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Abstract 

Performance-based earthquake engineering requires the identification of different damage states in structural 

components. Bridge piers are one of the most critical components in the bridge system that dictates the 

overall performance of bridges under seismic loading. Identifying and assessing the probable performance is 

an integral part of performance-based design. The ability to predict different damage states of a bridge pier 

following an earthquake can be useful in restoring service, or prescribing appropriate remediation. Machine 

learning techniques are becoming attractive in earthquake engineering for predicting failure modes of 

building and bridges. The objective of this study is to implement different machine learning techniques to 

properly capture the different limit states (spalling, core crushing, and bar buckling) of reinforced concrete 

circular bridge piers under seismic loading. Using experimental data from large scale testing of circular 

bridge piers, this study aims to compare different machine learning techniques for predicting performance 

limit states. The efficiency of different methods will be identified using random data sets which are not used 

for training the models. In addition, this study will identify the influential variables affecting the different 

performance limit states and provide formulations for predicting different limit states that can be readily used 

by designers and practitioners. 
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1. Introduction 

Recent advances in performance based seismic design focus on improved post-earthquake functionality of 

structures and accurate prediction of seismic performance over a wide range of earthquake scenarios. 

Performance-based earthquake engineering requires the identification of different damage states in structural 

components. Bridge piers are one of the most critical components in the bridge system that dictate the overall 

performance of bridges under seismic loading. Identifying and assessing the probable performance is an 

integral part of performance-based design. The ability to predict different damage states of a bridge pier 

following an earthquake can be useful in restoring service, or prescribing appropriate remediation. Moreover, 

most of the design guidelines are moving towards performance-based design. AASHTO has already 

developed performance-based design guidelines for bridges referred as AASHTO SGS (AASHTO 2011). 

Moreover, the recent edition of the Canadian highway bridge design code (National Research Council of 

Canada 2019) has also adapted performance-based design and defined some performance levels and 

performance criteria for different types of bridges. 

 Due to recent technological progress, Machine Learning (ML) has become a broadly powerful tool. 

Machine learning techniques are becoming attractive in earthquake engineering for predicting failure modes 

of building and bridges, predicting concrete strength and elastic modulus [1-2]. A few researchers have 

applied machine learning methods in the field of structural engineering to classify failure modes in structural 

components [3-6]. Mangalathu and Jeon [3] applied machine learning techniques to classify failure modes 

and subsequently predict associated shear strength in beam-column joints. Additional research by 

Mangalathu and Jeon [4] explores the capabilities of various machine learning classification techniques in 

identifying bridge column failure modes. Mangalathu et al. [5] applied artificial neural network regression to 

generate bridge specific fragility curves. Pang et al. [6] additionally applied artificial neural network 

regression in simulating incremental dynamic analysis (IDA) curves at given intensity levels. Research is 

mounting in support for classification regression techniques applied to seismic fragility however; a gap exists 

in the use of machine learning regression techniques when predicting structural limit states. Despite the 

growth of movements applying ML to problems of structural and earthquake engineering, there remains the 

need for a concerted effort to identify how these tools may best be applied to performance-based earthquake 

engineering. 

 Given the variable nature of bridge pier design process, material and geometric properties, and 

performance requirements, there exists the need to have predictive tools that enable reasonable estimation for 

performance limit states of bridge piers. The objective of this study is to implement different machine 

learning techniques to properly capture the different limit states (spalling, core crushing, and bar buckling) of 

reinforced concrete circular bridge piers under seismic loading. Unlike previous studies which employ 

machine learning techniques for failure mode classification [3,4] a comprehensive set of regression tools are 

employed for the creation a regression model. This study implements several different classes of machine 

learning techniques such as linear regression, shrinkage methods, nearest neighbors, tree, and ensemble 

methods to properly capture the different limit states (spalling, core crushing, and bar buckling) of reinforced 

concrete circular bridge piers under seismic loading. Using experimental data from large scale testing of 

circular bridge piers, this study aims to compare different machine learning techniques for predicting 

performance limit states. The efficiency of different methods is identified using random data sets which are 

not used for training the models.  

