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Abstract 
Both ASCE/SEI 7-16 [1] and ASCE/SEI 41-17 [2] design standards require that P-∆ effects be included in the nonlinear 
dynamic analysis procedure for designing new and existing structures. However, software packages that perform 
nonlinear dynamic analysis typically only allow users to either ‘turn on’ or ‘turn off’ the effect of geometric 
nonlinearity without informing users what type of nonlinear effect is being included, such as whether both large P-∆ 
and small P-δ effects are included. Coupling this geometric nonlinearity effect with material nonlinearity of the 
structure can lead to significant differences in the predicted responses, especially when the structure is at near-collapse. 
Therefore, study on how geometric nonlinearity can affect structural performance is important to performance-based 
seismic engineering. 

The challenge of how each software package handles the coupling between geometric and material nonlinearities often 
comes down to their interaction. The traditional method of structural analysis with material nonlinearity uses changing 
stiffness to quantify the stiffness reduction after yielding has occurred in the structure, which requires reformulation of 
the global stiffness matrix before solving for the displacement response. The difficulty comes in when the axial force 
reduces the stiffness of the member and at the same time when tangent stiffness is used after a nonlinear component has 
yielded. Will this axial force further reduce the tangent stiffness, and by how much? On the other hand, the use of 
tangent stiffness is typically derived based only on material nonlinearity with no consideration of geometric 
nonlinearity. At the same time, the use of geometric stiffness was derived based only on geometric nonlinearity with no 
consideration of material nonlinearity. Therefore, one needs to go back to the original derivation with the basic 
principles to answer this question. 

In this paper, a detailed formulation of the nonlinear stiffness matrices taking into consideration both geometric and 
material nonlinearities is derived for a column member. It is followed by a study on how different software packages 
implement different geometric nonlinearity formulations and identify whether such formulation include both large P-∆ 
and small P-δ effects in the analysis. Finally, examples are presented to demonstrate how different formulations of 
geometric nonlinearity affect the nonlinear responses of framed structures. 

Keywords: Geometric nonlinearity; Material nonlinearity; Large P-∆ effect; Small P-δ effect; Displacement 
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1. Introduction 
Buildings constructed in seismic regions are vulnerable to strong ground shaking and thus are designed to 
sustain damage caused by material nonlinearity and remain stable by overcoming geometric nonlinearity. 
Nonlinear dynamic analysis with both geometric and material nonlinearities is currently the most accurate 
method of estimating the response to seismic events. For this reason, both ASCE/SEI 7-16 [1] and 
ASCE/SEI 41-17 [2] require that geometric nonlinearity be included in the nonlinear dynamic analysis 
procedure. However, software packages provide a geometric nonlinearity “button” but do not explicitly state 
the specific geometric nonlinearity formulation implemented in these packages. For example, some software 
packages may implement the full geometric stiffness formulation that includes both large P-∆ and small P-δ 
effects, while other software packages may implement the simpler P-∆ stiffness formulation that accounts for 
only P-∆ effect.  

This research investigates how different software packages implement geometric nonlinearity affect 
the nonlinear dynamic response calculations. To accomplish this work, a detailed formulation of the 
nonlinear stiffness matrices taking into consideration both geometric and material nonlinearities is first 
derived for a column member. It is followed by a study on how different software packages implement 
different geometric nonlinearity formulations and identify whether such formulation include both large P-∆ 
and small P-δ effects in the analysis. Finally, examples are presented to demonstrate how different geometric 
nonlinearity formulations affect the nonlinear responses of framed structures. 

2. Derivations of Stiffness Matrix with Both Geometric and Material Nonlinearities 
The original beam theory with geometric nonlinearity [3-4] was first developed for elastic columns in the 
1960’s without consideration of any material nonlinearity. But its use is limited because of its complexity in 
the closed-form solution as compared to those formulations based on either the P-∆ stiffness approach [5] or 
the geometric stiffness approach [6]. However, to identify the geometric nonlinearity used in software 
packages, it is often important to go back to the fundamental principle and understand how each geometric 
nonlinearity formulation is developed. Therefore, the original theory that included geometric nonlinearity is 
rederived here and extended to include material nonlinearity. This is done by deriving the stiffness matrix for 
a column member with plastic hinges at both ends and subjected to a compressive force.  

