( *)yd d t , 1* sin( *)yv V t  (17), (18) 

By using d*, v* and solving the differential equation (equation of motion), the time interval tF’D between 
point F’ and point D and that tDE between point D and point E can be derived in terms of t*. 

 2 0.5
F'D 1 1/ {( / 2) arcsin[( / ) 2( / )sin( *) 1] } / (2 )y yt T V V V V t         (19) 

 2
DE 1 1/ ( / ) 2( / )sin( *) / (2 )y yt T V V V V t    (20) 

where = arctan[{sin(1t*)+(V/Vy)}/cos(1t*)]. Therefore, the time interval t0 of the non-critical multiple 
impulse input can be obtained by using t* as follows. 

 
0 1 1 F'D 1 DE 1

2 0.5
1 1

2
1

/ ( * / ) ( / ) ( / )

( * / ) {( / 2) arcsin[( / ) 2( / )sin( *) 1] } / (2 )

{ ( / ) 2( / )sin( *)} / (2 )

y y

y y

t T t T t T t T

t T V V V V t

V V V V t

   

 



  

     

 

 (21) 

On the other hand, the plastic deformation to the non-critical multiple impulse input can be obtained by an 
energy balance law. The energy balance law between point F’ and point E is expressed by 

 2 2 20.5 ( * ) 0.5 * 0.5 y y pm v V kd kd f u     (22) 
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Fig. 11 – Restoring force-deformation relation in     Fig. 12 – Plastic deformation up /dy to non-critical 
steady state to non-critical multiple impulse input         multiple impulse with t0/T1 for specific V/Vy 

From Eq. (22), the plastic deformation up /dy can be derived in terms of t* by 

2
1/ ( / )sin( *) 0.5( / )p y y yu d V V t V V   (23) 

Although it is difficult to calculate up /dy directly from the time interval t0/T1, the relation between up /dy and 
t0/T1 can be obtained from Eqs. (21) and (23) by using *t . The relation between the plastic deformation up/dy 
to the non-critical multiple impulse and t0/T1 can be obtained by Eqs. (21) and (23) as shown in Fig.12. 

5. Elastic-plastic response spectrum for double impulse input

An elastic-plastic response spectrum for the double impulse input is derived by using the critical and non-
critical double impulse. The elastic-plastic response spectrum for the double impulse can be obtained by 
using the relation between the ductility factor and the natural period normalized by the time interval of the 
double impulse. In this paper, the ductility factor is equal to the maximum deformation normalized by the 
yield deformation. Fig.13 shows the flowchart for deriving the elastic-plastic response spectrum for the 
double impulse. First, the minimum input level (V/Vy)min for a specific ductility factor  is obtained by the 
critical elastic-plastic responses derived from Eqs. (5) and (6). The minimum input level (V/Vy)min can be 
classified into (V/Vy)min1, (V/Vy)min2 and (V/Vy)min3 depending on the ductility factor . Then the relation 
between (V/Vy) and (t0/T1) is obtained from the non-critical inelastic responses, which were explained in 
section 3.2. Finally, the elastic-plastic response can be obtained from the relation between (V/Vy) and (t0/T1). 
It is noted that the velocity amplitude V and the time interval t0 of the double impulse equivalent to the pulse-
like ground motions are necessary to obtain the elastic-plastic spectrum. These two parameters represent the 
pulse characteristics of the ground motions. 

The maximum deformation under the double impulse can be classified into the maximum deformation 
umax1 just after the first impulse and the maximum deformation umax2 after the second impulse. First, the 
relation between the ductility factor  (=umax1/dy) and the normalized natural period t0/T1 is derived. From Eq. 
(11),  (=umax1/dy) and  = (t0-tOA)(2/T1), the following equation can be obtained. 

Calculate (V/Vy)min for specific ductility factor 
by critical elastic-plastic response

Calculate relation between (V/Vy) and (t0/T1) for 
specific ductility factor by non-critical inelastic 

responses ( (V/Vy) ≥ (V/Vy)min )

Obtain elastic-plastic response for double impulse 
((Qy/m)-T1 relation) by using (V/Vy)-(t0/T1) relation. 

(V and t0 of double impulse are necessary)

Fig. 13 – Flowchart of derivation of elastic-plastic response spectrum for double impulse 
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 2 20.5 ( / ) 1 1yV V        (24) 

From Eq. (24),  = (t0-tOA)(2/T1) can be derived as follows. 

 2 2( / ) 1 ( / ) 2 1y yV V V V       (25) 

By using Eq. (25) and tOA= arcsin(Vy /V)/(2), t0/T1 can be obtained as the function of  and (V/Vy). 

  2 2
0 1/ arcsin( / ) ( / ) 1 ( / ) 2 1 / (2 )y y yt T V V V V V V         (26) 

where 1.0 ≤ V/Vy. Furthermore, the minimum input level (V/Vy)min1 for a specific ductility factor  can be 
obtained from the maximum response umax1 after the first impulse as follows.  

 min1( / ) 2 1yV V    (27) 

In addition, the input level for the specific  is (V/Vy)min1 regardless of t0/T1 when t0 < tOA. 

