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Abstract 

Seismic fragility is quantitatively expressed as the conditional probability that a structure will reach or exceed a specified 

level of damage (or damage state, DS) for a given value of a considered earthquake-induced ground-motion intensity 

measure (IM). Only limited/poor-quality historical damage/loss data, often associated to heterogeneous seismic regions, 

are generally available; hence, numerical (or simulation-based) fragility represents an attractive option in many practical 

risk-assessment applications. The numerical derivation of fragility curves requires a complex trade-off between the 

desired accuracy, the explicit consideration of uncertainties (both epistemic and aleatory) related to the numerical model, 

and the available computational performance. When high-performance computing is not available, simplified models are 

adopted and/or epistemic uncertainties related to the model variables neglected. The use of simplified models may lead 

to biased results, particularly when collapse fragility is of interest. In addition, quantifying the impact of modelling 

uncertainties on the seismic fragility results is a crucial issue for existing buildings, considering the limited available 

information in terms of material properties, structural detailing and the uncertainty in the considered capacity models.  

This study presents a Bayesian framework for the derivation of numerical fragility curves based on multi-fidelity models, 

that can be thought as a modification of the well-known robust fragility framework. Different model classes, each 

characterised by an increasing refinement level, are used to surrogate fragility model parameters through the general 

Polynomial Chaos Expansion (gPCE) technique. Each analysis result is considered as a “new observation” in the Bayesian 

framework and used to update the gPCE coefficients. These latter are finally recombined considering the different degree 

of accuracy of each model class. The proposed approach allows a significant reduction of the computational burden while 

achieving a desired accuracy of the fragility estimates and without neglecting epistemic uncertainties. 

The proposed procedure is demonstrated for an archetype reinforced concrete (RC) frame for which three model classes 

are provided. The lowest refinement level is based on the Simple Lateral Mechanism Analysis (SLaMA), which is a 

mechanics-based, analytical method. Whereas, the medium and the highest refinement levels are based on highly-refined 

numerical models simulated through non-linear static and dynamic analyses, respectively. Fragility curves are derived 

through a cloud-based approach employing unscaled real (i.e. recorded) ground motions and using the capacity spectrum 

method for SLaMA and non-linear static analysis. The fragility curves derived with the proposed procedure are compared 

with those calculated by using only the most refined model class, showing the good performance of the proposed 

approach.  

Keywords: Bayesian Updating; Robust Fragility curves; SLaMA; general Polynomial Chaos Expansion 

1. Introduction 

The assessment of the structural fragility of buildings is a fundamental step in the modern performance-based 

earthquake engineering [1] and probabilistic seismic risk assessment. When only limited/poor-quality 

historical damage/loss data, often associated to heterogeneous seismic regions, are available, the derivation of 

numerical (or simulation-based) fragility curves is an attractive option in many practical risk-assessment 
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applications. The numerical derivation of fragility curves requires a complex trade-off between the desired 

accuracy, the explicit consideration of uncertainties (both epistemic and aleatory) related to the numerical 

model, and the available computational performance. In particular, when high-performance computing is not 

available, simplified models are adopted and/or epistemic uncertainties related to the model variables 

neglected. The use of simplified models may lead to biased results, particularly when collapse fragility is of 

interest. In addition, quantifying the impact of modelling uncertainties on the seismic fragility assessment is a 

crucial issue for existing buildings, considering the limited available information in terms of material 

properties, structural detailing and the uncertainty in the considered capacity models [2]. 

Sampling-based approaches (e.g., plain Monte Carlo, Latin Hypercube Sampling) are the simplest way to 

derive seismic fragility curves considering both aleatory (i.e., record-to-record variability) and epistemic 

uncertainties (i.e., related to model parameters). In addition, several numerical approaches have been proposed 

in the scientific literature to reduce the computational burden required in the fragility curve derivation. Most 

of these approaches combine non-linear dynamic analysis (NLDA) procedures based on recorded ground 

motions (e.g., incremental dynamic analysis IDA [3], cloud analysis [4]) with reliability methods, such as first-

order second-moment (FOSM) also referenced as mean value first-order second-moment (MVFOSM; e.g., 

[5]) or response surface methods [6]. Although these methods lead to a reduction of the computational cost for 

the derivation of fragility curves, they often tend to poorly approximate the limit state function for a given 

damage state (DS). In other words, these methods can be characterized by low accuracy when the structure 

under investigation is approaching a DS; this is particularly evident when the collapse DS is considered. The 

accuracy of the calculation can be clearly improved by increasing the number of samples or by applying more 

advanced computational strategies (e.g., subset simulation, importance sampling [7]). 