Four degrees of freedom (DOFs) and two plastic hinge locations (PHLs) are used to describe the 
movements at the two ends of a column member in a moment-resisting frame. These movements at the two 
ends include lateral displacement ( (0)v  and ( )v L ), rotation ( (0)v′  and ( )v L′ ), and plastic rotations at the 
two plastic hinges ( a′′θ  and b′′θ ). To compute the member stiffness matrix ik , where i denotes the ith member 
in the frame, each of these 4 DOFs and 2 PHLs is displaced independently by one unit as shown in Fig.1 
while subjected to an axial compressive load P. Here, 1kV , 1kM , 2kV , and 2kM  represent the required shear 
forces and moments at the two ends of the member to cause the deformation in the prescribed pattern, where 

1, ,6k =   represents the six cases of unit displacement patterns of the member’s movements, and akM  and 
bkM  represent the moment at plastic hinges ‘a’ and ‘b’, respectively, due to the prescribed pattern. Note that 

the ‘1’ end coincides with plastic hinge ‘a’ and the ‘2’ end coincides with plastic hinge ‘b’ in Fig.1. 

Using the classical Bernoulli-Euler beam theory with homogeneous and isotropic material properties, 
where the moment is proportional to the curvature and plane sections are assumed to remain plane based on 
small displacements, the governing equilibrium equation describing the deflected shape of the member is 

 ( ) 0EIv Pv′′ ′′ ′′+ =  (1) 

where E is the elastic modulus, I is the moment of inertia, v is the lateral deflection, P is the axial 
compressive force on the member, and each prime represents taking derivatives of the corresponding 
variable with respect to the x-direction of the member. By assuming EI is constant along the member, the 
solution to the fourth-order ordinary differential equation given in Eq. (1) becomes: 
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 sin cosv A kx B kx Cx D= + + +  (2) 

where 2k P EI=  and A, B, C, and D are constants to be determined by imposing different boundary 
conditions. Let kLλ =  to simplify the derivations, where L is the length of the member. The following cases 
of boundary conditions (starting with Case 4) are now considered.  

2.1 Case 4 
For Case 4 as shown in Fig.1, imposing the boundary conditions (0) 0v = , (0) 0v′ = , ( ) 0v L = , ( ) 1v L′ = , and 

0a b′′ ′′θ = θ =  on Eq. (2) gives 

 (0) 0v = : 0B D+ =  (3a) 
 (0) 0v′ = : 0kA C+ =  (3b) 
 ( ) 0v L = : sin cos 0A B CL Dλ + λ + + =  (3c) 
 ( ) 1v L′ = : cos sin 1kA kB Cλ − λ + =  (3d) 

Solving simultaneously for the constants in Eq. (3) gives 

 ( )
( )

( )
( )

1 cos sin
, , ,

sin 2cos 2 sin 2cos 2
L L

A B C kA D B
− λ λ − λ

= = = − = −
λ λ λ + λ − λ λ λ + λ −

 (4) 

Therefore, Eq. (2) along with the constants in Eq. (4) gives the deflected shape for Case 4. The shears (i.e., 
14V  and 24V ) and moments (i.e., 14M  and 24M ) at the two ends of the member (see Fig.1) are then evaluated 

using the classical Bernoulli-Euler beam theory formula: 

 ( )M x EIv′′=     ,      ( )V x EIv Pv′′′ ′= +  (5) 

Now taking derivatives of Eq. (2) and substituting the results into Eq. (5) while using the constants 
calculated in Eq. (4), the shears and moments at the two ends of the member are calculated as: 

 2
14 ˆˆ(0)M EIv EIk B scEI L′′= − = =  (6a) 

 3 2
14 (0) (0) 0V EIv Pv EIk A P sEI L′′′ ′= + = − + × =  (6b) 

 ( )2
24 ˆ( ) sin cosM EIv L EIk A B sEI L′′= = − λ + λ =  (6c) 
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 ( )3 2
24 ( ) ( ) cos sin 1V EIv L Pv L EIk A B P sEI L′′′ ′= − − = λ − λ − × = −  (6d) 

where ŝ , ĉ , and s  are the first three stability coefficients computed by the formula 

 ( )sin cos
ˆ

2 2cos sin
s

λ λ − λ λ
=

− λ − λ λ
   ,     sinˆ

sin cos
c λ − λ
=

λ − λ λ
   ,     ( )2 1 cos

ˆ ˆˆ
2 2cos sin

s s sc
λ − λ

= + =
− λ − λ λ

 (7) 