Secondly, the relation between  (=umax2/dy) and t0/T1 is derived for the maximum deformation umax2 
after the second impulse. By using Eq. (13),  (=umax2/dy) and  = (t0-tOB)(2/T1), the following equation can 
be derived when the ductility factor  exceeds 2.5 (CASE 3). 

 1.5 ( / )sinyV V    (28) 

From Eq. (28),  can be derived as follows.  

 2arcsin{( 1.5) / ( / ) }yV V    (29) 

Eq. (29) provides t0/T1 as  

 2 2
0 1/ [arcsin( / ) ( / ) 1 arcsin{( 1.5) / ( / ) }] / (2 )y y yt T V V V V V V       (30) 

where 1.0 ≤ V/Vy and  ≥ 2.5. From  umax2/dy=1.5+(V/Vy) in CASE 3, the minimum input level (V/Vy)min2 for a 
specific ductility factor  can be obtained as follows. 

 min 2( / ) 1.5yV V    (31) 

Finally, the relation between  (=umax2/dy) and t0/T1 is derived for umax2 in the input level range 0.5 ≤ 
V/Vy < 1.0 (CASE 2). When 1.0≤<2.5, the following equation can be derived from Eq. (10) and  =umax2/dy. 

 2
0 10.5 0.5( / ) [2 2cos{ (2 / )}]yV V t T     (32) 

From Eq. (32), t0/T1 can be obtained by 

 2
0 1/ arccos[1 0.5{(2 1) / ( / ) }] / (2 )yt T V V     (33) 

where 0.5≤V/Vy<1.0. From umax2/dy = 0.5{1+(2V/Vy)2} in CASE 2, the minimum input level (V/Vy)min3 for a 
specific ductility factor  can be obtained as follows. 

 min 3( / ) 0.5 2 1yV V    (34) 

The relation between the input level (V/Vy) and the normalized time interval (t0/T1) for a specific 
ductility factor   provides the relation between the yield force (strength) Qy/m normalized by mass and the 
natural period T1. From (V/Vy) and (t0/T1), Qy/m can be obtained as follows.  

 2 1
1 1 0 1 0( / ) / (2 / ) 2 ( / )( / ) ( / )y y y y yQ m kd m d T V t T V V V t        (35) 
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The elastic-plastic response spectrum can be obtained by using Eq. (35) for the double impulse as a 
representative of the pulse-like ground motions in terms of the velocity amplitude V and the time interval t0 
corresponding to the pulse period. 

Fig.14 shows the relation between (V/Vy) and (t0/T1) for various ductility factors  =3.0-6.0. Fig.15(a) 
shows the elastic-plastic response spectrum for the double impulse with V = 1.64 [m/sec] and t0 = 0.4 [sec]. 
These two parameters are the parameters of the double impulse modelling Rinaldi Station FN component 
during the Northridge earthquake in 1994. Fig.15(b) shows the elastic-plastic response spectrum for Rinaldi 
Station FN component. The ground acceleration of Rinaldi Station FN from 0 sec to 3.3 [sec] is used to 
consider the response to the principal part with strong pulse characteristics. The elastic-plastic response 
spectrum for the double impulse with V = 1.64 [m/sec] and t0 = 0.4 [sec] corresponds to that for Rinaldi 
station FN component within reasonable accuracy. 
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Fig. 15 – Elastic-plastic response spectrum for double impulse and Rinaldi Station FN: (a) Corresponding 
double impulse with V = 1.64 [m/sec] and t0 = 0.4 [sec], (b) Main part of Rinaldi Station FN component 

6. Conclusion

The double and multiple impulses were introduced for substituting the pulse-like ground motions and the 
long-duration ground motions, and the critical and non-critical inelastic responses subjected to those impulse 
inputs were derived in closed form. The conclusions may be summarized as follows. 

(1) The closed-form expression for the maximum inelastic responses of an undamped elastic-perfectly
plastic SDOF system under the critical double impulse input maximizing the response can be obtained
by an energy approach. The critical timing is characterized as the time when the restoring force attains
zero. Alternatively, the maximum inelastic responses to non-critical double impulse can be derived in
closed form by the free vibration expression after the first impulse and the energy balance law.
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(2) The closed-form expression for the steady-state inelastic response amplitudes of an undamped elastic-
perfectly plastic SDOF system subjected to the critical multiple impulse input can be obtained by the
energy balance law. The critical timing of each impulse is characterized as the time when the restoring
force attains zero. In contrast, the plastic deformation subjected to non-critical multiple impulse input
can be derived by using inelastic free-vibration responses after each impulse and the energy balance law.
Although it is difficult to derive the plastic deformation directly as a function of the velocity amplitude
and the time interval, the relation between the plastic deformation and the time interval can be obtained
in closed form.

(3) An approximate elastic-plastic response spectrum for a pulse-like near-fault ground motion can be
obtained analytically from the closed-form expression of the maximum inelastic responses to the critical
and non-critical double impulse input. The proposed inelastic response spectrum can provide simple
evaluation of the maximum elastic-plastic responses subjected to the pulse-type ground motion within
reasonable accuracy.
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