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Abstract 

This paper presents an original scheme to solve the vehicle-bridge interaction (VBI) problem under seismic excitation 

in a complete and systematic manner. Specifically, the proposed methodology relies upon the localized Lagrange 

multipliers approach, a method that partitions the vehicle and the bridge systems by introducing auxiliary contact points 

between the two subsystems, and also incorporates fundamental concepts of differential geometry based on the 

invariance of a generalized form of Newton’s law of motion when imposing bilateral motion constraints. This approach 

leads to a dynamic representation of the constraint equations and the associated Lagrange multipliers. The study 

considers a synchronous (uniform) seismic excitation on the vehicle-bridge system. This method leads to several 

potential advantages. Firstly, all equations describing the mechanical system—equations of motion and constraint 

equations—are expressed as a set of second-order differential equations (ODEs), both for the generalized coordinates 

and the Lagrange multipliers, avoiding constraint drifts and singularities commonly associated with differential-

algebraic equations (DAEs). As a result, there is no need to impose additional numerical stabilization techniques, such 

as Baumgarte stabilization, projections, etc.. At the same time, it provides a theoretical insight into the equations 

derived and, subsequently, a direct comparison with commonly adopted formulas to solve the coupled VBI problem. 

Lastly, it sets the basis for the development of robust numerical analysis schemes to integrate the VBI problem, based 

on a solid theoretical framework. 
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1. Introduction 

The rapid expansion of high-speed railway (HSR) systems worldwide and the increasing ratio of HSR lines 

made up of bridges [1] create the incentive to revisit the dynamic interaction between HSR trains and bridges 

[2]. Especially under seismic excitations, dynamic vehicle-bridge interaction (VBI) intensifies [2], 

threatening, in some cases, the safety of transportation [3-4]. 

The solution of the seismic VBI (SVBI) problem involves the application of robust VBI algorithms [5-9] to 

coupled vehicle-bridge systems subjected to seismic motions. Yang et al. [10] solved the SVBI problem 

using a dynamic condensation method that condenses the degrees of freedom (DOFs) of the vehicle to those 

of the bridge. This method applies the earthquake excitation as a uniform external force to the system. Zeng 

and Dimitrakopoulos [3] investigated the SVBI problem under uniform seismic excitations, adopting their 

previously developed algorithm for vehicles running on curved bridges [6]. This method [3] also takes into 

account creep forces due to rolling contact, which under earthquakes excitations can become significant. Xia 

et al. [11] solved the SVBI problem via an iterative approach that solves the vehicle and bridge subsystems 

separately [8] and imposes earthquakes via an influence matrix that applies different seismic load at each 

support of the bridge. Du et al. [12] followed a similar approach [11] but applied seismic excitation on the 

bridge as asynchronous displacements of the ground at the supports. 

Algorithms to solve mechanical systems subjected to motion constraints, such as coupled vehicle-bridge 

systems, often encounter stability problems associated with Differential-Algebraic Equations (DAEs) [13]. 

These lead to numerical drifts during the time-integration [14]. A typical approach to overcome numerical 

instabilities is the adoption of stabilization techniques, such as Baumgarte stabilization and projections [14]. 

However, such methods lack a solid theoretical background. Aiming at the systematic and consistent 

definition of the kinematic constraints of mechanical systems, Natsiavas and Paraskevopoulos [15] proposed 

a dynamic treatment of Lagrange multipliers associated with motion constraints. This approach [15] relies on 

the invariance of a generalized form of Newton’s law of motion when imposing bilateral constraints [16]. As 

a result, both generalized coordinates and Lagrange multipliers constitute a set of second-order Ordinary 

Differential Equations (ODEs). Therefore, there is no need to introduce artificial terms to stabilize the system, 

which is common in multibody dynamics area [17].  

Building on the work of Zeng et al. [9] and Natsiavas and Paraskevopoulos [15], this study proposes an 

original approach to solve the SVBI problem. Based on a localized Lagrange multipliers approach [9] that 

solves the VBI problem in a partitioned manner, this method introduces auxiliary contact points between the 

vehicle and the bridge. Also, it treats Lagrange multipliers dynamically via ODEs [15], avoiding instabilities 

that arise by the solution of high-index DAEs. Lastly, it applies seismic excitation at the supports of the 

bridge via kinematic constraints with the ground, handling efficiently synchronous, as well as, asynchronous 

excitations. The proposed algorithm solves the SVBI problem in a consistent, precise and efficient manner. 