In addition, the moments at the two PHLs can be evaluated by recognizing that these moments must equal to 
the end moments by equilibrium, i.e., 4 14aM M=  and 4 24bM M= . Therefore, 

 4 14 ˆˆaM M scEI L= =     ,      4 24 ˆbM M sEI L= =  (8) 

2.2 Case 3 
For Case 3 as shown in Fig.1, imposing the boundary conditions (0) 0v = , (0) 0v′ = , ( ) 1v L = , ( ) 0v L′ = , and 

0a b′′ ′′θ = θ =  on Eq. (2) gives 

 (0) 0v = : 0B D+ =  (9a) 
 (0) 0v′ = : 0kA C+ =  (9b) 
 ( ) 1v L = : sin cos 1A B CL Dλ + λ + + =  (9c) 
 ( ) 0v L′ = : cos sin 0kA kB Cλ − λ + =  (9d) 

Solving simultaneously for the constants in Eq. (9) gives 

 sin 1 cos, , ,
sin 2cos 2 sin 2cos 2

A B C kA D Bλ − λ
= − = = − = −

λ λ + λ − λ λ + λ −
 (10) 

These constants in Eq. (10) are used to give the deflected shape in Eq. (2) for Case 3. Now substituting Eq. 
(2) into Eq. (5) and using the constants calculated in Eq. (10), the shears and moments at the two ends of the 
member are calculated as: 

 2 2
13 (0)M EIv EIk B sEI L′′= − = = −  (11a) 

 3 3
13 (0) (0) 0V EIv Pv EIk A P s EI L′′′ ′ ′= + = − + × = −  (11b) 

 ( )2 2
23 ( ) sin cosM EIv L EIk A B sEI L′′= = − λ + λ = −  (11c) 

 ( )3 3
23 ( ) ( ) cos sin 0V EIv L Pv L EIk A B P s EI L′′′ ′ ′= − − = λ − λ − × =  (11d) 

where s′  is the fourth and final stability coefficient given by the formula 

 
3

2 sin2
2 2cos sin

s s λ λ′ = − λ =
− λ − λ λ

 (12) 

In addition, the moments at the two PHLs are evaluated by equilibrium as 

 2
3 13aM M sEI L= = −     ,      2

3 23bM M sEI L= = −  (13) 

2.3 Case 2 
For Case 2 as shown in Fig.1, by imposing the boundary conditions (0) 0v = , (0) 1v′ = , ( ) 0v L = , ( ) 0v L′ = , 
and 0a b′′ ′′θ = θ =  on Eq. (2), solution can be obtained via the same procedure presented above while solving 
for a different set of constants. On the other hand, a more direct solution can be obtained by recognizing that 
Case 2 is exactly the same as ‘rotating’ Case 4 by 180°. Doing so, the solution becomes 

 2
12 24V V sEI L= − =     ,      2

22 14V V sEI L= − = −  (14a) 
 12 24 ˆM M sEI L= =     ,      22 14 ˆˆM M scEI L= =  (14b) 
 2 4 ˆa bM M sEI L= =     ,      2 4 ˆˆb aM M scEI L= =  (14c) 
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2.4 Case 1 
For Case 1 as shown in Fig.1, by imposing the boundary conditions (0) 1v = , (0) 0v′ = , ( ) 0v L = , ( ) 0v L′ = , 
and 0a b′′ ′′θ = θ =  on Eq. (2), solution can be obtained via the same procedure presented above while solving 
for a different set of constants. On the other hand, a more direct solution can be obtained by recognizing that 
Case 1 is exactly the same as ‘flipping’ Case 3 by 180°. Doing so, the solution becomes 

 3
11 33V V s EI L′= =     ,      3

21 13V V s EI L′= = −  (15a) 
 2

11 23M M sEI L= − =     ,      2
21 13M M sEI L= − =  (15b) 

 2
1 3a bM M sEI L= − =     ,      2

1 3b aM M sEI L= − =  (15c) 

2.5 Case 5 
For Case 5 as shown in Fig.1, by imposing the boundary conditions 1a′′θ = , 0b′′θ = , and 

(0) (0) ( ) ( ) 0v v v L v L′ ′= = = =  on Eq. (2), solution can be obtained via direct comparison of Case 2 and Case 
5, where a unit plastic rotation at hinge ‘a’ gives the same displacement pattern as a unit rotation at the ‘1’ 
end. It follows that the forces and moments at the four DOFs and two PHLs are the same for both cases, i.e., 

