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Abstract 

In this paper, a procedure to design a shear-type building with supplementary Maxwell model-based nonlinear damper-

brace systems for achieving a target performance is proposed. In the proposed procedure, a numerical time-stepping 

method is developed to compute the response of the damper-brace system and the building under earthquake excitations. 

The effects of different design parameters have been preliminary investigated by a simple structure with a nonlinear 

damper-brace assembly. Results indicate that, to satisfy a set performance index, there exist non-unique solutions with 

many possible combinations of the design parameters; however, a minimum brace stiffness will be required to achieve 

the desired structural performance. Moreover, for a given brace stiffness, the optimal damping coefficient can be 

uniquely determined if the nonlinear velocity exponent is preset. Results also show that, for achieving the same 

structural performance, the use of a nonlinear damper with velocity exponent less than 1 can reduce a considerable 

amount of damping originally required for the use of a linear damper. The proposed procedure will be shown to be 

easily extendable to multi-degree-of-freedom (MDOF) structures with multiple nonlinear damper-brace systems. 

Keywords: seismic design, nonlinear fluid viscous damper, brace stiffness, Maxwell model, optimal design. 
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1. Introduction

As a typical structural protective technique, passive energy dissipation is now widely used in civil 

engineering structures to improve overall structural performance, which may include vibration control and 

retrofit of the structures. High performance passive energy dissipating devices, such as friction dampers, 

viscous dampers, viscoelastic dampers, tuned mass dampers and tuned liquid dampers, can consume or 

absorb part of the energy that is imparted to the primary structure, and thereby reducing the dynamic actions 

on structural elements [1]. Among the many passive control devices, fluid viscous dampers (FVDs), which 

were initially applied in aerospace and military hardware, are frequently adopted in civil engineering to 

mitigate structural vibration due to natural and man-made excitations. If properly designed, a supplementary 

FVD system can dissipate a significant amount of energy imparted to a structure from earthquakes and wind, 

thus enhance the dynamic performance of the structure.  

FVDs can generally be categorized into two groups according to their force-velocity relationships, 

namely linear and nonlinear. While extensive researches have been focused on linear FVDs experimentally 

and analytically [2-5], studies in ‘nonlinear FVDs’, which have an additional velocity exponent that 

introduces the nonlinear power-law behavior, are still limited and requires further investigation. The 

damping force in the nonlinear damper can be described as:  

sgn( )NL

d d d df c
ν

= ∆ ∆ɺ ɺ (1) 

where NL

df is the nonlinear force induced by the damper, cd is the damping coefficient, d∆ɺ is the relative 

velocity between two ends of the damper, namely, the piston velocity, ν is the nonlinear velocity exponent 

and sgn(•) is the signum function. The exponent ν contributes to the nonlinearity of the damper and depends 

on the hydraulic circuit (orifice) design of the device [6]. For seismic applications, typical values of v are in 

the range of 0.35−1.0 [7] and the values commonly used are in the range of 0.4−0.5 [8]. For wind 

applications, the frequently used velocity exponent is in the range of 0.5−1.0 [8]. 

Compare with linear FVDs, nonlinear FVDs with a velocity exponent ν smaller than 1 are capable of 

providing sufficient damping to the structure without creating excessive damper force when the structural 

velocities are large [7]. This can be demonstrated by Fig. 1, which shows that the nonlinear damper with a ν 

less than 1 can generate a larger damper force at velocity lower than 1 m/s. It can also be seen from Fig. 1 

that, when the velocity is larger than 1 m/s, the force provided by the damper with ν equals 0.3 shows a 

diminishing return, unlike a linear increase (for ν equals 1) or an exponential increase (for ν equals 1.5). The 

damper force can thus be limited, and possible structural/joint damage due to large damper force can be 

prevented. Owing to the afore-mentioned advantages provided by the nonlinear FVDs with ν smaller than 1, 

the use of nonlinear FVDs in structural applications becomes an active area of research in recent years [6, 7]. 