2. Seismic vehicle-bridge interaction system modelling 

The study partitions the coupled vehicle-bridge system by introducing auxiliary contact points between the 

vehicle’s wheels and the bridge (Fig. 1(a)), similar to the study of Zeng et al. [9]. This method leads to the 

assignment of two sets of Lagrange multipliers corresponding to the vehicle and bridge subsystems, 

respectively. Subsequently, the two subsystems can be solved separately, decreasing the computational cost 

of the analysis significantly. The proposed scheme treats the auxiliary contact points as an intermediate 

system (between the vehicle and the bridge), consisting of masses proportional to the vehicle’s wheels 

mass (Fig 1(a)). The three systems (vehicle, bride and auxiliary contact points) are connected through 

kinematic constraints in the normal direction.  

A distinctive characteristic of the proposed approach is the consistent application of Newton’s law in order to 

formulate the motion constraints [15]. The Lagrange multipliers are treated similarly to the generalized 

coordinates of the system, which allows the assignment of appropriate inertia, damping and stiffness to each  
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Fig. 1 – Vehicle-bridge contact model in the normal and tangential directions according to the proposed 

partitioned algorithm: (a) contact forces and (b) gap functions. 

each one of the constraints [15]. This approach leads to the formulation of a set of second-order ODEs for 

both the generalized coordinates and Lagrange multipliers. The study treats the earthquake excitation in a 

similar manner, i.e., as a set of constraints at the bridge supports.  

In this study, the equations of motion and constraint equations constitute a system of ODEs as follows: 

 
T

, TV B gV B

N N

B g

I
   S u u λ u λ Fλ . (1) 

In Eq. (1), SI  is a differential operator, including mass, damping and stiffness properties of the system. u  

denotes displacement vectors and  λ  Lagrange multiplier vectors. Superscript  V  corresponds to the vehicle, 

B  to the bridge and  g  to the ground. Supersctipt  T  denotes the inverse of a vector or matrix. Vector  F  at 

the right-hand side of Eq. (1) involves external and creep forces acting on the system. All parameters of Eq. 

(1) are explained in detail in the following sections (Sections 2 and 3). 

2.1 Vehicle modelling 

As a first approach, consider a two-dimensional (2D) vehicle model (Fig. 2). The vehicle model is a multi-

body assembly consisting of seven rigid bodies (one car-body, two bogies and four wheelsets) connected 

with linear springs and dashpots. All bodies are assigned two DOFs each, one translation and one rotation: 

 u u uz    u  (2) 

where  uy   and  uz   are the lateral and vertical translations, and  u , u   and  u   correspond to the yawing, 

rolling and pitching Euler angles, respectively. Superscript  u  denotes the vehicle’s car-body for  u = c, 

while  u = t1, t2  denotes the front and rear bogies, respectively. Lastly, u = wi  corresponds to each one of 

the wheels, where  i = 1-4. The longitudinal DOF is eliminated for all bodies, assuming constant moving 

speed  v. Thus, in total, the vehicle has 14 DOFs. The displacement vector  V
u   of the entire vehicle system 

is: 

 
T

1 2 1 2 3 4V c t t w w w   u u u u u u u u . (3) 

rolling wheel (zw, θw)

auxiliary contact point (ug)

bridge (xB, zB, θB)

speed v

x (longitudinal)

z (vertical)

,

V

N s

,

V

N s

xF

,

B

N s

,

B

N s
xF

: longitudinal creep force 

θ (pitching)

zw

ug

irregularities  rc,N

: normal contact force 

rc,N

V w g

Ng z u 

,rB g B

N c Ng u z  

vehicle

(a) (b)

zB

vehicle

bridge

auxiliary contact point

rolling wheel

2d-0043 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2d-0043 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

4 

 

Fig. 2 – 14-DOF vehicle model 

Assuming rigid contact between the auxiliary contact points and vehicle’s wheels in the normal direction [9], 

the equation of motion (EOM) of the vehicle system is: 

 
,

V VV V V V V V V

N N s T x

V    u um c u F W λ Fk W  (4) 

where  V
m , V

c   and  V
k   are the vehicle mass, damping and stiffness matrices, and  V

F   is the external force 

vector acting on the vehicle. 4 1

,

V

N s

λ  is the contact force vector between the vehicle’s wheels and the 

auxiliary contact points in the normal direction. In the tangential direction, the study assumes rolling contact 

between the wheels and the rails, which generates longitudinal creep forces  4 1

x

F . 14 4V

N

W   and  
14 4V

T

W   are the vehicle’s contact direction matrices in the normal and tangential directions, respectively 