An alternative way of dealing with fragility curve derivation is to consider the results of structural analyses 

related to a specific suite of ground-motion records and to a set of model parameter realizations as observations 

within a Bayesian framework [8]. In this approach, known as robust fragility [4], the parameters governing the 

fragility model are treated as random variables and updated through the application of the Bayes rule. The 

robust fragility curve method has been successfully applied in conjunction with cloud-based nonlinear dynamic 

analysis [9]. Cloud analysis can also account for the collapse cases (e.g., nonconvergence of the analysis, large 

values of the engineering demand parameter, 𝐸𝐷𝑃) [4]; this is particularly convenient from the computational 

viewpoint and represents a further improvement in this research field. 

This paper presents a Bayesian framework for the derivation of numerical fragility curves based on multi-

fidelity models; the proposed framework can be thought as a modification of the current robust fragility 

approach. The main idea behind the proposed framework is that high accuracy in the estimation of the structural 

performance is especially required in the proximity of the DSs of interest. Therefore, the computational burden 

related to the fragility curve derivation can be reduced by analysing refined models only when the structure is 

approaching the DS (i.e., when it is strictly necessary). Whereas, simplified or less-refined models can be used 

to evaluate the structural performance both in the safety and in the failure region of the probability space far 

enough from the DS thresholds. Different model classes, each characterised by an increasing refinement level, 

are used to surrogate the fragility model parameters through the general Polynomial Chaos Expansion (gPCE) 

technique [10]. Each analysis result is considered as a “new observation” in the Bayesian framework and used 

to update the gPCE coefficients. These latter are finally recombined considering the different degree of 

accuracy of each model class. 

An illustrative application of the proposed framework is finally presented to show its feasibility in practice. In 

particular, three analysis refinement levels are considered for an archetype reinforced concrete (RC) frame 

building. The lowest refinement level is based on the Simple Lateral Mechanism Analysis (SLaMA) approach 

[11], which is a mechanics-based, analytical method allowing one to define the non-linear static force-

displacement capacity and the plastic mechanism of RC structures. The medium and the highest refinement 

levels rely on detailed numerical models studied through non-linear static and dynamic analyses, respectively. 

Fragility curves are derived through a cloud-based approach employing unscaled real (i.e. recorded) ground 

motions and using the capacity spectrum method for both SLaMA and the non-linear static analysis of the 
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refined model. The fragility curves derived with the proposed procedure are compared with those calculated 

by using only the most refined model class and the results of the comparison are critically discussed. 

2. gPCE-based multi-fidelity model for fragility curve derivation 

Given a set of structural analysis results collected in the vector 𝐲 (i.e., the “new observations” in a Bayesian 

scheme), the robust fragility is defined as the expected value of a prescribed fragility model over the posterior 

distribution of the fragility model parameters, it reads as 

𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝐲) = ∫ 𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖

|𝐼𝑀, 𝝌) 𝑓(𝝌|𝐲) 𝑑𝝌
Ω𝝌

=

                                      𝔼𝝌|𝐲[𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝝌)].     (1) 

In Eq. (1), 𝐸𝐷𝑃𝐷𝑆𝑖
 is the 𝐸𝐷𝑃 threshold related to the 𝑖-th DS, 𝐼𝑀 is the intensity measure considered in the 

fragility model, 𝝌  is the vector of the fragility model parameters defined in the space Ω𝝌 , 𝑃(𝐸𝐷𝑃 >

𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝝌) is the fragility function and 𝑓(𝝌|𝐲) is the posterior distribution of 𝝌 conditioned on 𝐲. In this 

context, the fragility model parameters are considered random variables and updated once new analyses 𝐲 are 

available. This leads to the reduction of the computational burden and to the possibility of calculating the 

confidence interval of a given fragility curve [4]. However, Eq. (1) has to be solved numerically (e.g., through 

Monte Carlo simulation), so the computational burden can be still high. 