Fig. 1 – Variation of damper force with piston velocity for different damper exponents (cd = 1 N∙s/m) 
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In practice, FVDs are often installed in buildings in conjunction with supporting braces, which may be 

of Chevron (Inverted-V), diagonal, or other types of configuration. Since the dampers are connected to the 

braces, for FVDs to exhibit optimal performance, it is vital that the effect of the braces to be considered in 

the design of the dampers. However, in the literature, most of the design procedures for FVDs, especially the 

procedures for nonlinear ones, assume the supporting braces have infinite stiffness [6, 9-12], as the brace 

stiffness has not yet been included as a design parameter. Since in practical application, the cross-section of 

the brace is often limited due to functional or aesthetic reasons, an infinite stiffness is difficult to achieve 

[13]; hence, researchers have suggested that the brace stiffness should be considered throughout the design 

of damper properties and positioning [13-15]. Due to the fact that the FVDs are often arranged in series with 

the braces, in mathematical term, the damper-brace assembly can best be described using the Maxwell model, 

in which the damper, represented by a dashpot, and the brace, represented by a spring, are in series. 

For structures with damper-brace systems described by the Maxwell models to achieve the best 

performance, some design procedures have been introduced in the literature, e.g. Londoño et al. [16] 

proposed a design method for linear damper-brace systems in single-degree-of-freedom (SDOF) structures to 

determine the minimum brace stiffness or the minimum damping coefficient to achieve a target damping 

ratio of the system. Chen and Chai [17] have conducted an in-depth research focusing on the effects of 

supporting brace on the effectiveness of linear FVDs and the overall structural performance. To investigate 

the behavior of damper-brace systems with nonlinear elements, Lu et al. [18] proposed a Generalized 

Maxwell Model, in which the linear stiffness and damping elements are replaced by the nonlinear ones. 

Despite the research work conducted mentioned above, a thorough study about the effect of brace stiffness 

on the performance of nonlinear FVDs has not been carried out.  

Performance-based design has been widely recognized as an ideal framework for seismic design; in 

this design philosophy, the design criteria are set based on achieving specified performance objectives. 

Following the concept of performance-based design, the improved performance can be examined in terms of 

response reduction, e.g. displacement, acceleration, base shear and inter-story drift. For buildings with 

supplemental braces and nonlinear dampers, a response reduction can be achieved by a suitable and strategic 

combination of brace stiffness, damping coefficient and velocity exponent of the damper-brace systems, 

rather than relying on dampers alone as conventionally been done. In this paper, a procedure to design a 

shear building with Maxwell model-based nonlinear damper-brace systems for satisfying a certain 

performance level is proposed; the effects of different design parameters on the structural performance, 

especially the brace stiffness and the nonlinear velocity exponent of FVD, are analyzed and summarized. 

2. Analytic model for a SDOF structure with a nonlinear damper-brace system

Fig. 2 – (a) Analytical model of a single-story structure with a nonlinear FVD (b) Maxwell model under a 

external load fd(t) 

A SDOF structure with a supplementary nonlinear viscous damper installed on top of a Chevron brace, as 

shown in Fig. 2(a), is investigated in this section. The serial arrangement of the nonlinear FVD and the brace 
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can be represented by the Maxwell model, as shown in Fig. 2(b). Equation of motion of the SDOF structure 

under earthquake excitations can be described as: 

 ( ) ( ) ( ) ( ) ( )s s s s s s d s gm x t c t k x t f t m tx x+ + + = −ɺɺ ɺ ɺɺ  (2) 

where ms, cs, ks and xs(t) are the mass, damping coefficient, lateral stiffness and horizontal displacement of 

the structure, respectively, fd(t) is the force provided by the supplementary damper-brace system and ẍg(t) is 

the ground acceleration in the horizontal direction. Since the nonlinear damper and the Chevron brace are 

connected in series, the damping force in the damper and the restoring force in the brace will be the same. 

