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Abstract 
Damage to steel structure is caused not only by earthquake events or heavy impacts, but also by dead and live loads as 
the structure gets older. Joint damage may include fatigue cracks between bolt holes, bolt failure, and plastic 
deformation of a joint component. These damages to joints degrade the performance of the joint, affects the 
performance of the structure and changes dynamic characteristic of the structures. The purpose of this study is to 
develop the data-intensive damage model by the neural networks using the changed dynamic characteristic data of the 
damaged structure and to evaluate seismic behaviors of the steel moment frame with data-intensive damage model. First, 
the dynamic characteristic data of the building trial model was extracted according to damage scenario of the joints. 
Damage parameters according to damage scenario types were selected as training data of neural network systems.  
Second, through the neural networks the relationship between dynamic characteristics of structure and damage 
parameter of the joint such as degrading of stiffness, strength and pinching effects was trained. 90 percent of the data 
was classified as training data and 10 percent as verification data, and neural network training was conducted. Last, the 
damage parameters of the joint model were derived from dynamic characteristic data measured from the target structure 
using trained neural network system. Data-intensive damage model of beam-column joints was developed using damage 
parameters. The seismic behavior of steel moment frames applying the data-intensive damage models to the beam-
column joints was evaluated. As a result of verifying the accuracy of the trained data-intensive model through random 
input values (dynamic characteristic data), the error of output data (damage parameter) was under 1%. There is no 
significant different between seismic performance assessment results of real structure model (reference model) and 
structure model using data-intensive damage model. If this study is continued, it is expected that the structural 
performance of the damaged building by the mainshock can be easily identified using dynamic characteristic data 
measured with measuring equipment such as acceleration sensors. In addition, by determining the structural 
performance of structural members in real time, it will be used as a decision-making tool for aftershock events or 
additional damage. 
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1. Introduction 
Structural elements inside bridges and building structures provide withstanding forces to external loads like 
earthquakes, typhoons, traffic and gravity throughout the whole building lifecycle. These elements’ 
performances may be damaged and decay over time. Such damage might result in building collapse 
including casualties and property loss In case of natural disasters like earthquakes, old and deteriorated 
structures might be damaged much more than expected. To accurately measure building’s structural 
performance and to collect data necessary for maintenance operations, regular safety inspection is required. 
For a frame structured building’s characteristic action, the importance of joint is greater that it is highly 
important to reasonably assess the condition of joints. Evaluating the health of joint is also important within 
seismic evaluation and calculation of numerical analysis model. There are preceding research on how to 
specify the location of damaged joints by detecting notches and damages[1], research about substituting 
joint’s contribution factor to equivalent beam elements[2], and using semi-rigid connected beam elements to 
assume joint stiffness plus experimental evaluation to predict rotational stiffness[3]. However, existing 
research does not accurately deal with joint’s rotational stiffness which can vary from 0 on pins to infinite on 
rigid links, making it difficult to apply on real world. Other research on real-time health monitoring using 
wired/wireless measurement system is  also on the way. [4, 5]  

Measurement system include deformation sensors to monitor major structural element’s safety as well as 
acceleration sensors to acknowledge building’s serviceability. Structure’s reaction magnitude varies from 
different conditions of load time and space, which means safety and damage evaluation based on peak values 
without analyzing observation data is insufficient. Therefore, dynamic characteristics like natural frequency 
and mode shape are widely used to predict a structure’s damage. [6,7,8,9] Such dynamic characteristics are 
natural characteristics, which do not change regardless of external load’s time and spatial property but only 
depend on structure’s stiffness and mass showing no difference if undamaged, but changes when damaged 
Normally damage occur when exceeding external loads like earthquake situation, or because of natural aging 
deterioration over a long time. Structural damage is defined as reduction of resisting performance to external 
forces, which can also be defined as degradation of stiffness of structural elements. When stiffness 
degradation occurs, deformation and natural period of building increase. Therefore, by using acceleration 
response data to analyze dynamic characteristic, it is possible to determine a structure’s damage. 
Accelerometer is a convenient and reliable sensor that can be used to collect building acceleration response 
data Installing these accelerometers to several stories to collect acceleration response data to acquire natural 
frequency and mode shape. While these data are useful in representation of system level characteristics, 
determination of individual element’s current status is limited. In order to overcome such limitations, various 
new techniques are introduced using index changes such as curvature mode-shape and flexibility to predict 
the location and size of damage inside a structure. [10,11,12,13]  