As mentioned before, the computational cost can be further reduced by using the robust fragility in conjunction 

with the cloud analysis that considers collapse cases [4]. In this case, the set of analysis results 𝐲 is portioned 

into two groups: 1) 𝑁𝑜𝐶 data for which the structure does not experience collapse; 2) 𝐶 data corresponding to 

collapse inducing analysis results. By applying the total probability theorem, the structural fragility for the 𝑖-
th DS can be written as, 

𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝐲) = 𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖

|𝐼𝑀, 𝑁𝑜𝐶) (1 − 𝑃(𝐶|𝐼𝑀)) + 

+𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝐶)𝑃(𝐶|𝐼𝑀).    (2) 

Assuming that 𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝑁𝑜𝐶) is described by a lognormal distribution and that the probability 

of collapse 𝑃(𝐶|𝐼𝑀) can be predicted by a logistic regression model (aka, logit) as a function of 𝐼𝑀, then the 

fragility model 𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝝌) can be written as, 

𝑃(𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀, 𝝌) = Φ (

ln𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶

𝛽𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶

)
exp(−𝛼0−𝛼1 ln 𝐼𝑀)

1+exp(−𝛼0−𝛼1 ln 𝐼𝑀)
+

1

1+exp(−𝛼0−𝛼1 ln 𝐼𝑀)
 (3) 

In Eq. (3), 𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶 and 𝛽𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖

|𝐼𝑀,𝑁𝑜𝐶 are the conditional median and standard deviation of 

the natural logarithm of 𝐸𝐷𝑃 > 𝐸𝐷𝑃𝐷𝑆𝑖
 for the 𝑁𝑜𝐶  portion of 𝐲 , Φ(∙) is a standard normal cumulative 

distribution function, while 𝛼0 and 𝛼1 are the parameters of the logistic regression. The variables of Eq. (3) 

are the fragility model parameters, that is 𝝌 = [ln𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶 , 𝛽𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖

|𝐼𝑀,𝑁𝑜𝐶 , 𝛼0, 𝛼1]. 

In this study, the parameters collected in 𝝌 are surrogated through a multi-fidelity gPCE in order to implement 

in practice the idea of using structural models/analysis types with different refinement levels described in the 

previous section. The gPCE belongs to the family of spectral methods for the propagation of uncertainties 

through deterministic models. In the context of stochastic modelling, this approach relies on orthogonal basis 

functions for the construction of a response surface �̂�𝑃
gPCE

 of the uncertain model output 𝑢(𝛉), assuming that 

the uncertain parameters are collected in 𝛉. Once a reliable gPCE is developed (i.e., gPCE leading to small 

errors), this technique allows one to directly solve the forward problem (i.e., to propagate epistemic 

uncertainties through the deterministic model, thus determining the output statistics) as well as performing a 

variance-based sensitivity analysis without any additional computational cost. The resulting response surface 
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can be also used to surrogate the model output in optimization or reliability problems. The gPCE is an extension 

of the polynomial decomposition (PC, [12]) of 𝑢(𝛉), 

𝑢(𝛉) ≈ �̂�𝑃
gPCE(𝛉) = ∑ 𝒖𝐢 𝚽𝐢(𝛉)|𝐢|≤𝑃 .     (4) 

where, 𝑃 is the degree of the polynomial expansion, 𝐢 is a finite multi-index set, 𝚽𝐢(𝛉) is the matrix of the 

orthogonal basis functions, and 𝒖𝐢 is the matrix of the combination coefficients. The selection of the orthogonal 

basis function family is based on the probability density function (PDF) of the random parameters 𝛉. Whereas, 

the combination coefficient calculation is based on some reference solutions of the deterministic model through 

interpolation, regression or the Bayesian approach [13]. This latter case, the Bayesian interpretation of the 

coefficient calibration, enable the coefficients 𝒖𝐢 of the PCE of 𝝌 to be updated once the analyses collected in 

𝐲 are provided. Eq. (1) is then solved at the gPCE coefficient level, thus massively reducing the computational 

burden. In fact, conjugated Gaussian distributions or approximated hierarchical Laplace distributions can be 

used to solve the updating problem in a closed form or in a numerical way, respectively. It is worth noting that, 

the former approach is cheaper than the second one in terms of computational cost, but the latter promotes the 

sparsity of the basis [13]. 