The damping force obeys a nonlinear power law and the restoring force obeys Hooke’s law:  

 ( ) g( ) ( ) ( ))s n(d b b d d df kt tc tt
ν

= ∆ = ∆ ∆ɺ ɺ  (3) 

where kb and ∆b(t) are the horizontal stiffness and deformation of the brace, respectively, cd and ( )d t∆ɺ are the 

damping coefficient and deformation rate of the damper, respectively, v is the exponential of the damper 

velocity ( )d t∆ɺ  and the signum function sgn(•) is defined as: 

 

1 0

sgn( ) 0 0

1 0

        for  x

x         for  x

      for  x

>
= =
− <

 (4) 

In the Maxwell model shown in Fig. 2(b), the kinematic conditions of the nonlinear damper-brace system 

can be described as: 

 ( ) ( ) ( )d bt t t∆ = ∆ + ∆  (5) 

and 

 ( ) ( ) ( )d bt t t∆ = ∆ + ∆ɺ ɺ ɺ  (6) 

where ∆(t) is the total deformation of the nonlinear damper-brace system.  

The following Sections 2.1 and 2.2 will first explain the proposed time-stepping method for calculating the 

dynamic response of the SDOF structure in Fig. 2(a), followed by expanding the method to simulate the 

discrete-time state force fd [k] of the nonlinear damper-brace system. 

2.1 Dynamic response of the structure-brace-damper model 

The equation of motion in Eq. (2) can be expressed by a first-order differential equation: 

 ( ) ( ) ( ) ( )d gt t f t x t* * *
z A z B E= + + ɺɺɺ  (7) 

where 
( )

( )
( )

s

s

x t
t

x t
z

 
=  
 ɺ

 is the response vector of the damper-brace system, 
1 1

0 1

s s s sm k m c

*
A − −

 
=  − − 

 is the 

system matrix, 
1

0

sm

*
B −

 
=  − 

 and 
0

1

*
E

 
=  − 

 are, respectively, the distribution vectors of damper force fd(t) 

and ground acceleration ẍg(t). 

Eq. (7) is the state space model in time domain. The structural response can be further expressed as a 

discrete-time state function for two consecutive sampling points k and k + 1, as: 

 [ 1] [ ] [ ] [ ] [ 1]d g gk k f k x k x ke e 0 1z A z B E E+ = + + + +ɺɺ ɺɺ  (8) 

where: 
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te
*A

eA
∆= is the discrete system matrix; 

( )1 * *

e eB A A I B
−

= − is the instant discrete force distribution matrix; 

( )1 2 *1 

t

* *

0 e eE A A A I A E
− − = + − ∆ 

is an instant discrete external disturbance matrix; 

( )1 21

t

* * *

1 eE A A A I E
− − = − + − ∆ 

is an instant discrete external disturbance matrix; 

Δt is the sampling period. 

It should be noted that in the interval between two consecutive sampling instants, it is assumed that the 

damper force is piecewise constant, while the external ground acceleration varies linearly in each time step. 

2.2 Force in nonlinear damper-brace system 

If the damper force fd [k] is known as a prior, the system’s response can be found by Eq. (8); hence, to obtain 

the damper force, Eq. (3) may be written as: 

1

1

( ) ( )b
d b

d

k
t t

c

ν
ν

 
∆ = ∆ 

 

ɺ (9) 

For a SDOF structure with a damper supported by a Chevron brace shown in Fig. 2(a), the lateral story 

velocity of the structure is equal to the total deformation rate of the supplementary system, hence Eq. (6) 

becomes: 

( ) ( ) ( )s d bx t t t= ∆ + ∆ɺ ɺɺ  (10) 

Eq. (10) shows that the relative story velocity of the structure to the ground equals sum of the deformation 

rates of the damper and the brace. Substitute the expression of ( )d t∆ɺ  from Eq. (10) in Eq. (9) yields: 

( ) ( ) ( ) ( )b b st A t t x t∆ = ∆ +ɺ ɺ (11) 

where A(t) changes with the deformation of Chevron brace Δb(t): 