The more sensors installed, the more channel of data acquired to increase the accuracy and reliability of 
damage evaluation. However, more sensors mean more cost and difficulties of maintenance and operation, 
limiting the number of sensors installed. [14, 15] To acquire indexes such as modal flexibility and 
MSE(Modal Stain Energy), plentiful data from different channels of sensors are necessary. But previous 
buildings with no sensors or less sensors are difficult to analyze. In case of mode-shape and natural 
frequency, less number sensors are sufficient to operate FFT(Fast Fourier Transform) and modal analysis 
compared to calculation of Modal flexibility and MSE.[16,17] 

 In this research, easily acquirable natural frequency and modal data are introduced to ANN(Artificial Neural 
Network) data-intensive damage model of a steel moment frame joint. Then analyze the effect and 
correlation of rotational stiffness to dynamic characteristics(natural frequency, mode-shape). Structure’s 
dynamic characteristics are input layers of data, while beam-column joint rotational stiffness is result layer 
data. Damage index represents the degree of structural damage. Numerical analysis of 3 stories 4bay steel 
moment frame example is performed to train ANN and verify the result data. Validification of example will 
be presented to compare ANN method’s damage location and grade prediction accuracy. 
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2. Artificial Neural Network 

 
Figure 1 Organization of Artificial Neural Network(ANN) 

As shown in Fig. 1, the artificial neural network is composed of input layer, hidden layer and output layer. In 
the input layer, values are input as many as the number of nodes constituting the input layer. For notice, there 
are four nodes which make up the input layer shown in Fig. 1. Each input value is changed through linear 
combination by using weights, and delivered to each node forming the hidden layer. This delivered value is 
the input to the active function located in the hidden layer. There are various kinds of active functions such 
as step function, sigmoid function, and ReLU function. The output value of the active function is multiplied 
again by the weights and summed with the output values of the other nodes in the hidden layer and delivered 
to the nodes of the output layer. The value of each node in the output layer means the output value. The data 
collected in advance (input and output) are used as learning data to determine the weight value in the 
artificial neural network.  

The data collected in advance (input and output) means a kind of (input and correct answer) relationship, and 
when the same data is input to the artificial neural network, the weight value is determined. The neural 
network generated through this learning process can be used for predict the correct value by passing the input 
value to the neural network in a situation where knows the input value but the correct value is not known. 
Artificial neural networks are widely used for various purposes such as design, system identification, damage 
assessment and earthquake prediction in various engineering fields such as architecture, civil engineering, etc. 
[18, 19, 20, 21] 

3. Data-intensive damage model of steel moment frames 

The joint of the steel moment frame is modeled as a rigid connection and a pin connection in the structural 
analysis, but the actual joint behavior is semi-rigid connection. The deformation of the joint can be classified 
into three types: bending deformation, shear deformation, and axial deformation. Among these three 
deformations, particularly, bending deformation can have a big influence in the analysis and design of steel 
structures. Damage to the steel structure occurs frequently at the joints and the damage can be defined as a 
deterioration in rotational stiffness of the joints. For this purpose, a plastic hinge model including the 
rotational stiffness of the joint is presented, and a damage model considering the damaged rotational stiffness 
is presented. 