[9]. Following the approach of Zeng and Dimitrakopoulos [9], Eq. (4) can be written as: 

 
eff ,

V V V V V V

N N s T x  K u F W λ W F  (5) 

where  
eff

V
K   is the effective stiffness of the vehicle, defined as: 

 
2

eff 2

V V V Vd d

dt dt
  K m c k . (6) 

d

dt
  denotes differentiation with respect to time. Formulating the Lagrange multipliers in the normal 

direction as ODEs, and assigning proper mass, damping and stiffness to the constraints according to the 

study of Natsiavas and Paraskevopoulos [15], ,

V

N sλ   becomes: 

 
,

V V V V V V V

N s N N N N N N  λ m λ c λ k λ . (7) 

 

V

Nm , V

Nc   and  V

Nk   are the mass, damping and stiffness matrices of the contact constraints between the 

vehicle and the auxiliary contact points in the normal direction, defined later in Section 3. Rewriting Eq. (5) 

with the aid of Eq. (7), the EOM of the vehicle becomes: 

 
eff eff,

V V V V V V V

N N N T x  K u F W K λ W F  (8) 

with  eff,

V

NK   being the effective stiffness of the constraints, defined as: 
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2

eff, 2

V V V V

N N N N

d d

dt dt
  K m c k . (9) 

2.2 Bridge modelling 

The bridge is modelled with the Finite Element Method (FEM), assuming two-dimensional (2D) Euler-

Bernoulli beams. The auxiliary contact points are in rigid contact with the bridge in the normal direction [9]. 

Similar to the vehicle EOM (Eq. (8)), the bridge EOM can be written as: 

 , , ,

eff eff, eff

B B B B B B B B g B g B g

N N N T x   K u F W K λ W F E K λ  (10) 

where  B
u   is the bridge response vector and  

eff

B
K   is the effective stiffness of the bridge, defined as: 

 
2

eff 2

B B B Bd d

dt dt
  K m c k . (11) 

B
m , B

c   and  B
k   are the mass, damping and stiffness matrices and  B

F   is the external force vector acting 

on the bridge. 
BDOF 4B

N

W   is the bridge’s contact direction matrix in the normal direction, corresponding 

to the contact force vector  4 1B

N

λ , and  
BDOF 4B

T

W   is the contact direction matrix in the tangential 

direction corresponding to the creep force vector  4 1

x

F . Both  B

NW   and  B

TW   contain linear shape 

functions for the axial DOFs and cubic (Hermitian) shape functions for the flexural DOFs. DOFB  denotes 

the number of DOFs of the bridge. 
eff,

B

NK   is the effective stiffness of the constraints in the normal direction: 

 
2

eff, 2

B B B B

N N N N

d d

dtdt
  K m c k . (12) 

where  B

Nm , B

Nc   and  B

Nk   are, respectively, the mass, damping and stiffness matrices of the contact 

constraints. ,B g
E   is the matrix of the constraints at the bridge supports due to earthquake motion. ,B g

λ   is 

the pertinent Lagrange multipliers vector and  ,

eff

B g
K   is the corresponding effective stiffness defined as: 

 
2

, , , ,

eff 2

B g B g B g B gd d

dt dt
  K m c k  (13) 

where  ,B g
m , ,B g

c   and  ,B g
k   are the mass, damping and stiffness matrices of the seismic motion 

constraints. 

2.3 Auxiliary contact points 

The study solves the coupled problem in a partitioned manner by introducing auxiliary contact points 

between the vehicle and bridge subsystems. The displacement vector of the auxiliary contact points  

  4 1g t u   includes translational DOFs in the normal direction, where a “rigid contact” kinematic 

constraint is applied. Rigid contact assumes continuous contact between the wheels and the bridge [9]. 