1

1
1

( ) ( )b
b

d

k
A t t

c

ν
ν
 − 
 

 
= − ∆ 

 
(12) 

Since total deformation rate of the nonlinear damper-brace system across the entire time period is not listed 

in advance, namely, ẋs[k + 1] is unknown in step [k], it is assumed that the coefficient A(t) and the 

deformation rate ẋs(t) are piecewise constants between two consecutive sampling instants: 

( ) ( )
( 1)

( ) ( )s s

A A k t
 for k t k t

x x k t

τ
τ

τ
= ∆

∆ < < + ∆ = ∆ ɺ ɺ
(13) 

Take Laplace transform of Eq. (11) yields: 

( )0( ) ( ) ( ) ( )b b ss G s t G s x s∆ = ∆ + ɺ (14) 

where G(s) = [s – A(s)]−1. Take inverse Laplace Transformation of Eq. (14) and substitute Eq. (13) in the 

solution, the discrete-time state equation of the brace deformation ∆b can be expressed as:  

( )1[ 1] [ ] [ ] [ ] [ ] 1 [ ]b d b d sk A k k A k A k x k−∆ + = ∆ + − ɺ  (15) 
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where 
11 ( 1)

[ ] ( / ) [ ]b d bA k k c k νν
−= − ∆ and [ ][ ] A k t

dA k e ∆= .  

The nonlinear damper and brace force at the sampling instant [k + 1] can then be calculated by substituting 

the brace deformation ∆b[k + 1] in Eq. (15) into Eq. (3): 

 ( )1[ 1] [ 1] [ ] [ ] [ ] [ ] 1 [ ]d b b b d b d sf k k k k A k k A k A k x k−  + = ∆ + = ∆ + − ɺ  (16) 

The damper force fd[k] in Eq. (8) can be calculate using Eq. (16). It should be noted that, before an 

earthquake, the structure should be initially at rest, i.e. z[1] = [0   0]T, thus there is no deformation of the 

damper-brace system. The damper force at the first sampling point, fd[1], is therefore zero.  

3. Performance assessment  

To evaluate the structural performance, different performance indices, such as interstory drift and base shear 

force, may be defined first and subsequently used. The response reduction of the structure before and after 

installing the damper-brace systems can therefore be calculated by comparing its performance indices with 

the indices of the original structure without additional damping devices.  

3.1 Minimization of interstory drift 

In order to define the response parameter in terms of interstory drift, the average of root-mean-square (rms) 

of the interstory drift of the structure is used as the first performance index: 

 ( )
1

1
D

n

i

i

PI rms      for n-story structures
n

δ
=

=   (17) 

where δi = xi – xi−1 is the interstory drift of the i-th story in a MDOF structure, and δ1 = x1 for the 1st floor.  

To calculate the response reduction of the structure with nonlinear damper-brace systems, a response 

reduction index RRD is adopted with the following form: 

 
,

1 100(%) D

D org

D

PI
RR

PI

 
= − ×  
 

 (18) 

where PID,org is the interstory drift performance index of the original structure without the damper-brace 

system.  

RRD represents the percentage of the rms value of interstory drift that has been reduced by the supplementary 

damper systems, and a large response reduction index represents a more effective design of the systems. In 

addition, a stiffness ratio of the brace α and a damping ratio of the nonlinear damper β relative to that of the 

structure are defined to relate the design parameters of the damper-brace systems to the structural properties:  

 ,
2

b d

s s s

k c

k m
α β

ω
≡ ≡  (19) 

where /s s sk mω = is the natural circular frequency of the structure.  

The SDOF structure, as shown in Fig. 2(a), is first investigated in this section to evaluate the effects of 

different deign parameters on the dynamic performance of the structure. The natural period Ts, story mass ms 

and story stiffness ks of the structure are 1 second, 2533 kg and 100 kN/m, respectively. The inherent 

damping ratio is set as 2%, and the external excitation used is a zero-mean white noise ground acceleration. 

