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Abstract 

Quick evaluation of seismic safety in existing bridge structures needs reliable and simple methods of analysis, at least for 

preliminary approaches, reserving more complex methods such as those based on finite elements to deeper investigations. 

Among existing bridges stone and masonry arches were widely built in the past and are still in service under more and 

more increasing traffic loads.  

The mechanism method is certainly a good candidate to satisfy the requirements of simplicity and rapidity. The main 

hypothesis is that stone arches fail by forming pin joints, as demonstrated by old but also by recent experimental studies. 

Furthermore, the assumption of masonry with no tensile strength and infinite compressive strength was done in the starting 

applications of the method. This last hypothesis was removed in previous papers, by assuming a rigid-perfect plastic 

behavior in compression. The load factor and the corresponding collapse mechanism are found by using an iteration 

procedure. The model has been applied also for the analysis of two-span arch bridges under vertical loads, so that the 

collapse mechanism involves plastic hinges in the two arches and the pier. In this paper the two-span arch under horizontal 

seismic load is considered, assuming static forces according to a uniform distribution of horizontal accelerations. 
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1. Introduction 

If compared with the other numerical techniques, the mechanism method has the advantage of simplicity, 

clarity of the solution, and speed of the analysis. Therefore, it can be very useful in expeditious approaches to 

safety assessment. On the basis of the limit analysis developed in the eightieth century, Kooharian [1] and then 

Heyman [2, 3] established the principles for the application of the limit analysis to masonry structures. The 

mechanism method has been extensively applied for the stability assessment of masonry arch bridges, 

assuming the hypotheses of no tensile strength but infinite strength in compression for the material. A wide 

numerical investigation was carried out by Clemente et al. [4] on the influence of the geometrical and loading 

parameters on the limit behavior of a single span arch bridge subject to dead plus vertical live loads.  

The mechanism model allowed studying also the limit behavior under dead plus seismic loads with different 

hypotheses about the interaction between the fill and the ring [5]. The complex dynamic behavior of a single 

arch subject to base motion was also studied [6, 7]. The analysis carried out in [7], in detail, referred to the 

first half cycle of vibration of an arch under sinusoidal base acceleration and focused the attention on the 

importance of frequency content and amplitude of the input and the initial conditions.  

While the hypothesis of no tension strength is almost true for masonry, that of infinite compression strength 

could be quite far from the reality. Several authors considered the case of finite compression strength. Among 

these, Crisfield and Packham [8] who developed a numerical procedure to evaluate the collapse load for 

masonry arch bridges. The load spreading in the fill was considered as well as the lateral earth resistance. The 

importance of considering a finite strenght in compression was emphasized especially for reinforced masonry 

arch bridges [9, 10]. Clemente et al. [11] analyzed the effect of the reduction of the effective design thickness 

on the limit behavior. The reduction was correlated to the material actual strength and the results gave a 

measure of the obvious reduction of the load factor but pointed out also a negligible influence on the hinge 

locations.  

More recently, a rigid-perfect plastic model with finite compression strength for the masonry has been 

proposed for a single span arch bridge [12]. The new model was already tested also with reference to the limit 

behavior under seismic actions [13, 14], using different hypotheses about the interaction between the fill and 

the ring.  

Little interest has been devoted in the past to the limit analysis of multi-span masonry arch bridges. An analysis 

of a two-span arch bridge under vertical static loads is in [15]; the Heyman’s hypothesis of infinite compression 

strength of masonry was assumed. Using the same model, a comprehensive analysis is also in [11], where the 

limit behavior of a two-span masonry arch bridge was analyzed in detail under dead and travelling loads. The 

approach based on limit analysis for multi-span arch bridges is questioned in [16], pointing out that often 

masonry compression strength can be reached before the collapse mechanism is activated. The already 

mentioned rigid-perfect plastic model with finite compression strength for the material has been used also for 

a two span masonry arch bridge under dead and travelling loads [17].  

In this paper the limit analysis of a two-span masonry arch bridge, with equal spans, under horizontal seismic 

actions is carried out assuming a rigid-perfect plastic model for masonry with finite strength in compression. 

The fill is considered for its weigh and inertial load acting on the arch ring; its contribution in the structural 

resistance is not considered.  