This study considers the auxiliary contact points as an intermediate system, between the vehicle and the 

bridge, with mass  g
m   proportional to that of the vehicle’s original mass  V

m . Therefore, it introduces a 

coefficient  a  to share  V
m   between the wheels and contact points. The values of  a  should be such that: a) 

the mass of the vehicle’s wheels does not become negative and b) the total mass of the system (and thus the 

system dynamics) does not change. Consequently, 0 1a  . Also, by eliminating the equation of motion of 

the auxiliary contact points (Eq. (14)) and the corresponding kinematic constraints (Eqs. (19) and (20) later), 

the equations of motion and kinematic constraints should coincide with those of the original vehicle-bridge 
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system. Thus, the mass matrix  g
m   of the auxiliary contact points is   

T
g V V Vam W m W , with 0 1a  , 

and the corresponding active mass matrix of the vehicle is   
T

gV V VV m Wm Wm  (Eq. (4)). For this 

simple 2D system, the mass of each contact point is  g wm am , and the active mass of each wheel becomes 

accordingly   1w wm a m  . The equation of motion of the auxiliary contact points is: 

 
eff,

2

,2 eff

g V V V B B B

N N N N N N

g gd

dt
  F E K λ Km λu E  (14) 

where  g
F   is the external force vector and  V

NE , B

NE   are identity matrices pertaining to the vehicle and 

bridge subsystems, respectively. 

2.4 Creep force model 

The contact model in the tangential direction assumes rolling contact between the wheels and the bridge, 

which generates creep forces [3]. The calculation of creep forces follows the Kalker’s creep model [18]. To 

account for high creepage during an earthquake, the creep force model considers a non-linear relationship 

between the creepage and the creep forces [19]. For a single wheel  wi, the creep force vector is: 

 i i i

x T TF f   (15) 

where  i

xF   is the creep force of wheel  wi  and  i

T   is the corresponding creepage. 
33

i

Tf f    is a creepage 

coefficient and  i   is a saturation coefficient [19]. The creepage vector  
Tξ  (Eq. (15)) contains the 

normalized relative velocity between the wheels and the bridge and can be written as: 

      
T

,

1 T T
V V B B B B

T T T T c T

d d
v v v

v dt dt

       
 

ξ W u W u W u r  (16) 

where  
,c Tr   is the rail irregularities vector in the tangential direction. 

3. Kinematic constraints 

In order to avoid problems related to DAEs, this study formulates both generalized coordinates and dynamic 

Lagrange multipliers through second-order ODEs. These equations represent the developed forces when the 

kinematic constraints tend to be violated [16]. 

3.1 Vehicle and bridge constraints 

The kinematic constraint between the vehicle subsystem and the auxiliary contact points in the normal 

direction (Fig. 1(b)) is: 

 V V V V V V

N N N N N N  m g c g k g 0 . (17) 

where  V

Ng   is the gap function between the vehicle’s wheels and the auxiliary contact points in the normal 

direction (Fig. 1(b)): 

    
T T

V V V V g

N N N g W u E u . (18) 

Substituting Eq. (18) into Eq. (17), the kinematic constraint becomes: 
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    
T T

eff,

V V V V g

N N N
  
  

K W u E u 0 . (19) 

Accordingly, for the bridge subsystem, the kinematic constraint with the auxiliary contact points in the 

normal direction is (Fig. 1(b)): 

  
T

2

eff, eff, , , ,

B B B B g B B B

N N N N c N N c N N c Nv v     K u K E u m r c r k r  (20) 

with: 

           
2 T T TT T T

2

eff, 2
2B B B B B B B B B B B B B

N N N N N N N N N N N N N

d d
v v v

dt dt

         
 

K m W m W c W m W c W k W .

 (21) 

,c Nr   is the rail irregularities vector in the normal direction. Note that the gap function   ,B

N x tg   between the 

bridge and auxiliary contact points (Fig. 1(b)) depends on both location  x  and time  t, as   B

N xW   matrix is 

time-dependent. 

3.2 Earthquake motion constraints 

Earthquake motion on the system is applied as an additional constraint equation to the bridge subsystem. 

This constraint equation is: 

 , , , , , ,B g B g B g B g B g B g  m g c g k g 0  (22) 

where  ,B g
g   is the vector connecting the displacement at the bridge’s supports with that of the ground: 

  
T

, ,B g B g B g  g E u q . (23) 

and  ,B g
m , ,B g

c   and  ,B g
k   are defined in Section 2.2.  g tq   is the vector of the ground motion at the 

supports. Thus, the constraint equation (Eq. (22)) becomes: 

  
T

, , ,B g B g B B g g

eff effK E u K q . (24) 

This kind of treatment of earthquake excitation, i.e., as unique constraints at each support of the bridge, also 

allows the consideration of asynchronous ground motion at the bridge’s supports as a future extension. 

3.3 Constrain coefficients 

This section calculates the mass  V

Nm , B

Nm , ,B g
m , damping  V

Nc , B

Nc , ,B g
c   and stiffness  V

Nk , B

Nk , ,B g
k   

matrices of the motion constraints of Eqs. (19), (20) and (24). The calculation of the pertinent matrices 

involves first the definition of the direction of the corresponding constraints. 