 

3.1 Plastic hinge model for connections (FEMA 356) 
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Plastic hinges for steel members are defined in FEMA 356. Fig. 2 shows the plastic hinge characteristics of 
the steel member. It is usually modeled as four straight lines, defining the absolute value of the deformation. 
The stiffness of the strain hardening section is 3% of the elastic section, but if it is proved by the experiment, 
a larger value can be used. The parameter Q in Fig. 1 is the load and expected strength of each generalized 
component. Yield strength for each member can be estimated using the average material strength. QCE is 
yield strength for each member and it can be calculated using the average material strength. For beams and 
columns, θ is the total angle of rotation and θy is the angle of rotation at the yield point. In the yield rotation 
angle equation, 6EI / l (E modulus of elasticity, I cross-sectional moment, length of l member) means the 
stiffness of the rotating spring. Therefore, the yield rotation angle of the joint is defined as the yield moment 
divided by the rotational stiffness of the member. 

 
Figure 2 Plastic hinge model in FEMA 356 

 

Beam : QCE = MCE = Z×Fye (1) 

Column : QCE = MCE = 1.18×Z×Fye×(1-P/Pye) ≤ Z×Fye (2) 

Beam hinge : θy = Z×Fye× (Lb/6×E×Ib) = Z×Fye/Kbr (3) 

Column hinge : θy = Z×Fye× (1-P/Pye) *(Lc/6×E×Ic) = Z×Fye*(1-P/Pye)/Kcr (4) 

dc = Column depth, E = Modulus of elasticity, fye = Expected yield strength of the material 
I = Moment of inertia, Lb = Beam length, Lc = Column length, MCE = Expected flexural strength 
P = Axial force in the member at the target displacement for nonlinear static analyses, or at the instant of 
computation for nonlinear dynamic analyses. For linear analyses, P shall be taken as QUF 
QUF = Force-controlled design action due to gravity loads in combination with earthquake loads 
Pye = Expected axial yield force of the member = Ag×Fye 
Q = Generalized component load, QCE = Generalized component expected strength, θ = Chord rotation 
θy = Yield rotation, Z = Plastic section modulus 
Modeling parameters of plastic hinge for each member are calculated by referring to FEMA356 Table 5-6, 
and the stiffness of the deformation hardening section is determined to be 3% of the elastic section stiffness. 
Thereby, the maximum strength of the member can be calculated. The plastic hinge can be defined using the 
yield rotation angle, the yield strength, the maximum strength, and the modeling parameters calculated 
according to the section and member force for each member. 

 

3.2 Connection damage model using artificial neural networks 
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In this study, we propose a data-intensive damage model that can estimate the degree of damage of rotational 
stiffness using Backpropagation Algorithm (BP). The data-intensive damage model proposed in this study 
selected steel structures as target buildings. The collapse mechanism of the steel structure is assumed to be 
the beam-hinge collapse mechanism in which hinges occur at points and beams.  Through this collapse 
mechanism, we modeled the hinge model of the boundary and beam joints. The natural frequency and mode 
vector of the structure were used as input data, and the damage degree of the joint was used as output data. In 
order to propose a data-intensive damage model, dynamic data is needed according to the stiffness 
deterioration of the structure. The methodology for extracting these training data is shown in Fig.3. In order 
to extract the dynamic data, a stiffness deterioration scenario of each joint was created. Stiffness 
deterioration of the joint was defined as Damage Factor (DF) as shown in Eq. (5). DF of 1.0 means no 
damage to the joints, and DF of 0.8 means a 20% reduction in the rigidity of the rotating springs. The 
deteriorated rotational stiffness values are substituted for Kbr and Kcr in equations (3) and (4) and applied to 
the plastic hinge model. After applying the joint plastic hinge constructed according to the damage scenario, 
the natural frequency and mode shape of the structure were extracted by eigenvalue analysis. Since the 
damage of the structure is assumed to be the damage of the joints, the columns and beam members use 
elastic members, and the stiffness and strength effects of the panel zone are not considered. Rotational 
stiffness deterioration (DF) and dynamic characteristics data (natural frequency, mode shape) according to 
the damage scenario of each joint are organized as data for training the artificial neural network. The hidden 
layer activity function of the artificial neural network uses the sigmoid function. 90% of the damage 
scenarios are used to train and validate the neural network, and the rest of 10% are used to assess the 
accuracy of the damage prediction. 