The maximum (or optimal) response reduction RRD,opt and the corresponding optimal damping ratio βD,opt 

against the brace stiffness ratio α are computed by the proposed time-stepping method for velocity exponents 

v equals 0.4, 0.5, 0.6, 0.8 and 1.0, as shown in Fig. 3 below: 
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Fig. 3 – (a) Maximum response reduction RRD,opt and (b) corresponding optimal damping ratio βD,opt versus 

brace stiffness ratio α for SDOF structure under white noise 

It can be seen from Fig. 3(a) that, the maximum response reduction of interstory drift increases rapidly 

with increasing brace stiffness when stiffness ratio α is less than 1, which means that this optimal response 

reduction is highly sensitive to the brace stiffness when the stiffness ratio is small, and a slight increase in 

brace stiffness can improve the optimal performance of the damper significantly. However, when the 

stiffness ratio α is larger than 1, the growth in the maximum response reduction reduces. Moreover, the 

maximum response reduction changes slightly for different velocity exponent ν, which indicates that if there 

is no constraint on damping coefficient, the effect of velocity exponent is insignificant on the optimal 

interstory drift response. It can also be observed from Fig. 3(a) that, when a target response reduction is set, 

there exists a minimum brace stiffness to achieve the desired response reduction. The required optimal 

damping ratios for achieving the maximum interstory drift response reduction against the brace stiffness ratio 

are shown in Fig. 3(b). It can be seen from Fig. 3(b) that, the optimal damping ratios for interstory drift are 

nearly linear with the brace stiffness, regardless of the value of nonlinear velocity exponent. It can also be 

seen from Fig. 3(b) that, compare with linear dampers, a velocity exponent ν less than 1 can reduce a 

considerable amount of the required damping to achieve the optimal performance. For instance, when α 

equals 1, i.e. brace stiffness equals story stiffness, the required damping ratio for the optimal interstory drift 

performance reduces from 0.50 to 0.24 as the velocity exponent ν decreases from 1 to 0.8.  

 
Fig. 4 – Variation of interstory drift response reduction RRD with damping ratio β for different velocity 

exponents v when stiffness ratio α equals 1 

Fig. 4 shows the variation of response reduction of interstory drift with damping ratio β for different 

velocity exponents as stiffness ratio equals the story stiffness. It can be seen from Fig. 4 that, the maximal 

response reduction (peak values of RRD) for all velocity exponents are almost the same. This agrees well 

with the observation from Fig. 3, which shows that the maximum response reduction only changes slightly 

for different nonlinear velocity exponent ν if no constraint on damping coefficient. Fig. 4 also shows that, to 

achieve a certain target response reduction, there exist many possible combinations of design parameters, e.g. 
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when α is equal to 1, the damping ratio β can be 0.04 and 0.19 for v equals 0.5, or 0.09 and 0.68 for v equals 

0.8, or other values that can be read from Fig. 4, to achieve a 60% response reduction. 

3.2 Minimization of base shear 

In addition to the interstory drift performance index, the rms of base shear Vs of the structure may also be 

used as the second performance index: 

 ( )sVPI rms V=  (20) 

The corresponding response reduction for base shear RRV can be expressed as:  

 
,

1 100(%) V
V

V org

PI
RR

PI

 
= − ×  
 

 (21) 

where PIV,org is the base shear performance index of the original structure without the damper-brace system. 

 
Fig. 5 – (a) Maximum response reduction RRV,opt and (b) corresponding optimal damping ratio βV,opt versus 

brace stiffness ratio α for SDOF structure under white noise 

The same SDOF structure used in Section 3.1 is studied for finding the optimal base shear response 

reduction RRV,opt and the corresponding design parameters. The plots of RRV,opt and the optimal damping ratio 

βV,opt versus the brace stiffness ratio α for velocity exponents v equals 0.4, 0.5, 0.6, 0.8 and 1.0 are shown in 