2. Performance Limit States 

For performance based seismic design and assessment of bridges, it is critical to predict different damage 

states or performance levels under different levels of ground motions [7]. Damage experienced by a bridge 

pier, during an earthquake, is a function of ductility, deformation, energy dissipation, as well as strength and 

stiffness degradation. Damage indices are often used to quantify the damage sustained by a concrete bridge 

pier. Since damage is a complex function of different structural and response parameters, different 

cumulative and noncumulative damage indices are available in the literature. The Canadian Highway Bridge 
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Design Code, CAN/CSA S6-19 [8], has implemented Performance Based Design (PBD) as a requirement for 

seismic design of more important or irregular bridges. This means explicit performance objectives are 

defined and have to be demonstrated, in contrast to traditional codes where performance objectives are 

implicit. In S6-19, the damage-level criteria are defined as quantitative limits on concrete and reinforcement 

strains as well as qualitative limits on displacements or damage to bridge components. In this study, the 

focus is on the drift limits that apply to concrete bridge piers since they are the most common lateral force 

resisting element in typical highway bridges. The performance limits considered in this study are the spalling 

of cover concrete, crushing of core concrete, and buckling of longitudinal rebar (Fig. 1). Although, yielding 

of longitudinal rebar is the first significant damage that a reinforced concrete pier will encounter, it is not 

considered here since it can be easily predicted when the rebar strains exceed the yield strain for the first 

time. The yield strain of the rebar can be obtained by dividing the design yield strength of longitudinal rebar 

with the elastic modulus of steel (E=200 GPa). 

On the other hand, for RC columns and bridge piers, determining the exact occurrence of cover 

spalling/significant spalling from testing is challenging because damage is typically evaluated and reported at 

the loading cycle peaks. Also predicting the occurrence of spalling is not straightforward. Similarly, the 

crushing of core concrete depends on the compressive strength of concrete and the detailing of longitudinal 

and transverse reinforcement. Likewise, predicting the drift corresponding to core crushing is not 

straightforward and different empirical expressions exist in the literature [10,15]. Buckling of longitudinal 

bars is a common form of damage in reinforced concrete (RC) structures subjected to earthquakes. However, 

it is difficult to numerically simulate an RC structural member including the inelastic buckling of 

longitudinal reinforcing bars. Modeling localized nonlinear behavior and the complicated boundary 

conditions as well as their interactions with the reinforcing bar requires extensive computational cost, 

because failure of convergence often occurs in analysis. To resolve these limitations, this paper explores the 

application of machine learning techniques to identify the different performance limit states circular RC 

bridge piers. 

 

Fig. 1 – Typical definition of circular column performance limit states 

3. Column Database 

A comprehensive database of 143 experimental circular column results has been assembled for this study. 

The database consists of experimental column results provided by the PEER structural performance database 
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(SPD) [9], along with newly collected test data from additional experimental studies [10-13]. Results from 

the original PEER SPD consist of 163 experimental results. However, data which did not have limit state 

drifts recorded was excluded for this study, and experimental data for columns with unusual material 

properties (i.e. high yield strength rebar, high concrete compressive strength, and tensile column tests) were 

also excluded. Furthermore, the preliminary database was filtered for columns which experienced damage 

states outside of expected drift ratios as shown in Fig. 2. 