3.3.1 Vehicle system 

The vector  V

ib   defining the direction of the constraint between the vehicle and the auxiliary contact point  i  

in the normal direction results from the contact direction matrices  V

NW   and  V

NE , and it is: 

         
1

T T T T

, , , , , ,

V V V V V V

N i N i N i N

V

i Ni N i i



   
  

W W E E W Eb . (25) 
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In Eq. (25) subscript  i  refers to the column  i  of the contact direction matrices  V

NW   and  V

NE . In other 

words, ,

V

N iW   is the vector consisting of all entries of column  i  of  V

NW   matrix, and similarly for  ,

V

N iE . The 

mass matrix  V

Nm , corresponding to the Lagrange multiplier  V

Nλ , is: 

  ,

V V

N N iidiagm m  (26) 

with: 

  
T

,

V

V V V

N ii i ig

 
  

 

m 0
m b b

0 m
. (27) 

Accordingly, the damping  V

Nc   and stiffness  V

Nk   matrices are: 

    , ,andV V V V

N N ii N N iidiag diag c c k k  (28) 

where  ,

V

N iic   and  ,

V

N iik   are defined according to the characteristics of the system and of the time-integration 

algorithm. 

3.3.2 Bridge system 

Similar to the vehicle subsystem, the vector  B

ib , defining the direction of the constraints between the bridge 

and the auxiliary contact point  i, results from  B

NW   and  B

NE   contact direction matrices as: 

         
1

T T T T

, , , , , ,

B B B B B B

N i N i N i N

B

i Ni N i i



   
  

E E W W E Wb . (29) 

The mass matrix  B

Nm , corresponding to the Lagrange multiplier  B

Nλ , is: 

  ,

B B

N N iidiagm m  (30) 

with: 

  
T

,

g

B B B

N ii i iB

 
  

 

m 0
m b b

0 m
. (31) 

Accordingly, the damping  B

Nc   and stiffness  B

Nk   matrices are: 

    , ,andB B B B

N N ii N N iidiag diag c c k k  (32) 

where  ,

B

N iic   and  ,

B

N iik   are defined similarly to  ,

V

N iic   and  ,

V

N iik . 

3.2.3 Ground motion 

The direction of the constraints at the supports of the bridge results directly from  ,B g
E   matrix: 

  
T

,,B g g

i

B

i Eb . (33) 

The mass matrix  ,B g
m , corresponding to the Lagrange multiplier  

,B g
λ , is: 
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   
T

, , ,B g B g B B g

i idiagm b m b  (34) 

and the damping  ,B g
c   and stiffness  ,B g

k   matrices are: 

    , , , ,

, ,,B g B g B g B g

N N ii N N iidiag c diag c k k . (35) 

where  ,

,

B g

N iic   and  ,

,

B g

N iik   are defined similarly to  ,

V

N iic   and  ,

V

N iik . 

4. System of equations 

Equations (8), (10), (14), (19), (20) and (24) can be written as a system of equations (Eq. (1)): 

   

 

 

eff eff,

, ,

eff eff, eff

T T

eff, eff,

T

eff, eff,

eff, eff,

T
, ,

EF

2

F

,

V V

N

B B B g B g

N

V V

N N
V
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 (36) 

with: 

 2

, , ,

B B B

N c N N c N N cN N

B v v   m r c r k rw . (37) 

This system of equations (Eq. (36)) is solved in a partitioned manner. First, the contact forces and the 

response of the auxiliary contact points are calculated by substituting the first two rows of the system into the 

last four rows of Eq. (36). Then, the response of the vehicle and the bridge results by substituting the contact 

forces and the response of the auxiliary contact points into their EOMs (first two rows of Eq. (36)). The 

study adopts the Newmark’s beta method for the time-integration, with  1 2    and  1 4   [20]. 

5. Numerical application 

This section applies the proposed numerical scheme to a realistic vehicle-bridge system consisting of a series 

of ten simply supported bridges traversed by a 10-vehicle Pioneer train, similar to the study of Zeng and 

Dimitrakopoulos [4]. Each simply supported bridges is  L = 32 m long, with mass per unit length  m = 22.40 

t/m, Young’s modulus  E = 35.5 GPa, section area  A = 8.63 m2, lateral flexural moment of inertia  Izz = 85.86 

m4, vertical flexural moment of inertia  Iyy = 6.58 m4, and torsional stiffness  J = 15.21 m4. The vehicle 

properties are derived by [4]. The vehicle runs on rails of “very good” quality of irregularities according to 

the German Spectra [2] at speed  v = 300 km/h. When the vehicle enters the bridge, a strong earthquake (Fig. 