Fig. 5. It can be observed from Fig. 5(a) that, similar to the case for interstory drift, if there is no constraint 

on damping coefficient, the maximum base shear response reduction also shows a sharp increase with brace 

stiffness when the stiffness ratio is smaller than one, and a diminishing return can be found in the large brace 

stiffness region. Moreover, for a given response reduction, similar to the case for interstory drift response 

reduction, there also exists a minimum brace stiffness; and the velocity exponent has very limited effect on 

the maximum base shear performance reduction, as the response reduction curves for different velocity 

exponents are relatively close to each other. It can be seen from Fig. 5(b) that, unlike the interstory drift case, 

the curves are nonlinear, and a smaller damper exponent requires less damping to reach the same 

performance reduction. Furthermore, if the velocity exponent is preset, for a given brace stiffness, there 

exists a unique optimal damping coefficient of the damper. 

4. Analytic model for a MDOF structure with nonlinear damper-brace systems 

The numerical time-stepping method developed in Section 2 for calculating the response history of a SDOF 

structure will now be extended to MDOF structures. The equation of motion of a n-degree-of-freedom 

structure controlled by n nonlinear FVDs installed on Chevron braces can be described as: 

 ( ) ( ) ( ) ( ) ( )gt t t t x t+ + + = −s s s s s s d sM 1C x K x F Mx ɺɺɺɺ ɺ  (22) 

.
2c-0097

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2c-0097 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

 

9 

 

where  

 

,1 ,2

,2 ,3

, 1 ,

,

( ) ( )

( ) ( )

( )

( ) ( )

( )

d d

d d

d n d n

d n

f t f t

f t f t

t

f t f t

f t

−

− 
 − 
 =
 − 
 
 

dF ⋮   (23) 

and fd,i(t) is the force in the nonlinear damper-brace system that installed at i-th floor; if no damper is 

installed, damper force in that floor should be zero. Ms, Cs and Ks are the n × n mass, damping and stiffness 

matrices of the inherent structure, respectively, xs(t) is the n × 1 story displacement vector and 

[ ]1 1= T
1 ⋯ is the n × 1 unit vector. 

The equation of motion can be expressed by a first order differential equation: 

 ( ) ( ) ( ) ( )gt t t x t= + +* * *

dz A z B F E ɺɺɺ  (24) 

where 
( )

( )
( )

t
t

t

 
=  
 

s

s

x
z

xɺ
 is the 2n × 1 response vector, 

1 1− −

 
=  − − 

*

s s s s

0 I
A

M K M C
 is the 2n × 2n system matrix, 

1−

 
=  − 

*

s

0
B

M
 is the 2n × n damper force distribution matrix, 

1−

 
=  
 

*

s

0
E

M E
 is the 2n × n external excitation 

distribution matrix and E = −Ms1. 

The assumptions made in Section 2.1 about damper force and external ground acceleration between two 

consecutive sampling instants are still valid; hence, the discrete time-state function of the structural response 

under a ground acceleration ẍg(t) can be described as:  

 [ 1] [ ] [ ] [ ] [ 1]g gk k k x k x k+ = + + + +e e 0 1dz A z B EF Eɺɺ ɺɺ  (25) 

and the corresponding parameter matrices, namely Ae, Be, E0 and E1, are the same as those listed in Section 

2.1. 

The calculation of the next step structural response z[k + 1] in Eq. (25) requires the damper force in step k to 

be known. The damper force fd,i[k] at i-th floor can be calculated first using Eq. (16), followed by assembling 

the damper force at each floor into Eq. (23) to form the damper force vector Fd[k]. 

5. Numerical example 

The proposed time-stepping method for MDOF structures will now be demonstrated using a 2-story shear-

type building with two supplementary damper-brace systems installed at each floor. The two story building 

structure is the same as that studied by Lavan and Levy [19], and the inherent damping ratio of the structure 

is assumed to be 3% for the two modes of vibration. The fundamental periods of the building are 0.281 and 

0.115 seconds, and the ground acceleration in this example is the same white-noise used in Section 3. The 

mass and stiffness matrices of the building are:  

 
25000 0 62500 25000

(kg)   and   (kN/m)
0 25000 25000 25000

−   
= =   −   

s sM K  (26) 

The proposed method in Section 4 can be used to compute the performance index for interstory drift of 

the structure under the white noise excitation. The corresponding response reduction RRD, can therefore be 

calculated for different design parameters. The objective of this example is to find the combinations of 
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damping coefficients of the nonlinear damper at 1st story cd1 and the damper at 2nd story cd2 to achieve a 

maximal interstory drift response reduction RRD,opt for different brace stiffness ratios and velocity exponents.  