 

Fig. 2 – Filtered column input parameters 

 

The resulting database of 141 experimental circular columns has design parameters that fall within the 

following ranges: 

Axial load ratio: 0.003 ≤ 𝑃/𝑓𝑐′𝐴𝑔 ≤ 0.700  

Concrete compressive strength: 22.40 MPa ≤ 𝑓𝑐′ ≤ 57.00 MPa 

Aspect ratio: 1.5 ≤ 𝑙/𝑑 ≤ 10.0 

Yield strength of longitudinal reinforcement: 294 MPa ≤ 𝑓𝑦𝑙 ≤ 565 MPa 

Longitudinal reinforcement ratio: 0.46% ≤ 𝜌𝑙  ≤ 5.21% 

Yield strength of transverse reinforcement: 207 MPa ≤ 𝑓𝑦𝑡≤ 607 MPa 

Transverse reinforcement ratio: 0.13% ≤ 𝜌𝑠 ≤ 2.84% 

  

 Where 𝑃/𝑓𝑐′𝐴𝑔= axial load ratio, defined as the axial compressive load (𝑃) divided by the concrete 

compressive strength (𝑓𝑐′) and gross cross sectional area (𝐴𝑔); 𝑙/𝑑 = aspect ratio, defined as the column 

length (𝑙) divided by the column diameter (𝑑); 𝑓𝑦𝑙  = yield strength of longitudinal reinforcement; 𝜌𝑙  = 

longitudinal reinforcement ratio; 𝑓𝑦𝑡 = yield strength of transverse reinforcement; 𝜌𝑠 = transverse (spiral or 

hoop) reinforcement ratio. 

 

 Performance-based earthquake engineering in reinforced concrete structures requires the prediction of 

deformations at the onset of different damage states in structural components Typically, damage states are 

defined in terms of drift or displacement where they are defined as discrete observable damage states such as 

rebar buckling, concrete spalling, and core crushing [7,14]. The current edition of the Canadian highway 

bridge design code [8] defines performance criteria for four different performance levels such as immediate, 

limited, service disruption, and life safety. Previous work by Berry and Eberhard [15] identifies key damage 

states for bar buckling and concrete spalling as a function of deformation which will be used in classifying 

limit states performance. 
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 The table below (Table 1) summarizes relevant drift limit states prescribed in the current edition of the 

Canadian highway bridge design code [8]. It should be noted that due to an inadequate amount of cracking 

experimental results, the limit states model for this damage state has been excluded in this research. 

Table 1 – Bridge component damage states 

Damage 

parameter 

Functionality 

 level 

Damage Level 

Description 

Cracking* Immediate Minimal Onset of hairline cracking 

Spalling Limited Repairable Onset of concrete spalling 

Core Crushing Service Disruption Extensive Crushing of core concrete 

Buckling Life Safety 

Probable 

Replacement Theoretical first buckling of longitudinal rebar 

 

4. Machine Learning Regression Methods 

The objective of this research is to develop a regression model for bar buckling, concrete spalling, and core 

crushing limit states of circular reinforced concrete bridge columns as a function of their selected input 

parameters. As such, various regression methods such as decision trees (DT), K-nearest neighbors (KNN), 

least angles regression lasso (LARS Lasso), and artificial neural networks (ANN) are explored. An overview 

of the regression algorithm is provided in the following section, along with the author’s reasoning behind 

input parameter selection. As this section is not intended to be a comprehensive overview of the selected 

regression methods, readers are directed to either additional sources [16-18] for further insight. 

4.1 Artificial Neural Network 

 

Fig. 3 – Artificial neural network layout for limit state drift ratio regression 

Artificial neural networks are a type of nonlinear regression model which operate by emulating the function 

of neurons found in biology. The neural network arrangement used in this study as shown in Fig. 3 is defined 
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as the feedforward multilayer perceptron (MLP)[19,20]. Typical MLP neural networks are composed of an 

input layer, several hidden layers, and output layer. Hidden layers used in this study are comprised of 

varying amounts of neurons which feed forward to the next hidden layer using a weighting function. Each 

neuron in a hidden has the following output signal:  

𝑦𝑘 =  𝜑 [∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝑏𝑘] 
(1) 

In which 𝜑 is the neuron’s activation function; m is the number of neurons in the hidden layer; 𝑤𝑘𝑗 are 

the synaptic weights; 𝑥𝑗 are the input signals; and 𝑏𝑘is the hidden neuron bias. The particular activation 

function used in this study is the rectified linear unit (ReLU) as it lends itself particularly well to better 

performance of deep networks [21]: 

𝜑(𝑣) =  𝑚𝑎𝑥 (0, 𝑣) 
(2) 

 

 The samples from the database are first permutated to randomize their order, and 25% of the samples 

are reserved for model testing. The remaining 75% of sample data is used to train the network model and 

develop a regression function. A loss function of the neural network model is tested against the reserved data 

at each epoch where the model weighting factors are refined. 