Damage rotational stiffness = Damage Factor(DF)  × Pre-Damage rotation stiffness                  (4) 

 

 
Figure 3 Methodlogy of data-intensive damage model 
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4. Application of data-intensive damage model in steel moment frame 

4.1 Example description 

In order to prove the proposed technique, the 3 stories 4bay steel moment frame structure in Fig. 4 is 
analyzed in the same methodology. And the target building is Pre-Northridge Seattle 3-story model.[22] This 
research has selected a 3 stories 4bay 2dimension model to consider the effect of stiffness degradation. Fig. 4 
is a elevation of selected 2D-model. Table 1 is the material properties of structure and Table 2 provides each 
beam and column section properties. Columns and beams are made of same material. In this research, 
damage is only assumed to occur at joints and nonlinear behavior of elements are modeled using FEMA 
plastic-hinge and linear material. According to the details written in [A. Gupta, H. Krawinkler, Seismic 
Demands for Performance Evaluation of Steel Moment Resisting Frame Structure, (1999)], floor load 
generated from earthquake has effective roof mass 70.9 kips-sec2/ft while 2nd and 3rd story’s effective mass 
is 65.53 kips-sec2/ft each. This is the 3D model’s effective mass, therefore needs to convert masses suitable 
for research’s 2D structure model. Considering the 3D model’s number of nodes, left and right edge side 
nodes of roof are assigned to be 1.48 kips-sec2/ft each, while other nodes are double the size of end nodes by 
2.96 kips-sec2/ft. In the same manner, edge side nodes of 2nd and 3rd story are assigned 1.37 kips-sec2/ft, 
while other nodes are 2.74 kips-sec2/ft. 1st mode natural period of structure was calculated 1.67 seconds in 
OpenSees modeling, 1.63 in ZEUS-NL.  

 

Figure 4 Pre-northridge Seattle 2-dementional model 

 

Table 1 Material properties 

Code  Grade 
Modulus of 

Elasticity (ksi) 
Poisson’s 
Ratio (%)  

Hardening 
Ratio (%) 

Tensile Strength 
(ksi) 

Yield Strength 
(ksi) 

ASTM A572-50 29000 0.3 0.05 65 50 

 

Table 2 Section properties 

Section 1C1 2C1 2C2 B1 B2 

Shape W14X159 W10X77 W10X60 W16X26 W14X22 
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Pushover analysis is processed to extract pre-damage plastic hinge model of structure According to 
FEMA356, each element nonlinear modeling is required to perform pushover analysis because it gradually 
increases earthquake load while considering element level yield and load distribution of nonlinear behavior. 
However, element’s nonlinear behavior varies not only from boundary conditions, but also shear force and 
axial force. The purpose of pushover analysis is to check the status of element at performance point so that 
plastic hinge model of joints are modeled for axial & shear force at the performance point. Fig. 5 is the 
plastic hinge behavior graph according to the considered damage scenario. In this structure model, total 17 
damage factors are used. Torsion spring hinges on the same story and same bay are linked with same damage 
factor. Roof joints are rarely damaged by earthquake loads so it is excluded, considering ground level, 1st 
story, 2nd story damage scenarios, while output layer is set with 13 nodes to plot each damage factors. In 
order to train ANN and to evaluate the accuracy of damage prediction, total 313 damage scenarios are 
considered. All torsion spring hinges may have damage factor of 1.0, 0.8, 0.6 and 313 analysis were taken. 
Then the result is sorted to be input layer data and output layer data. 