 2
1 12aV V sEI L= =     ,      2

2 22aV V sEI L= = −  (16a) 
 1 12 ˆaM M sEI L= =     ,      2 22 ˆˆaM M scEI L= =  (16b) 
 2 ˆaa aM M sEI L= =     ,      2 ˆˆba bM M scEI L= =  (16c) 

2.6 Case 6 
Finally, for Case 6 as shown in Fig.1, by imposing the boundary conditions 0a′′θ = , 1b′′θ = , and 

(0) (0) ( ) ( ) 0v v v L v L′ ′= = = =  on Eq. (2), solution can be obtained via direct comparison of Case 4 and Case 
6, where a unit plastic rotation at hinge ‘b’ gives the same displacement pattern as a unit rotation at the ‘2’ 
end. It follows that the forces and moments at the four DOFs and two PHLs are the same for both cases, i.e., 

 2
1 14bV V sEI L= =     ,      2

2 24bV V sEI L= = −  (17a) 
 1 14 ˆˆbM M scEI L= =     ,      2 24 ˆbM M sEI L= =  (17b) 
 4 ˆˆab aM M scEI L= =     ,      4 ˆbb bM M sEI L= =  (17c) 

2.7 Stiffness Matrices 
In summary, based on Eqs. (6), (8), (11), (13), and (14)-(17) for the above six cases, the small-displacement-
based stiffness matrix of the ith member SF

ik  for bending while considering both geometric and material 
nonlinearities becomes 

 

2 2 2 2

2 2 2 23

2 2 2 2

2 2 2 2

(0)
ˆ ˆˆ ˆ ˆˆ (0)

( )
ˆˆ ˆ ˆˆ ˆ ( )
ˆ ˆˆ ˆ ˆˆ
ˆˆ ˆ ˆˆ ˆ

SF
i

a

b

vs sL s sL sL sL
vsL sL sL scL sL scL
v Ls sL s sL sL sLEI
v LsL scL sL sL scL sLL

sL sL sL scL sL scL
sL scL sL sL scL sL

′ ′ ←− 
  ′←− 
 ′ ′ ←− − − − −

=   ′←− 
  ′′← θ−
 

′′← θ−  

k  (18) 

where the superscript ‘SF’ denotes the member stiffness matrix ik  is formulated by using the stability 
functions method that is computed based on the stability coefficients in Eqs. (7) and (12). Note again that ik  
is 6 6× , where the 6 movements are associated with the displacements and rotations at the two ends (i.e., 4 
DOFs) and the plastic rotations at the two plastic hinge locations (i.e., 2 PHLs). 

Linearization of Eq. (18) can be performed by using Taylor series expansion on each term of the 
member stiffness matrix and truncating higher-order terms. Doing so gives 
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2 2

3

2 2

12 6 12 6 6 5 10 6 5 10 (0)
6 4 6 2 10 2 15 10 30 (0)
12 6 12 6 6 5 10 6 5 10 ( )

6 2 6 4 10 30 10 2 15 ( )

GS
i

L L P L P P L P v
L L L L P PL P PL vEI

L L P L P P L P v LL
L L L L P PL P PL v L

− − ←   
    ′− − − ←   = −
   − − − − − − ←
    ′− − − ←   

k  (19) 

where the first matrix in Eq. (19) represents that classic stiffness matrix without considering any geometric 
nonlinearity, and the second matrix represents the geometric stiffness. The superscript ‘GS’ denotes the 
member stiffness matrix ik  is formulated by using the geometric stiffness method. Note that the member 
stiffness matrix in Eq. (19) is a 4×4 matrix, where the rows and columns associated with a′′θ  and b′′θ  are 
dropped. This is because solution algorithms among various software packages that incorporate geometric 
nonlinearity using the geometric stiffness method usually adopt a different and independent algorithm for 
material nonlinearity. 

Finally, the member stiffness matrix ik  in Eq. (19) can be further simplified by retaining only the 
large P-∆ effect while ignoring small P-δ effect. This is done by removing all geometric nonlinear terms 
associated with bending. Doing so gives 

 
2 2

3

2 2

12 6 12 6 0 0 (0)
6 4 6 2 0 0 0 0 (0)
12 6 12 6 0 0 ( )

6 2 6 4 0 0 0 0 ( )

PD
i

L L P L P L v
L L L L vEI

L L P L P L v LL
L L L L v L

− − ←   
    ′− ←   = −
   − − − − ←
    ′− ←   

k  (20) 

where the superscript ‘PD’ denotes the member stiffness matrix ik  is formulated by using the P-∆ stiffness 
method.  