4.2 Linear Regression  

Linear regression (LR) is the simplest and most commonly applied regression technique that generates a line 

of best fit through a specified set of points, in the form of: 

𝑦 =  𝛽𝑜  +  ∑ 𝑥𝑗𝛽𝑗

𝑝

𝑗=1

 
(3) 

 Where 𝑝  number of unknown 𝛽𝑗  coefficients exist for each input parameter. Coefficients 

𝛽𝑗 , 𝛽𝑘 , 𝛽𝑙 ⋯ 𝛽𝑝 are typically estimated using the least squares method, in which the coefficients are selected 

to minimize the residual sum of squares in equation 4. 

𝑅𝑆𝑆(𝛽)  =  ∑ (𝑦𝑖 − 𝛽𝑜 −  ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

 )

2
𝑁

𝑖=1

 (4) 

 

4.3 Ridge Regression 

Ridge regression (RR) is a shrinkage method that implements a size penalty on regression coefficients. 

Shrinkage methods retain a subset of predictors to produce a model which tends to have lower variance as 

compared to the least squares estimator as discussed previously. Ridge regression penalizes the residual sum 

of squares as 

�̂�𝑟𝑖𝑑𝑔𝑒   =      𝛽
𝑎𝑟𝑔𝑚𝑖𝑛

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑖𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝛼 ∑ 𝛽𝑗
2

𝑝

𝑗=1

} 
(5) 
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 Where 𝛼  is the nonzero complexity parameter that controls the amount of shrinkage. A larger 𝛼 

corresponds to greater amount of model shrinkage and thus the models become more resistant to collinearity. 

A value of 𝛼 = 0.5 has been used in the ridge regression model in this research. Typically a size constraint 𝑡 

for inputs is also implemented in ridge regression, and coefficients are scaled respectively such that  

∑ 𝛽𝑗
2

𝑝

𝑗=1

≤ 𝑡 
(6) 

 Imposing a size constraint alleviates a problem of high variance in the correlation variables, however 

the inputs need also be standardized to ensure solutions are equivariant. 

4.4 Least Angle Regression Lasso 

Least angle regression is a newer [22] shrinkage method similar to forward stepwise regression. Much like 

ridge regression, least angles regression tends to produce a model with lower variance as compared to least 

squares regression.  

 The least angle regression algorithm first standardized the predictors to have mean zero and unit norm. 

Initial residual response is defined as: 

yyr         (7) 

 The algorithm selects the input variable 𝑥𝑗 most correlated with the residual response, 𝑟. The value of 

the corresponding 𝛽𝑗  coefficient is modified from 0 towards its least-squares coefficient (𝑥𝑗 , 𝑟)  by the 

algorithm until a second predictor 𝑥𝑘 has equal correlation. Coefficients 𝛽𝑗, 𝛽𝑘 are modified together in the 

direction towards their joint least-squares coefficient (𝑥𝑗, 𝑥𝑘) until another predictor 𝑥𝑙 has equal correlation 

with the combined current residual. The process of evaluating joint correlation and progressively including 

the remainder of predictors is repeated until all 𝑝 coefficients have been inputted. At any point where a joint 

least squares coefficient is evaluated, the lasso modification to the least angle regression algorithm monitors 

the existing pool of nonzero (𝛽𝑗, 𝛽𝑘 , 𝛽𝑙 ⋯ 𝛽𝑝) coefficients. If any of the coefficients reach zero, the LARS 

lasso algorithm removes them from the active set and the joint least squares direction is recalculated. As 

such, least angle regression always takes 𝑝 steps to reach the full least squares estimates, whereas the lasso 

modification of LARS can have more than 𝑝 steps. 