This framework also enables different model classes to be considered in the fragility curve derivation. Let us 

assume that �̂�𝑃
gPCE,HF(𝛉) is the gPCE of a high-fidelity (HF) model which can be approximated through a 

multi-fidelity model �̂�𝑃
gPCE,MF

(𝛉) composed of 𝑁 model classes with a lower accuracy �̂�𝑃,𝑗
gPCE,LF

(𝛉), that is, 

�̂�𝑃
gPCE,HF

(𝛉)  ≈ �̂�𝑃
gPCE,MF

(𝛉) = ∑ �̂�𝑃,𝑗
gPCE,LF

(𝛉)𝑁
𝑗=1  �̂�𝑃,𝑗

gPCE,AC
(𝛉).    (5) 

where �̂�𝑃,𝑗
gPCE,AC(𝛉) is the 𝑗-th additive correction (AC) factor (i.e., the difference between the 𝑗-th low refined 

structural model and the high-fidelity one). It is easy to prove that if the number of samples used to train the 

gPCE of the various model classes tends to infinite, then Eq. (5) tends to the solution of the high-fidelity model 

[14]. Eq. (5) is then transposed at the gPCE coefficients level to apply the optimal weights recombination 

methods [14], 

𝒖𝐢
MF = ∑ 𝒖𝐢,𝑗

LF𝑁
𝑗=1 + 𝒘𝑗 ∘ (𝒖𝐢

HF − 𝒖𝐢,𝑗
LF).     (6) 

In Eq. (6), ∘ is the Hadamard product, 𝒖𝐢
MF are the gPCE coefficients of the multi fidelity model, while 𝒖𝐢

HF 

and 𝒖𝐢,𝑗
LF are those of the high-fidelity and the 𝑗-th low refined model, respectively. Whereas, 𝒘𝑗 ∈ [0,1]𝑃 is 

the weight vector which can be easily determined by performing a minimization procedure of the normalized 

empirical error 𝜖𝑒𝑚𝑝 [15]. Combining the gPCE coefficients is particularly convenient because it enables the 

whole procedure presented in this paper to be defined at the gPCE coefficient level. 

3. Case-study definition 

3.1 Building definition 

An archetype RC structures, representative of school buildings in Southeast Asia (such as Philippines, 

Indonesia), and defined based on a data-collection involving rapid visual surveys for over 200 school buildings 

[16], is analysed in this section to test the feasibility of the proposed procedure. The analysed structure is a 

two-storey rectangular-plan RC frame building (Fig. 1). The statistical analysis results of the data collected 

during the surveys [16] show that the number of longitudinal bays is the most variable parameters. Whereas, 

other geometrical features such as number of storeys, length of the transverse bays, dimension of the 

beams/columns show negligible variability within the surveyed sample. 

Given that the data collection is based on a rapid visual survey, no direct information about the material 

properties is available. According to Southeast Asian statistics (e.g. [17]), the concrete cylindrical strength and 

steel yield stress in the region have average values of 24MPa and 400MPa, respectively. Coefficients of 
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variation (CoV) values equal to 18% and 5% for the concrete cylindrical strength and steel yield stress 

respectively can be found in the scientific literature [18]. These values are used in this study for the definition 

of the distributions of the uncertain structural model parameters. By considering the same nominal value of 

material properties for all the buildings in the considered portfolio, it is implicitly assumed that the building-

to-building variability coincides with the within-building variability. 

 

Fig. 1 – Archetype building under study [16]. 

The flexural and shear characterisation of beams, columns and beam-column joints of the analytical and 

numerical models adopted in this application are clearly affected by the variability of these parameters. 

Structural detailing is key to define the numerical models for the fragility calculation. Therefore, the archetype 

building are simulated designed according to the Uniform Building Code, UBC [19] and the American Society 

of Civil Engineers (ASCE) 7-10 [20]. The use of these building codes is justified by the fact that most of 

Southeast Asia countries have adopted seismic provisions which are consistent with them. In particular, a low 

code target design, consistently with the HAZUS MH4, HAZard United States [21], is considered. The 

resulting detailing features are reported in Table 1. 

Table 1 – Structural detailing of the archetype building [16]. 