3. Identification of Geometric Nonlinearity Using a Single Degree of Freedom System  
An appropriate model should be used to serve the purpose of the study. To identify the geometric 
nonlinearity used in different software packages, consider the single degree of freedom (SDOF) column 
model as shown in Fig.2a be subjected to a constant axial compressive force P. Let the mass be M, damping 
be C, elastic modulus be E, moment of inertia be I, and length be L. The degree of freedom is set up so that 
the mass is restrained from rotation, but it is free to translate in the horizontal direction.  

M
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Fig. 2 – Single degree of freedom models with geometric nonlinearity 

Based on this set up, the column experiences a constant axial force due to the gravity load only and 
also experiences shear and moment due to the earthquake ground motion only. Therefore, the lateral stiffness 
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of the column remains constant with a constant axial force throughout the entire earthquake time history 
analysis. If geometric nonlinearity is totally ignored in this problem, the lateral stiffness related to the 
horizontal translation degree of freedom at the top of the column is simply: 

 
3

12
OR

EIK
L

=  (21) 

where ORK  represents the original stiffness of the SDOF system without considering any geometric 
nonlinearity. If geometric nonlinearity is considered using the P-∆ stiffness approach, the lateral stiffness of 
the SDOF column (see Eq. (20)) becomes: 

 
3

12
P

EI PK
L L∆ = −  (22) 

where PK ∆  denotes the geometrically nonlinear stiffness of the column using the P-∆ approach (i.e., 
including large P-∆ effect but excluding small P-δ effect). If geometric nonlinearity is considered using the 
geometric stiffness approach, the lateral stiffness of the SDOF column (see Eq. (19)) becomes: 

 
3

12 6
5GS

EI PK
L L

= −  (23) 

where GSK  denotes the geometrically nonlinear stiffness of the column using the geometric stiffness 
approach (i.e., including both large P-∆ and small P-δ effects). Finally, if geometric nonlinearity is 
considered through the use of stability functions, the stiffness matrix (see Eq. (18)) becomes: 

 
3SF

s EIK
L
′

=  (24) 

where SFK  denotes the geometrically nonlinear stiffness computed using the stability functions approach 
(i.e., including both large P-∆ and small P-δ effects in a consistent form), and s′  is the stability coefficients 
defined in Eq. (12). 

In this study, let 100E =  GPa, 56.4 10I = ×  mm4, 4L =  m, and 4P =  kN in compression. Using a 
mass of 9500M =  kg, the calculated stiffnesses and the corresponding periods of vibration are summarized 
in Table 1. Note that the critical buckling load for the SDOF column is 2 2 39.48crP EI L= π =  kN, which 
means the applied load is at 10.1 % of the critical buckling load (i.e., / 0.101crP P = ). At this axial 
compressive force level, it is observed that GS SFK K≈ , but there is a 1.9 % difference in stiffness between 

PK ∆  and GSK . This suggests that ignoring small P-δ effect can result in an increase in lateral stiffness by 
1.9 %. Table 1 also shows that the difference between using PK ∆  and using GSK  results in a 1.0 % 
difference in the calculated period of vibration of the SDOF column. Note that 1.0 % elongation of period is 
sufficient to provide the phase shift needed to identify the geometric nonlinearity used in software packages. 

Table 1 – Comparison of geometric nonlinear stiffnesses, periods, and maximum responses 

 Stiffness 
(kN/m) 

Period 
(s) 

Max Displacement 
(m) 

Max Velocity 
(m/s) 

Max Acceleration 
(g) 

ORK  12.0 1.496 0.6990 2.996 1.258 

PK ∆  11.0 1.562 0.6737 2.789 1.111 

GSK  10.8 1.577 0.6625 2.746 1.073 

SFK  10.799 1.577 0.6624 2.746 1.073 
 

By assuming 0 % damping, the SDOF column shown in Fig.2a is now subjected to the 1995 Kobe 
earthquake as shown in Fig.3. The resulting displacement responses using the original stiffness (OR), P-∆ 
stiffness (PD), geometric stiffness (GS), and stability function stiffness (SF) are presented in Fig.4. In 
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addition, the maximum displacement, velocity, and absolute acceleration for using various geometric 
nonlinear stiffness approaches are summarized in Table 1. It can be seen from Fig. 4 that the responses using 