 

2. Statics and kinematic of collapse mechanism  

2.1 The plastic hinge  

In the hypothesis of no tensile strenght and rigid-perfect plastic behavior of masonry in compression, the 

effective cross-section at hinges is uniformely compressed with the tension equal to fm, and the relative rotation 

points are at the internal starting points of the stress diagram. As a consequence, the compression force at 

hinges does not pass through the rotation point, but at half depth of the yielded zone (Fig. 1). The limit domain 

is also represented in Fig 1 in terms of non-dimensional eccentricity 𝑒̂ and axial force 𝑁̂.  
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Fig. 1 – Stress on the cross section at hinge and kinematic behaviour in the hypotheses of finite compression 

strength (left) and limit domain 

2.1 Kinematic of the mechanism 

Depending on geometry, materials and load, the collapse mechanism of a two-span arch bridge under a generic 

loading could involve a single arch only or be a global mechanism, whihc involves both the spans and the pier. 

The global collapse mechanism of the system is characterized by at least seven hinges deployed as in Fig. 2. 

According to limit analysis, the collapse mechanism and the corresponding load factor can be found by using 

an iteration procedure based on the kinematic and static theorems. For a given admissible mechanism, the 

diagram of virtual vertical displacements of the two arch spans and pier can be plotted (Fig. 2).  

 

Fig. 2 – Two-span arch bridge and collapse mechanism 

 

For each arch (i = 1, 2), the distributed dead load of the ring is given as follows:  
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𝑤(𝑥𝑖) = 𝛾𝑤𝑏 𝑡(𝑥𝑖)/ 𝑐𝑜𝑠 𝛼(𝑥𝑖)         (1) 

whereas the backfill dead is:  

𝑤𝑏(𝑥𝑖) = 𝛾𝑏𝑏[ℎ + 𝑓 + 𝑡(𝐿/2)/2 − 𝑦(𝑥𝑖) − 𝑡(𝑥𝑖)/ 2cos 𝛼(𝑥𝑖)]    (2) 

In the previous formulas, b is the width of the arches, (𝑥𝑖) is the angle between the tangent to the arch centre 

line at 𝑥𝑖  and the horizontal axis, 𝛾𝑤 is the weight per unit volume of the ring material, 𝛾𝑏 that of the backfill. 

The other quantities are shown in Fig. 2.  

The self-weight of the pier can be expressed as (bp = width of the pier):  

𝑤𝑝(𝑦∗) = 𝛾𝑤𝑏𝑝𝑡𝑝(𝑦∗)       (3) 

If the he following non-dimensional quantities are introduced:  

𝑥𝑖 =
𝑥𝑖

𝐿
;       ℎ̂ =

ℎ

𝐿
;       𝑓 =

𝑓

𝐿
;       𝑡̂(𝑥𝑖) =

𝑡(𝑥̂𝑖𝐿)

𝐿
;        𝑦̂(𝑥𝑖) =

𝑦(𝑥𝑖𝐿)

𝐿
;        𝑡̂𝑝(𝑦̂∗) = 𝑡𝑝(𝑦̂∗𝐿)/𝐿  (4) 

from Eqs. (1)-(3): 

𝑤̂(𝑥𝑖) = 𝑤(𝑥𝑖)/𝛾𝑤𝑏𝐿;       𝑤̂𝑏(𝑥𝑖) = 𝑤𝑏(𝑥𝑖)/𝛾𝑤𝑏𝐿;      𝑤̂𝑝(𝑦̂∗) = 𝑤𝑝(𝑦∗)/𝛾𝑤𝑏𝐿    (5) 

The work associated to ring, backfill and pier self-loads is expressed in non-dimensional way as follows: 

𝐿𝑤 = 𝛾𝑤𝑏𝐿3 {∑ ∫ [𝑤̂𝑤,𝑖(𝑥𝑖)̂(𝑥𝑖) + 𝑤̂𝑏,𝑖(𝑥𝑖)̂(𝑥𝑖)]
1

0
𝑑𝑥𝑖

2
𝑖=1 + ̂∗ [𝑊̂𝑏,𝑝 + ∫ 𝑤̂𝑝(𝑦̂∗)𝑑𝑦̂∗𝐻𝑝/𝐿

0
]}   (6) 

where 𝑊̂𝑏,𝑝 is the load given by the portion of the fill over the pier.  

In the previous equation, the weight of the pier per unit length is deduced by some manipulation:  

𝑤̂𝑝(𝑦̂∗) = 𝑤𝑝(𝑦̂∗𝐿)/𝛾𝑤𝑏𝐿 = 𝑏̃𝑡̂𝑝(𝑦̂∗𝐿)     (7) 

with 𝑏̃ = 𝑏𝑝/𝑏. 

