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Abstract 

Buried pipe networks, such as gas and water networks, are always severely damaged during a strong earthquake, 

especially as the pipeline cross the fault zone. Existing analytical methods for buried steel pipelines at strike-slip fault 

crossings are aimed at the maximum strain of the pipeline, but the actual failure mode of the pipeline is not only tensile 

failure. The analytical method proposed in this paper takes into account the pipe ovalization and local buckling. It employs 

equations of equilibrium and compatibility of displacements to derive the axial force applied on the pipeline and adopts 

a combination of beam-on-elastic foundation and elastic-beam theory to calculate the developing bending moment. Then, 

the deformation of each cross-section is solved according to the combination of bending moment and lateral soil pressure, 

thus deriving the ovalization of each cross-section. The cross-section is assumed elliptical, and the ovalization is added 

to the iteration to get the true pipe strains. The failure mode of the pipe is judged by comparing the maximum ovalization, 

maximum strain and minimum strain.  
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1. Introduction 

Buried pipe networks are always severely damaged during a strong earthquake, especially as the pipeline 

cross the fault zone. In previous earthquakes, such as the San Fernando earthquake (1971), the Izmit earthquake 

in Turkey (1999), the Chi-Chi earthquake (1999), the buried steel pipelines at active fault crossings were 

severely damaged. Up to now, three kinds of approaches are developed to address the pipeline behavior under 

strike-slip faults, including analytical methods, finite element methods and experimental methods. The 

analytical methods can provide an approximate and fast solution so some of which are adopted by design codes. 

After the earthquake in San Fernando in 1971, the seismic response analysis of buried pipelines crossing 

the fault zone attracted the attention of scholars. The initial analytical method was proposed by Newmark and 

Hall [1], using a simplified analytical model of a long cable with small displacements, and consequently 

adopted by the ASCE guidelines [2] for the seismic design of pipelines. Kennedy et al. [3] extended the 

pioneering work of Newmark and Hall [1], by taking into account soil-pipeline interaction in the transverse. 

Wang et al. [4] made further improvements to simplify the deformed pipeline as a bending large deformation 

beam with single curvature and an elastic foundation beam. Then, non-linear stress and strain distribution on 

the pipeline cross-section and the unfavorable contribution of axial force to bending stiffness are considered 

[5-7]. 

Existing analytical methods for buried steel pipelines at strike-slip fault crossings are aimed at the 

maximum strain of the pipeline, but the actual failure mode of the pipeline is not only tensile failure. This 

paper proposes an analytical method for buried steel pipelines at strike-slip fault crossings considering pipe 

ovalization and pipe buckling. The remaining parts of this paper are organized as follows. Section 2 introduces 

the solution steps of this analytical method; then, the influences of pipe diameter and fault angle are discussed 

in Section 3. Conclusions are given in Section 4. 

2. Solution steps 

The analytical method presented in this paper extends the analytical methodology originally proposed by 

Karamitros et al [7]. The maximum axial force and bending moment of the pipeline are calculated according 

to the previous method, and the analysis model is shown in Fig. 1. However, when solving the ovalization of 

each section, the lateral force of the soil along section AB is assumed no longer uniformly distributed. The 

ovalization of each section is composed of two parts: caused by the lateral force of soil and by the pipe bending. 

Next, the ovalization is added to the iteration process to get the true pipe strains. Finally, the failure mode is 

determined: buckling dominant, axial tensile dominant or ovalization dominant. 

 

Fig. 1 Pipeline analysis model  
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2.1 The maximum bending moment and axial force 

According to previous researches [4], the differential equilibrium equation for the elastic line of segment A’A 

(Fig. 1) is 

𝐸1𝐼0𝑤
′′′′ + 𝑘𝑤 = 0                                                                (1) 

where 𝐸1 is the elastic Young’s modulus of the pipeline steel, 𝐼0 is the moment of inertia of the circle section, 

𝑘 is the elastic constant of the transverse horizontal soil springs. Herein, the cross section of segment A’A is 

assumed to circle section. 

        The elastic-beam theory is applicate in the line of segment AB, and the maximum bending moment can 

be calculated as [7]: 

𝑀max = 𝑉𝐵𝑥𝑚𝑎𝑥 −
𝑞𝑢𝑥𝑚𝑎𝑥

2

2
                                                         (2) 

where 

 𝑉𝐵 =
24𝐸𝐼′𝛿𝐶𝑟+12𝐸𝐼

′𝑞𝑢𝐿𝑐
3+3𝑞𝑢𝐶𝑟𝐿𝑐

4

24𝐸𝐼′𝐿𝑐
2+8𝐶𝑟𝐿𝑐

3                                                     (3) 

𝑥𝑚𝑎𝑥 =
𝑉𝐵

𝑞𝑢
                                                                       (4) 

where 𝑞𝑢 is limit stress for transverse soil springs, 𝐸 is the elastic Young’s modulus of segment AB, 𝐼′ is the 

moment of inertia of the elliptical section,  𝐿𝑐 is pipeline unanchored length, 𝐶𝑟 = 2𝜆𝐸1𝐼0.  Herein, the cross 

section of segment AB is assumed to elliptical section. 