4.5 K-Nearest Neighbors Regression 

K-nearest neighbors regression (KNN) is a nonparametric method which predicts a numerical target based on 

a distance function to its K-nearest neighbors. In this study’s defined search space, the KNN makes use of an 

automatic search algorithm which tests both k-d tree and ball tree search within the multidimensional search 

space. For the predicted data x, the KNN identifies K number of neighbors from its training data which are 

closest to x. Using the following Euclidian distance function a weighting factor is generated to produce the 

prediction:  

 𝐷 =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1  (7) 

 

The choice of K has great influence on the performance of the KNN model. Lower K values limit 

model bias and allow for higher variance, whereas high K values limit model variance and allow for higher 

bias. In this study K values between 1 and 10 were tested, the mean absolute error (MAE) values for the 

models are shown in table 2. The MAE values are normalized and K=3 is shown to have the best overall 

performance for the three limit states models. 
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Table 2 – Influence of K parameters  

 Normalized 

Buckling MAE 

Normalized 

Spalling MAE 

Normalized 

Crushing MAE 

Average 

Normalized MAE 

K = 1 1.000 1.000 0.878 0.959 

K = 2 0.832 0.885 0.974 0.897 

K = 3 0.799 0.780 0.937 0.839 

K = 4 0.785 0.828 0.973 0.862 

K = 5 0.848 0.838 0.959 0.882 

K = 6 0.921 0.882 1.000 0.934 

K = 7 0.930 0.913 0.996 0.947 

K = 8 0.918 0.860 0.977 0.919 

K = 9 0.912 0.787 0.960 0.886 

K = 10 0.947 0.779 0.991 0.905 

4.6 Decision Tree Regression 

Decision trees are another nonparametric regression method that operate by forming a tree-like decision 

network by learning simple decision rules inferred from the data features. The decision tree algorithm uses 

recursive partitioning to divide the data into unique regions with distinct boundaries. Decision trees are 

initiated with a root node, and using binary splits henceforth, interior and terminal nodes are formed where 

each internal node has only one parent and two children, and each terminal node has one parent only. Fig. 4 

shows the layout of the decision tree as an example for the regression of core crushing drift limit. 

 In this study, a nonlinear relationship between predictors and response warrants the use of the 

classification and regression trees (CART) algorithm by the decision tree regressor. CART is a similar 

implement to C4.5, with the exception of support for regression, and exclusion of computed rulesets. 

4.7 Random Forest Regression 

Random forest (RF) is an ensemble method that creates multiple parallel tree structures consisting of 

decision trees [23]. RF implements bootstrap aggregation (bagging) and random feature selection which 

generates each tree using the bootstrap sampled versions of the training data. The regression model generated 

is the averaged regressor of each decision tree subassembly. Random forests make for a powerful regression 

model since the relatively low bias of Decision trees is maintained, while a common problem in decision 

trees, noise is reduced by averaging. 

A generalized random forests algorithm consists of the following procedure: 

For 𝑏 = 1 𝑡𝑜 𝐵 

1. Draw a bootstrap sample Z from the available training data 

2. Grow a decision tree 𝑇𝑏  from each bootstrap sample data, by randomly selecting variables from 

those available and selecting the best split among the data until the minimum node size is reached. 