The horizontal load depends on the model assumed for the structure-backfill interaction. The arch is subject to 

the horizontal inertial loads due to the mass of the ring. The horizontal inertial actions due to the mass of the 

backfill, present from the abutment to the arch profile, is considered only on half of the arch, while the backfill 

is supposed to tend to separate from the arch at the other half. If ag is the horizontal acceleration and we assume 

the hypothesis of rigid behavior of the structure before the mechanism activation, the two half spans and the 

pier are loaded as follows: 

𝑝ℎ,1(𝑥1) = [𝑤𝑤(𝑥1) + 𝛾𝑏 𝑡𝑎𝑛 𝛼 (𝑥1 −
𝑡

2𝑠𝑖𝑛𝛼
)] 𝑎𝑔/𝑔    (8) 

𝑝ℎ,2(𝑥2) = [𝑤𝑤(𝑥2) + 𝛾𝑏 𝑡𝑎𝑛 𝛼 (2𝑥2 + 𝑙 −
𝑡

𝑠𝑖𝑛𝛼
)] 𝑎𝑔/𝑔    (9) 

𝑝ℎ,𝑝(𝑦∗) = 𝑤𝑝(𝑦∗)𝑎𝑔/𝑔         (10) 

The virtual work done by an external horizontal inertial load can be expressed as follows: 

𝐿𝑝 = ∫ 𝑝ℎ,1(𝑥1)𝜉(𝑥1)
𝐿/2

𝑥1,0
𝑑𝑥1 + ∫ 𝑝ℎ,2(𝑥2)𝜉(𝑥2)

𝐿/2

𝑥2,0
𝑑𝑥2 + ∫ 𝑝ℎ,𝑝(𝑦∗)𝜉(𝑦∗)

𝐻𝑝

𝑥4,0
𝑑𝑦∗    (11) 

where 𝑥i,0 are the starting points of the load ph,i and 𝜉 the horizontal virtual displacement. Finally, the internal 

work at the seven hinges is: 
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𝐿𝑖 = 2 ∑ 𝑏𝑓𝑢𝑑𝑖
2∆𝜑𝑖

7
𝑖=1 = 2𝛾𝑤𝑏𝐿3 ∑ 𝜎𝑑̂𝑖

2∆𝜑𝑖
7
𝑖=1      (12) 

Therefore, the collapse acceleration value, i.e., the kinematic load multiplier, associated to the chosen collapse 

mechanism, is calculated as follows: 

𝑎̂𝑔 = (𝐿𝑖 − 𝐿𝑤)/𝐿𝑝         (13) 

where 𝑎̂𝑔 = 𝑎𝑔/𝑔. 

 

2.2 Equilibrium conditions 

Once the load factor corresponding to the assigned collapse mechanism is found, one can calculate the variable 

load and the external forces, by means of six equilibrium equations: 

- Horizontal equilibrium of the whole structure: 

𝐻̂(1) + 𝐻̂(12) + 𝐻̂(2) +  [∫ 𝑝̂ℎ,1(𝑥̂1)𝑑𝑥1 + ∫ 𝑝̂ℎ,2(𝑥̂2) 𝑑𝑥2
𝑥ℎ7

0

1

𝑥ℎ1
+

∫ 𝑝̂ℎ,𝑝(𝑦̂∗)𝑑𝑦̂∗𝐻𝑝/𝐿

𝑥ℎ4
] = 0          (14) 

 

- Vertical equilibrium of the whole structure: 

𝑉̂(1) + 𝑉̂(12) + 𝑉̂(2) − ∫ [𝑤̂𝑤,1(𝑥̂1) + 𝑤̂𝑏,1(𝑥̂1)] 𝑑𝑥1 − ∫ [𝑤̂𝑤,2(𝑥2) + 𝑤̂𝑏,2(𝑥2)] 𝑑𝑥2
𝑥ℎ7

0

1

𝑥ℎ1
−

∫ 𝑤̂𝑝(𝑦̂∗)𝑑𝑦̂∗𝐻𝑝/𝐿

𝑥ℎ4
− 𝑊̂𝑏,𝑝 = 0      (15) 

- Rotation by hinge h1:  