3) strikes. Fig. 3 plots the vertical (Fig. 3(a)) and lateral (Fig. 3(b)) components of the acceleration history of  
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Fig. 3 – Acceleration time-histories of the Tabas earthquake motion: (a) vertical and (b) lateral components 

the earthquake, recorded on September 16, 1978 at Tabas Station in Iran, [21].  

The study solves the coupled VBI problem with the following methods: the proposed localized Lagrange 

multipliers approach with a dynamic representation of the Lagrange multipliers via ODEs (localized - 

dynamic Lagrange), the solution of the complete coupled system where the Lagrange multipliers are also 

treated dynamically (coupled - dynamic Lagrange), and the classic Lagrange multipliers method that solves 

the coupled problem as a system of high-index DAEs (coupled - classic Lagrange). Fig. 4 illustrates the 

response of the vehicle and the bridge in the normal and longitudinal directions for all three methods. The 

response at the midpoint of the first bridge (Fig. 4(a) and (b)) coincides in all cases. As expected, the 

longitudinal response of the bridge (Fig. 4(b)) is very small. The contact force of the first wheel of the tenth 

vehicle (Fig. 4(c)) is the same for the localized - dynamic Lagrange and coupled - dynamic Lagrange 

methods. The solution of the problem via a system of DAEs (coupled - classic Lagrange) results into 

numerical instabilities that create drifts mainly in the vehicle response. Thus, the contact force from the 

coupled – classic Lagrange method does not agree with the other two solutions. (Fig. 4(c)). The numerical 

drifts become more pronounced in the displacement of the car-body of the first vehicle (Fig. 4(e)). In this 

case, the coupled – classic Lagrange method shows very large drifts (Fig. 4(e)), while the localized – 

dynamic Lagrange and coupled – dynamic Lagrange algorithms are in perfect agreement (Fig. 4(f)). 

The proposed localized – dynamic Lagrange approach that solves the vehicle and bridge subsystems 

separately is computationally more efficient than the coupled – dynamic Lagrange method, as it does not 

have to inverse the complete system matrix at each time step. For this 2D example, the proposed algorithm is 

2 times faster than the coupled algorithm. 

6. Conclusions 

This study presents an original methodology to solve the SVBI problem consistently but also efficiently. 

Introducing auxiliary contact points between the vehicle’ s wheels and the bridge, the analysis solves the 

vehicle and bridge subsystems separately. Based on the invariance of a generalized form of Newton’s law, 

the proposed approach treats the dynamic Lagrange multipliers via second-order ODEs. This approach leads 

to the elimination of instabilities associated with DAE formulations. The study accounts for earthquake 

excitations via constraints between the displacement of the bridge and the ground motion at the supports. 

The study applies the proposed numerical scheme to a realistic 2D vehicle-bridge configuration consisting of 

a ten-vehicle, HSR train traversing ten simply supported bridges subjected to a uniform earthquake 

excitation. In addition, it solves the same VBI problem with a coupled algorithm that treats Lagrange 

multipliers dynamically, as well as, with the classic Lagrange multipliers method, that considers kinematic 

constraints as algebraic equations, resulting into a system of high-index DAEs. The results indicate that the 

proposed approach is accurate, being in very good agreement with the coupled solution with a dynamic 

representation of Lagrange multipliers. Also, it is computationally more efficient compared to coupled 

algorithms. On the other hand, the classic Lagrange multipliers method shows large drifts, especially in the 

vehicle response. 
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Fig. 4 – A ten-vehicle train running on ten simply supported bridges: (a) vertical and (b) longitudinal 

displacement at the midspan of the fist bridge, (c) contact force of the first wheel of the tenth vehicle, and (d) 

acceleration and (e-f) displacement of the car-body of the first vehicle, (e) with and (f) without the vehicle 

response from the DAEs solution. 

The proposed approach is both accurate and computationally cheap, facilitating the treatment of large VBI 

problems in a consistent and efficient manner. This method can be extended to three-dimensional (3D) 

vehicle-bridge systems, while the application of earthquake via kinematic constraints at the bridge’s supports 

enable the consideration of asynchronous ground motion to the bridge. 
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