 Typical beam Typical column Typical joint 

Low Code 3 ϕ16 top layer 3 ϕ16 top layer No stirrups 

 3 ϕ16 bottom layer 3 ϕ16 bottom layer  

 ϕ10@150mm hooks ϕ10@100mm hooks  

3.2 Model classes 

Three model classes varying in refinement are adopted in this study. The lowest-refinement model class is 

based on SLaMa [11]. This method allows plastic mechanisms and capacity curve (i.e. a force-displacement 

curve) of RC frames, wall and dual-system buildings, to be estimated by means of a “by-hand” procedure (i.e., 

using an electronic spreadsheet). SLaMa is based on the calculation of the hierarchy of strength at sub-system 

level; the local results are then combined by adopting equilibrium and compatibility principles to obtain the 

global capacity curve. Many failure mechanisms (i.e. flexure, bar buckling, lap-splice failure, shear) are 

considered for each beam and column of the system. In this way, the weakest link drives the overall structural 

behaviour. 

Refined numerical pushover analyses carried out with the finite element software Ruaumoko [22] are used to 

define the second (i.e., medium) refinement level. With this computational strategy, based on a lumped 

plasticity approach, the flexural capacity of the RC members is derived using moment-curvature analysis. Lap 

splice failure, flange effect, shear failure and bar buckling are modelled, as they can significantly modify the 

structural behaviour. P-Delta effects on the two-storey RC frame under study are clearly negligible and then 

not modelled. Finally, plane-rigid floor diaphragms are modelled, and fully fixed boundary conditions are 

considered at the base. A uniform force profile is adopted. 
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Non-linear time history analyses (NLTHAs) performed on the numerical model described above represent the 

last refinement level (i.e., the highest). The revised Takeda hysteretic model [23] is adopted for beams and 

columns, with the columns having a thinner loop. Whereas, the hysteretic behaviour of the beam-column joints 

is modelled using the Modified Sina model [23], which is able to capture their pinching phenomenon. 

As discussed in the previous section, cloud analysis considering collapse cases is used for the fragility curve 

derivation. This can be directly applied in the case of NLTHAs (the highest refinement level), while for the 

other two cases, the capacity spectrum method (CSM) [24] is adopted. The equivalent viscous damping 

formulation is herein used to perform the CSM. The maximum inter-storey drift (chosen as 𝐸𝐷𝑃) is computed 

by using the displacement shapes provided in [11]. 

A set of 150 ground motion records is considered to have a statistically significant number of strong-motion 

records. They are a subset of the Selected Input Motions for displacement-Based Assessment and Design 

(SIMBAD [25]) database, which includes 467 tri-axial accelerograms, generated by 130 worldwide seismic 

events (shallow crustal earthquakes with moment magnitudes ranging from 5 to 7.3 and epicentral distances 

up to 35 km). The selected ground motion records are chosen by ranking the entire database in terms of peak 

ground acceleration (PGA) values (by using the geometric mean of the two horizontal components) and then 

keeping the component with the largest PGA value (for the 150 stations with highest mean PGA). 

3.3 Fragility curve derivation 

As discussed above, the 𝐸𝐷𝑃  considered in this application is the maximum inter-storey drift, while the 
average spectral acceleration (𝐴𝑣𝑔 𝑆𝑎) is the selected 𝐼𝑀 (Eq. (3)). 𝐴𝑣𝑔 𝑆𝑎 is defined as geometric mean of 

spectral-acceleration values in the range of period (𝑇1,𝑚𝑖𝑛: 1.5 𝑇1,𝑚𝑎𝑥), where 𝑇1,𝑚𝑖𝑛 = 0.38 𝑠 is the minimum 

first-mode period for the entire database while 𝑇1,𝑚𝑎𝑥 = 0.53 𝑠 is the maximum. Four structure-specific DS 

(Slight Damage, Moderate Damage, Extensive Damage, Complete Damage), which are based on the HAZUS 

definitions (but computed based on the actual pushover curve of the consider buildings), are investigated in 

this study. The corresponding drift limits, [0.25, 0.6, 1.5, 2] %, are assumed as representative of the entire 

building class. 

The first step of the proposed approach is the construction of the gPCE of the fragility model parameters 𝝌 for 

each model class. Assuming that the 𝑓𝑐  and 𝑓𝑦  are log-normally distributed, and that 𝑁𝑏𝑎𝑦𝑠,𝑥  follows an 

empirical distribution [16], Hermitian polynomials can be used as basis functions. A preliminary sensitivity 

analysis about the effect of the polynomial expansion cardinality variation on the normalized empirical error 

𝜖𝑒𝑚𝑝  allowed for the selection of the optimal polynomial expansion degrees. In particular, 5-th order 

polynomial expansions are used for the parameters related to the high-fidelity model while 3-th order 

polynomial expansions are adopted for those related to the medium and lowest refinement level. 