𝐻̂(12)𝑟14,𝑦 + 𝐻̂(2)𝑟17,𝑦 − 𝑉̂(12)𝑟14,𝑥 − 𝑉̂(2)𝑟17,𝑥

+ ∫ [𝑤̂𝑤,1(𝑥̂1) + 𝑤̂𝑏,1(𝑥̂1)](𝑥̂1 − 𝑥ℎ1)𝑑𝑥1

1

𝑥ℎ1

+ ∫ [𝑤̂𝑤,2(𝑥̂2) + 𝑤̂𝑏,2(𝑥̂2)] (𝑥2 + 1 +
𝑙

𝐿
− 𝑥ℎ1) 𝑑𝑥2 +

𝑥ℎ7

0

(1 +
𝑙

2𝐿
− 𝑥ℎ1) [𝑊̂𝑏,𝑝

+ ∫ 𝑤̂𝑝(𝑦̂∗)𝑑𝑦̂∗

𝐻𝑝

𝐿

𝑥ℎ4

] + 

+ ∫  𝑝̂ℎ,1(𝑥1)[𝑦̂(𝑥̂1) − 𝑦̂(𝑥ℎ1)]𝑑𝑥1 + ∫ 𝑝̂ℎ,2(𝑥̂2)[𝑦̂(𝑥̂2) − 𝑦̂(𝑥ℎ1)]
1/2

0
𝑑𝑥2 − ∫ 𝑝̂ℎ,𝑝(𝑦̂∗)[𝐻̂𝑝 − 𝑦̂∗ +

𝐻̂𝑝

𝑦̂ℎ4(

1/2

𝑥ℎ1

𝑦̂ℎ4 − 𝑦̂1,ℎ1]𝑑𝑦̂∗ = 0      (16) 

- Rotation by hinge h1 of the portion between h1 and h3:  

−𝐻̂(1)𝑟13,𝑦 + 𝑉̂(1)𝑟13,𝑥 − ∫ [𝑤̂𝑤,1(𝑥̂1) + 𝑤̂𝑏,1(𝑥̂1)](𝑥̂ℎ3 − 𝑥1)𝑑𝑥1
𝑥ℎ3

𝑥ℎ1
− ∫  𝑝̂ℎ,1(𝑥1)[𝑦̂(𝑥̂ℎ3) −

1/2

𝑥ℎ1

𝑦̂(𝑥1)]𝑑𝑥1 = 0      (17) 

- Rotation by h5  of the portion between h5 and h7: 

𝐻̂(2)𝑟57,𝑦 − 𝑉̂(2)𝑟57,𝑥 + ∫ [𝑤̂𝑤,2(𝑥̂2) + 𝑤̂𝑏,2(𝑥̂2)](𝑥̂2 − 𝑥ℎ5)𝑑𝑥2
𝑥ℎ7

𝑥ℎ5
− ∫  𝑝̂ℎ,2(𝑥̂2)[𝑦̂(𝑥̂ℎ5) −

1/2

𝑥ℎ5

𝑦̂(𝑥2)]𝑑𝑥2 = 0      (18) 
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- Rotation by h2 of the portion between h2 and h7: 

𝐻̂(12)𝑟24,𝑦 + 𝐻̂(2)𝑟27,𝑦 − 𝑉̂(12)𝑟24,𝑥 − 𝑉̂(2)𝑟27,𝑥 + ∫ [𝑤̂𝑤,1(𝑥̂1) + 𝑤̂𝑏,1(𝑥1)](𝑥1 − 𝑥ℎ2)𝑑𝑥1 +
1

𝑥ℎ2

∫ [𝑤̂𝑤,2(𝑥̂2) + 𝑤̂𝑏,2(𝑥̂2)](𝑥̂2 + 1 + 𝑙/𝐿 − 𝑥ℎ2)𝑑𝑥2 +
𝑥ℎ7

0
(1 + 𝑙/2𝐿 − 𝑥ℎ2) [𝑊̂𝑏,𝑝 + ∫ 𝑤̂𝑝(𝑦̂∗)𝑑𝑦̂∗𝐻𝑝/𝐿

𝑥ℎ4
] +

∫  𝑝̂ℎ,1(𝑥̂1)[𝑦̂(𝑥̂1) − 𝑦̂(𝑥ℎ2)]𝑑𝑥1 + ∫ 𝑝̂ℎ,2(𝑥̂2)[𝑦̂(𝑥̂2) − 𝑦̂(𝑥ℎ2)]
1/2

0
𝑑𝑥2 − ∫ 𝑝̂ℎ,𝑝(𝑦̂∗)[𝐻̂𝑝 − 𝑦̂∗ +

𝐻̂𝑝

𝑦̂ℎ4(

1/2

𝑥ℎ2

𝑦̂ℎ4 − 𝑦̂1,ℎ2]𝑑𝑦̂∗ = 0              (19) 

In the previous equations, the superscript (i) of forces 𝐻̂ and 𝑉̂ identifies the horizontal and vertical forces on 

arch (1) or (2), and on pier (12). Furthermore, rij,x and rij,y are the horizontal and vertical distance, respectively, 

between the points of applications of forces at hinges hi and hj. 