GSK  match those using SFK  well at such a small axial compressive force. The differences are more 
noticeable between the responses using PK ∆  and those using GSK , where the maximum displacement 
response using PK ∆  increases by 1.7 % and the maximum acceleration response also increases by 3.5 %. 
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Fig. 3 – 1995 Kobe earthquake ground acceleration time history 
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Fig. 4 – Displacement responses of the SDOF column using different stiffnesses 

Knowing the stiffness of the column is important because it can be used to assess the type of 
geometric nonlinearity that is embedded in various software packages. Consider the same SDOF column 
shown in Fig.2a is now modeled using four small-displacement-based software packages commonly used in 
the United States, randomly labeled as S1, S2, S3, and S4, and is subjected to the 1995 Kobe earthquake 
shown in Fig.3. By assuming 0 % damping, Fig.5 shows the displacement responses from these software 
packages, and these responses are compared with those in Fig.4. As shown in Fig.5a, the comparison shows 
an exact match between the current analysis method using GSK  and the software packages S1 and S4. 
Similarly, Fig.5b shows an exact match between the current analysis method with PK ∆  and software 
packages S2 and S3. This indicates two of the small-displacement software packages use geometric stiffness 
that considers both large P-∆ and small P-δ effects in the formulation, while the other two of the small-
displacement software packages use P-∆ stiffness that considers only large P-∆ effects and ignores the small 
P-δ effects. Note that even though using 0 % damping is an idealized situation, it helps eliminate the 
potentially differing effects of using damping parameters on the responses that may occur due to differences 
in damping formulations used in different software packages. 
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Fig. 5 – Displacement response comparisons between various software packages and manual calculations 

4. One-Story Moment Frame 
Once the type of geometric nonlinearity is known, the influence of using different types of geometric 
nonlinearity on displacement responses can be assessed. As a simple numerical example, consider a one-
story one-bay moment-resisting frame as shown in Fig.2b with members assumed to be axially rigid. This 
gives a total of 3 DOFs (i.e., 3n = ) and 6 PHLs (i.e., 6m = ) as shown in the figure. Software packages S1 
(based on GS) and S2 (based on PD) are selected for this study along with the SF method. Since using SF 
formulation is an uncommon approach with limited documentations, it is therefore worthwhile to discuss the 
analysis approach here. Based on Eq. (18), the member stiffness matrix for the two columns can be written 
as: 

 

2 2 2 2

2 2 2 23

2 2 2 2

2 2
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ˆ ˆ ˆ

i i c i i c i c i c

i c i c i c i i c i c i i c

i i c i i c i c i cc
i

i c i i c i c i c i i c i cc

i c i c i c i i c i c i i c
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s s L s s L s L s L
s L s L s L s c L s L s c L

s s L s s L s L s LEI
s L s c L s L s L s c L s LL
s L s L s L s c L s L s c L
s L s c L s L s L

′ ′−
−
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=

−
−
−

k

2 2ˆ ˆ ˆi i c i cs c L s L

 
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 
 
 
 
 
 
  

    ,      1,2i =  (25) 

where îs , îc , is , and is′  are stability coefficients of the ith column member computed using Eqs. (7) and (12). 
No axial force is acting on the beam member, and therefore the beam member stiffness matrix becomes: 

 

2 2 2 2

3 2 2 2 23

2 2 2 2

2 2 2 2

12 6 12 6 6 6
6 4 6 2 4 2

12 6 12 6 6 6
6 2 6 4 2 4
6 4 6 2 4 2
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k  (26) 

Assembling the above member stiffness matrices into the global stiffness matrix gives a 9×9 stiffness matrix, 
which can be partitioned into the form 
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where 
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Assume that the frame shown in Fig.2b has a mass of 318.7 Mg and a damping of 0 %. Also, let 
200E =  GPa, 84.995 10b cI I= = ×  mm4, 7.62bL =  m, 4.57cL =  m, and 5,338P =  kN. To include material 