Output the forest ensemble {𝑇𝑏}1
𝐵 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

 
(8) 
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Fig. 4 – Decision Tree layout for concrete core crushing limit state drift ratio regression 

 

5. Performance of Different Regression Methods  

To evaluate the performance of the proposed regression models in predicting future data, the database is 

divided into training and testing set with a 75%-25% ratio respectively. Training and testing sets assignment 

is randomized by permutating the database using a predefined seed for repeatability. Training data makes up 

the majority of the database and is used to train all regression models, whereas the testing data is used to 

estimate fitting accuracy of the proposed models and to avoid overfitting. The regression model predictions 

are compared against the test set actual values to determine error. In this study, Mean absolute error (MAE) 

and mean square error (MSE) criteria are evaluated and compared amongst model performance for each of 

the three drift limit states. MAE and MSE can be estimated as 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌′𝑖 − 𝑌𝑖|

𝑛

𝑖=1

 
(9) 
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𝑀𝑆𝐸 =
1

𝑛
∑(𝑌′𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

 
(10) 

 Where 𝑌′ is the actual testing set result and 𝑌 is the corresponding regression model prediction. The 

results of the three limit states’ regression models have been summarized in the tables 3 and 4 as follows. 

Table 3 – Limit state regression mean absolute error 

MAE 
ANN 

regression 

Linear 

regression 

Ridge 

regression 

LARS 

lasso 

regression 

KNN 

regression 

(K=3) 

Decision 

tree 

regression 

Random 

forest 

regression 

Bar 

buckling 
1.310 1.407 1.342 1.381 0.789 0.921 0.987 

Concrete 

spalling 
0.762 0.744 0.552 0.616 0.461 0.822 0.518 

Core 

crushing 
1.127 1.421 1.168 1.039 0.907 1.412 1.071 

 

Table 4 – Limit state regression mean square error 

MSE 
ANN 

regression 

Linear 

regression 

Ridge 

regression 

LARS 

lasso 

regression 

KNN 

regression 

(K=3) 

Decision 

tree 

regression 

Random 

forest 

regression 

Bar 

buckling 
2.485 2.709 2.324 3.258 0.913 1.508 1.234 

Concrete 

spalling 
0.776 0.834 0.499 0.610 0.438 1.027 0.543 

Core 

crushing 
1.666 3.126 1.821 1.355 1.433 2.851 1.578 

 

K-nearest neighbors regression outperforms neural network, linear, and tree based regression methods 

by an average margin of 51.9%, 34.8%, and 15.7% respectively. Therefore, the K-nearest neighbors model 

with K=3 is the suggested regression model for limit states identification of all three studied states. The 

model provides a reasonable accuracy in identifying a drift limit state for a provided bridge column suitable 

for performance based design. 

Note that the regression results are relevant to circular reinforced concrete bridge columns with 

material properties falling into the ranges of those discussed in section 3. Further research is recommended in 

populating a larger experimental database, and exploration of influence of additional column parameters.  

6. Conclusions 

The ability to predict different damage states of a bridge pier following an earthquake can be useful in 

restoring service, or prescribing appropriate remediation. This study explores the feasibility of applying 

machine learning regression techniques in predicting circular bridge column limit states. This is achieved by 

compiling an extensive experimental database of bridge columns with varying material, geometrical, and 
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loading properties. To minimize outliers for the developed regression models, abnormal experimental 

configurations are excluded from the database as the interaction between inputs is nonlinear and complex. 

 The experimental database is permutated and divided into 75% training and 25% testing data set. 

Various machine learning regression methods such as artificial neural network (ANN), linear regression 

(LR), least angle regression lasso (LARS Lasso), ridge regression (RR), K-nearest neighbors (KNN), 

decision tree (DT), and random forests (RF) are established using the training data set. The remaining test 

dataset is used to categorize the efficiency of the proposed regression models using mean absolute error 

(MAE) as the performance criteria, where it is consistently shown that KNN consistently achieves the most 

accurate prediction.  

 In this study, the K-nearest neighbors model with K=3 is the suggested regression model for limit 

states identification with reasonable accuracy. It should however be noted, that the underperformance of the 

ANN model suggests that a larger experimental database would yield more accurate results. Nevertheless, 

the comparison of various machine learning regression models highlights the complex nonlinear relationship 

in predicting seismic performance limit states. 
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