 
Figure 5 Pre-damage and damage plastic hinge model of connection 

 

4.2 Verification of data-intensive damage model  

The artificial neural network is trained using the simulation data of the example structure shown in Fig. 4 and 
the joint damage prediction is shown in Fig. 6 which is the joint number. Joint 0-1 0-5 means column hinges, 
joint 1-1 1-4 are the hinges of 1st story. And joint 2-1 ~ 2-4 means the hinge of the 2nd story. In order to 
verify the trained data-intensive model, the natural frequencies and mode shapes for arbitrary damage 
scenarios were defined as input values, and the output values from the neural network model were derived. 
The Estimate DF of Fig. 6 is the degree of damage derived from the data-intensive model, and the Reference 
DF is the correct answer for the derived degree of damage. From the results of Fig. 6, it was found that the 
damage degree was well understood in all parts except the joint number 1-1. In the joint number 1-1, the DF 
was found to have about 10% error. 
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Figure 6 Comparison damage factor between reference & estimated value 

 

4.3 Seismic behavior of steel moment frame with data-intensive damage model 

In this section, the behavior of steel moment frame with data-intensive damage model and steel moment 
frame with pre-damage model was reviewed. Earthquake data were taken from the Northridge earthquake 
recorded at Beverley Hills. Fig. 7 (a) shows the inner story drift ratio graph of two frames. In both frames, 
the maximum story drift ratio was recorded on the second story. In the case of the frame with the data-
intensive model, the story drift ratio was higher than the frame with the pre-damage model. Figs. 7 (b), (c) 
and (d) show the joint behavior at positions 1-1, 2-1 and 3-1. In the case of the example building, the data-
intensive damage model shows that the larger displacement moves when the joint behavior data of each story 
is checked. In Fig. 7 (b), the pre-damage model shows nearly linear behavior. On the other hand, the data-
intensive model can identify the nonlinear interval more clearly than the pre-damage model. Fig. 7 (c) and 
(d) also show that the nonlinear behavior is larger for the data-intensive model. This reduction in rotational 
stiffness has a great effect on the behavior of the structure.  

 
Figure 7 Inter-story drift & Hysteretic behaviors of connections 
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Fig. 8 is a graph evaluating the seismic performance of the steel moment frame to which the data-intensive 
damage model is applied and the steel moment frame to which the pre-damage model is applied. Fig. 8 (a) is 
the probability that the inter-story displacement ratio exceeds 2.5% (LS level), and (b) is the probability that 
the inter-story displacement ratio exceeds 5% (CP level). About exceeding inter-story ratio 2.5%(LS level), 
in 0.8g PGA(Peak Ground Acceleration) from kobe 1995, the probability of data-intensive model and 
predamage model exceeding LS level is 86.5%, and 66.4%.Seismic performance of data-intensive model in 
0.8g PGA is more accurate than that of predamage model about 20% of exceeding LS level. About 
exceeding inter-story ratio 5%(CP level), in 0.8g PGA(Peak Ground Acceleration) from kobe 1995, the 
probability of data-intensive model and predamage model exceeding CP level is 26.1% and 8.6%. Seismic 
performance of of data-intensive model in 0.8g PGA is more accurate than that of predamage model about 
16% of exceeding CP level 

 
Figure 8 Results of seismic performance assessment 

 

5. Conclusion 

This study proposes a technique to predict the joint damage of steel moment frames using artificial neural 
networks. We trained the artificial neural network and to determine the accuracy of the damage prediction, 
317 damage scenarios were considered. The natural period and mode shape information of the structure are 
used for the input layer of the artificial neural network, and the rotational stiffness damage index of the 
structure joint is used for the output layer. The plastic hinge model of the joint of FEMA 356 was used, and a 
data-intensive damage model with rotational stiffness reduction was proposed. As a result of verifying the 
example of the three-story 4-span steel moment frame, the damage of each location can be predicted with a 
reliable level. The seismic behavior and seismic performance of structures with data-intensive damage model 
and pre-damage model were evaluated. Structures using the data-intensive damage model recorded larger 
inter-story drift ratio for the same earthquake (Northridge N-S record), with larger strains at the joint of all 
layers.The seismic performance of the data-intensive damage model can be obtained more accurately about 
20% on LS damage level and 16% on CP damage level compared with the case where the connection model 
is assumed to be pre-damage model. Adjusting data-intensive damage model has a great effect on the 
behavior of the structure. Therefore, it is need to be considered when evaluating the seismic performance of 
existing buildings or identifying structural performance. 
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