Fig. 6(a) shows the maximum response reduction of interstory drift versus brace stiffness for different 

velocity exponents, while Fig. 6(b) and (c) show respectively the optimal damping coefficients cd1,opt and 

cd2,opt versus the brace stiffness for different velocity exponents. It can be seen from Fig. 6(a) that, curves 

similar to those in Fig. 3(a) for SDOF structure, are observed. The maximum response reduction, if no 

constraint is set on the damping coefficients, increases rapidly at small brace stiffness range; but this increase 

becomes gradual when the brace stiffness is large. It can also be seen from Fig. 6(a) that, the change of 

damper exponent has an indistinctive effect on the optimal interstory drift performance of the 2DOF 

structure. It can be observed from Fig. 6(b) and (c) that, in general, the use of a large brace stiffness requires 

larger damping coefficients, and the use of a small velocity exponent results in smaller optimal damping 

coefficients, for both dampers. To better illustrate the variation of response reduction with two damping 

coefficients, an exhaustive search is also conducted. Fig. 6(d) shows the exhaustive search result of a three-

dimensional plot of response reduction versus two damping coefficients cd1 and cd2 with the velocity 

exponent equals 0.5 and the brace stiffness equals the first story stiffness. It can be seen from the Fig. 6(d) 

that, for a give brace stiffness and a nonlinear velocity exponent, there exists a maximum response reduction 

in interstory drift, and the two corresponding damping coefficients are the optimal ones for the two dampers. 

 

Fig. 6 – (a) Maximum response reduction versus brace stiffness ratio; (b) optimal damping coefficient of the 

damper at 1st story versus brace stiffness ratio; (c) optimal damping coefficient of the damper at 2nd story 

versus brace stiffness ratio; (d) Response reduction versus two damping coefficients (α = 1, ν = 0.5) 

(d) 
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6. Conclusion 

In this paper, a procedure to design a shear-type building with braces and nonlinear fluid viscous dampers for 

achieving a target performance is proposed. A numerical time-stepping method to obtain the dynamic 

response of a SDOF structure with a nonlinear damper-brace system subjected to external excitations is first 

developed. Two performance indices, namely interstory drift and base shear force, are defined as the basis 

for the optimization of structural response. Optimal design parameters of the nonlinear damper and brace for 

achieving a maximal structural response reduction can then be found. Effects of different design parameters 

on the overall performance of a SDOF structure with a damper-brace assembly are also investigated. The 

results indicate that, there exist many combinations of design parameters for the nonlinear damper-brace 

system to reach a set performance objective; however, if no constraint is set on the damping coefficient of 

the damper, there exists a minimum brace stiffness for the system to achieve the desired structural 

performance. Moreover, once the velocity exponent of the damper is preset, for a given brace stiffness, the 

optimal damping coefficients can be uniquely determined. For the design of supporting braces, results show 

that, when the stiffness is less than the story stiffness, a small increase in brace stiffness can improve the 

optimal performance of dampers as well as the optimal structural performance significantly; however, when 

the stiffness is larger than the story stiffness, the increase in brace stiffness has limited impact on the 

maximum structural response reduction. Results also indicate that, the use of a nonlinear damper with a 

velocity exponent less than 1 can save a considerable amount of damping originally required by a linear 

damper to achieve a similar structural performance. The proposed procedure is easily extendable to 

multistory structures with multiple nonlinear damper-brace systems, as has been shown in the case study of a 

2-story shear building. 
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