 

Limit analysis under horizontal forces 

As well known, the actual load factor is the only one that is contemporarily a kinematically and statically 

admissible factor. The solution is searched iteratively assuming a starting set of hinge positions. Then, the 

corresponding collapse acceleration value is calculated using the principle of virtual works and then the 

reaction forces can be found. The couples 𝑒̂ , 𝑁̂  are then evaluated. If the corresponding points are always 

internal to the limit domains of cross-sections of the arch and pier, the found load factor is also a statically 

admissible load factor. If it is not, the hinges are moved to the sections where the exceedances are maximum. 

The iteration procedure will be stopped when the kinematically admissible load factor is also a statically 

admissible load factor. 

As an example, let consider a two-span arch bridge with the following geometrical characteristics and : 

𝑓 = 0.25;     ℎ̂ = 0.0;     𝑡̂ = 0.06;     𝑡̂𝑝 = 0.1;     𝐻̂𝑝 = 0.6;     𝛾 = 0.5       (20) 

In the hypothesis of rigid behavior up to the onset of the collapse mechanism, the bridge is subject to a uniform 

horizontal acceleration (Fig. 3). The collapse acceleration value depends on the non-dimensional stress 

parameter 𝜎 = 𝑓𝑢 𝛾𝑤𝐿⁄  (where 𝑓𝑢= ultimate stress of masonry and 𝛾𝑤= weight for unit volume of masonry) 

[12]. For  𝜎 = 7 the collapse acceleration is 𝑎̂𝑔 =  0.29 whereas in the case of infinite strength it is 𝑎̂𝑔 =  0.35. 

The corresponding line of thrust on the point of collapse is shown in Fig. 4. In the same Fig. 4, the virtual 

vertical displacement diagram for the two spans are plotted, for an arbitrary rotation at the hinge h1. The 

horizontal virtual displacements of the two spans and the pier are also plotted as well as the polygon of forces 

at the intersection of pier and rings for the considered case.  

Figs. 5a and 5b show the values of the non-dimensional eccentricity versus the axial force, for the arches and 

the pier. Two values of parameter σ are considered: σ = 5 in Fig. 5a and σ = 7 in Fig. 5b. The limit domain is 

represented by red lines. Magenta curve is related with the thrust along the pier, black curve is related with the 

first arch and blue curve with the second arch. Points on the limit domain are related to hinges.  

The influence of the parameter σ on the collapse acceleration is shown in Fig. 6. When σ increases the collapse 

acceleration value approaches to that one obtained using the Heyman’s model (Fig. 6). For σ = 5, which is of 

practical interest in most existing bridges, the collapse acceleration reduces of more than 20% with respect to 

the Hayman’s value.  

Finally, Fig. 7 shows the depth of the yielded sections at the seven hinges. It reduces more and more with the 

increasing of σ.  
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Fig. 3 – Horizontal load distribution  

 
Fig. 4. Line of thrust, virtual displacement diagrams and equilibrium at intersection of rings and pier.  

     
(a) (b) 

Fig. 5. Eccentricity versus axial force in the two span and pier for (a) σ = 5 and (b) σ=7. 
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Fig. 6. Collapse acceleration versus material parameter . 

 
Fig. 7. Yielded depth at hinges versus . 

 

4. Conclusions 

The limit analysis has been applied for the evaluation of safety of masonry two-span bridges under seismic 

loadings. The proposed method assumes no tensile strength and a finite resistance of the material in 

compression. Even if it belongs to the field of simplified methods and some contributions are not considered, 

the speed in the analysis and the evaluation of general solutions is certainly of practical interest. A seven hinge 

mechanism for non-symmetric loads is considered and equilibrium equations have been written, finding the 

collapse acceleration. Results are shown for a selected case, varying the material strength, with reference to 

non-dimensional parameters. With respect to the case of infinite strength in compression of the material, the 

method highlights significant differences in the range of practical interest.  
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