nonlinearity in the analysis, assume that all six plastic hinges exhibit elastic-plastic behavior with plastic 
moment capacities of 3130bm =  kN⋅m for the beam and 3909cm =  kN⋅m for the two columns. By 
subjecting the frame to the 1995 Kobe earthquake ground motion as shown in Fig.3 with a scale factor of 
1.3, the global displacement response at DOF #1 (i.e., roof displacement) is plotted in Fig.6 based on the 
stiffness matrices using stability function formulations (SF) in Eq. (28). In addition, the same undamped 
responses obtained from the software package S1 that uses geometric stiffness (GS) and the software 
package S2 that uses P-∆ stiffness (PD) are plotted in the figure for comparison. It is observed that the 
choice of geometric nonlinearity used in the analysis can influence the response calculations even for a 
simple SDOF system. While the responses calculated using SF and GS are reasonably close to each other, 
the calculated response using PD is quite different from the other two calculated responses. 
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Fig. 6 – Displacement response comparisons of a one-story frame with various geometric nonlinearities 
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5. Four-Story Moment-Resisting Frame 
Consider the four-story moment-resisting steel frame as shown in Fig.7a. This frame contains 36 DOFs (i.e., 

36n = ) and 56 PHLs (i.e., 56m = ). Assume a mass of 72 670 kg is used on each floor, and no mass or mass 
moment of inertia is assigned to any of the vertical translation DOFs nor rotation DOFs. A gravity load of 
863 kN is applied on each exterior column member and 1263 kN is applied on each interior column member 
as shown in Fig.7b. In addition, 0 % damping is assumed in order to provide a better comparison of the 
response among different software packages, including software package S2 that uses P-∆ stiffness (PD) and 
LS-DYNA finite element software package (LD) that uses large displacement formulation. For stability 
function (SF), the global stiffness matrix in Eq. (27) after assembly includes 36 36×K , 36 56×′K , and 56 56×′′K . 
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Fig. 7 – Four-story moment-resisting steel frame with gravity loads 

Assume the yield stress of the member is 345 MPa and all 56 plastic hinges exhibit elastic-plastic 
behavior. The steel frame is now subjected to the 1995 Kobe earthquake ground motion as shown in Fig.3 
with scale factors of 0.6, 0.8, 1.0, and 1.2. The roof displacement responses are summarized in Fig.8. Based 
on the results, it is observed that the responses computed using different geometric nonlinearity are similar at 
a scale factor of 0.6 when the response is only slightly nonlinear. However, the PD response begins to 
deviate at a scale factor of 0.8 with significant differences at a scale factor of 1.0. This suggests that using 
PD software packages that captures only large P-∆ effect while ignoring small P-δ effects may not be 
appropriate for computation when the significant coupling between geometric nonlinearity and material 
nonlinearity is expected. 

6. Conclusion 
In this paper, different formulations of geometric nonlinearity were presented with a detailed derivation of 
the stability functions stiffness matrix while incorporating material nonlinearity. Through this derivation, 
how each formulation captures large P-∆ and small P-δ effects were explained, and the investigation 
continued with a study on how different software packages implement geometric nonlinearity. A SDOF 
column was modeled using four different small-displacement-based software packages. Based on the output 
dynamic responses it was identified that two packages use P-∆ stiffness that includes only large P-∆ effects 
while the other two packages use geometric stiffness that includes both large P-∆ and small P-δ effects. The 
study was then extended to see how different formulations of geometric nonlinearity impact the response of 
moment-resisting frame, and it was shown that software packages implementing P-∆ stiffness can lead to 
different calculated results when there is significant coupling between geometric and material nonlinearities. 

2c-0151 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2c-0151 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

12 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20

D
is

pl
ac

em
en

t (
m

)

Time (s)

PD
SF
LD

0.6 × Kobe

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20

D
is

pl
ac

em
en

t (
m

)

Time (s)

PD
SF
LD

0.8 × Kobe

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20

D
is

pl
ac

em
en

t (
m

)

Time (s)

PD
SF
LD

1.0 × Kobe

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20

D
is

pl
ac

em
en

t (
m

)

Time (s)

PD
SF
LD

1.2 × Kobe

 
Fig. 8 – Roof displacement response of the four-story frame with various geometric nonlinearities 

 Since both ASCE/SEI 7-16 and ASCE/SEI 41-17 are design standards with the purpose of limiting 
damages in structures during major earthquakes, only slight material nonlinearity is expected in the analysis 
of the designed models. Therefore, any formulation of geometric nonlinearity is appropriate for use in these 
standards as long as users ‘turn on’ geometric nonlinearity in the analysis. However, if the analysis requires 
significant coupling between geometric and material nonlinearities, such as in the case of analyzing 
structural collapse or near-collapse, the applicability of software packages that implement P-∆ stiffness 
warrants further study. 
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