The gPCE of the lowest and medium model classes are trained on the solution of 100 structural models (i.e., 

100 realizations randomly sampled from the parameter distributions) for each considered ground motion 

record. While, only 50 analyses for each ground motion records are used for the high-fidelity model. The 

resulting gPCE coefficients are then combined to obtain a multi-fidelity gPCE of the parameters 𝝌. Fig. 2 

shows the normalized empirical error 𝜖𝑒𝑚𝑝 of the multi-fidelity gPCE of ln𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶 (Eq. (3)). Even 

with such a small number of high-fidelity model analyses, 𝜖𝑒𝑚𝑝 is very small. This result can be achieved 

because of the sparsity of the gPCE basis promoted by the use of approximated hierarchical Laplace 

distributions, as previously discussed. It is worth noting that, the parametrization of the fragility derivation 

proposed in this study enables the evaluation of the 𝜖𝑒𝑚𝑝 for each single ground motion records (or intervals 

of 𝐼𝑀). This feature clearly paves the way for the development of an adaptive sampling procedure for a further 

reduction of the computational cost. 
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Fig. 2 – Normalized empirical error of the multi-fidelity mode of ln𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶. 

Finally, the fragility curves computed with the proposed multi-fidelity approach are compared with those 

derived with the application of the robust fragility method in its classical form (Fig. 3). In this latter case, 100 

realization of the high-fidelity structural model for each ground motion record are used.  

 
                              a) 

 
       b) 

 
                              c) 

 
       d) 

Fig. 3 – Fragility curves: a) DS1; b) DS2; c) DS3 d) DS4. 
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The fragility curves derived with the proposed multi-fidelity approach are very close to those calculated with 

the classical method for the case of DS1 and DS2. The relative errors in terms of ln𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶 are 

equal to 3% and 6% for DS1 and DS2, respectively. Whereas those in terms of 𝛽𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶 are equal 

to 10% and 12% again for DS1 and DS2, respectively. The mean multi-fidelity fragility curves are fully 

contained within the confidence interval of the high-fidelity one. In the case of DS3 and DS4, the proposed 

multi-fidelity model leads to an overestimation of the variability of the results. The relative errors in terms of 

ln𝜂𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶  are in this case equal to 7%  and 10%  for DS3 and DS4. Those in terms of 

𝛽𝐸𝐷𝑃>𝐸𝐷𝑃𝐷𝑆𝑖
|𝐼𝑀,𝑁𝑜𝐶 are equal to 18% and 20% again for DS3 and DS4, respectively. Also in these last two 

cases the results are comparable. These observations agree with the error reported in Fig. 2, that is higher in 

the case of DS3 and DS4. 

4. Concluding remarks 

The derivation of numerical seismic fragility curves is a challenging and computationally expensive task when 

both aleatory and epistemic uncertainties are considered. Several different methods aimed at reducing the 

computational cost related to the fragility curve derivation can be found in the scientific literature. In this 

context, particularly powerful is the use of the robust fragility approach in conjunction with the cloud analysis. 

In this paper, a modification of the robust fragility approach is proposed to enable the use of different model 

classes in the computation of fragility curves. The main idea behind the proposed approach is to analyse refined 

numerical model only when strictly necessary (i.e., when the numerical output is approaching a selected 

damage state), and to use simplified models when the numerical results is far enough from the damage state. 

A multi-fidelity general Polynomial Chaos Expansion of the fragility model parameters is then provided to 

combine different model classes. The Bayesian interpretation of the gPCE coefficient calibration allows further 

reducing the computational cost. In contrast to the classic robust fragility method, the proposed one do not 

require the use of numerical integration strategies to solve the inverse problem. In fact, conjugated gaussian 

and approximated Laplace distributions can be successfully adopted to model probabilistically the gPCE 

coefficients. 

An illustrative case of study of an archetype reinforced concrete building is analysed to test the feasibility of 

the proposed approach. The results show a good agreement between fragility curves derived with the proposed 

approach and those derived with the classic robust fragility considering only the high-fidelity model. Future 

studies will aim at developing an adaptive sampling procedure to further reduce the computational burden.  
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