        The maximum bending strain can be calculated as [7]: 

1

𝜀𝑏
=

1

𝜀𝑏
𝐼 +

1

𝜀𝑏
𝐼𝐼 =

2𝐸𝐼′

𝑀max∙𝐷
+

2𝐹𝑎

𝑞𝑢𝐷
                                                         (5) 

where  

𝐹𝑎 = 𝜎𝑎𝐴𝑠
′                                                                           (6) 

𝜎𝑎 =

{
 
 

 
 √

𝐸1𝑡𝑢∆𝑥

𝐴𝑠
′                                                    ∆𝑥 <

𝜎1
2𝐴𝑠

𝐸1𝑡𝑢

𝜎1(𝐸1−𝐸2)+√𝜎1
2(𝐸2

2−𝐸1𝐸2)+𝐸1
2𝐸2∆𝑥

𝑡𝑢

𝐴𝑠
′

𝐸1
        ∆𝑥 >

𝜎1
2𝐴𝑠

𝐸1𝑡𝑢

                                        (7) 

where  𝑡𝑢 is limit soil-pipeline friction force, ∆𝑥 is fault displacement, parallel to the pipeline longitudinal axis. 

𝐴𝑠
′  is the area of the elliptical section. 𝐸2 is the plastic Young’s modulus of the pipeline steel. 

2.2 Solution of the ovalization parameter 

The ovalization of each section is composed of two parts: caused by the lateral force of soil and by the pipe 

bending. The specific algorithms are given below: 

2.2.1 Caused by lateral force of soil 

Pipeline of segment AB is simplified to an analysis model shown in Fig. 2 (a). In order to meet the load balance 

of each section, that is, the lateral force of the soil and the pipe shear force are equal, it is assumed that the 

shear force is distributed to each small segment area. According to the thin-walled circular pipe shear flow 

distribution rule, the shear stress at the neutral plane is 𝜏𝑚𝑎𝑥 =
2𝑞𝑢𝑐

𝜋
, and the shear stess at the farthest point 

from the neutral plane is 0 (Fig. 2 (b)). Herein, 𝜏𝜃 =
2𝑞𝑢𝑐

𝜋
(1 −

𝜃

𝜋/2
). 
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(a)                                                                              (b) 

Fig. 2 Analysis model for pipeline segment AB 

The analysis model of Fig. 2 (b) can be can be partitioned into two parts, as shown in Fig. 3, and the ring 

deflection can be derived by adding the deformations of the two structures. 

 

(a) (b) 

    Fig. 3 Partitioning of the pipe cross section into two parts 

        Application of elastic theory yields the deflection along the direction of shear: 

∆1 = ∆𝐿 + ∆𝑅 =
0.0833𝑞𝑢𝑐∙𝑅

4

𝐸𝐼𝑡
                                                      (8) 

where R=D/2, 𝐼𝑡 =
𝑡3

12
, 𝑡 is the pipeline thickness, 𝑞𝑢𝑐 = 𝑞𝑢 ∙ 1/𝐷. 

        Note that there will be a certain distance (𝑥𝑚𝑎𝑥) between point B and the pipeline section of the most 

unfavorable combination of axial and bending strains. The lateral displacement of the pipe section at this 

position is assumed to:  

∆𝑦 , =
∆𝑦

2
∙ (1 − 𝑠𝑖𝑛 (

𝑥𝑚𝑎𝑥

𝐿𝑐
∙
𝜋

2
))                                                     (9) 

        The lateral soil force is approximately assumed to:  

𝑞𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = {
𝑞𝑢 ∙

∆𝑦,

𝑦𝑢
∆𝑦 , < 𝑦𝑢

𝑞𝑢 ∆𝑦 , ≥ 𝑦𝑢
                                                      (10) 

        where 𝑦𝑢 is the pipe-soil lateral yield displacement. 

2.2.2 Caused by pipe bending 

P

A

B

VA

VB

MA
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The cross section of the pipeline will undergo rotational deformation when the pipeline is bent. The axial 

compressive stress σ𝑐 and axial tensile stress σ𝑡 will generate stress components 𝑞𝑐 and 𝑞𝑡  perpendicular to 

the pipeline, as shown in Fig. 4 [8]. The stress components will deform the pipe section. 

 

Fig. 4 Ovalization mechanism of the pipe cross section 

According to the balance equation and geometric equation, elliptical stress can be derived as: 

𝑞𝑖 =
𝜎𝑖𝑡

𝜌
 (𝑖 = 𝑐, 𝑡)                                                                  (11) 

where  𝜌 =
𝐷

2∙𝜀𝑏
 . therefore: 

𝑞𝑖 =
2𝜎𝑖𝑡𝜀

𝑏

𝐷
 (𝑖 = 𝑐, 𝑡)                                                               (12) 

The force diagram of the pipeline cross section can be expressed as Fig. 5. Herein, the angles 𝜃1,2 define 

the portion of the cross-section that is under yield. For simplicity of calculation, the portion that not under 

yield are ignored. Morever, the axial compressive (tensile) stress σ𝑖 is assumed to be σ1. The bent pipe has a 

squeezing effect on the soil so that the soil will generate additional lateral force 𝑞𝑠𝑜𝑖𝑙
,

, and the lateral forces is 

equal to: 𝑞𝑠𝑜𝑖𝑙
, = 𝑞𝑡 ∙ 𝜃1 − 𝑞𝑐 ∙ 𝜃2. 

 

Fig. 5  The force diagram of the pipeline cross section 

Similar to Fig. 2 (b). The analysis model of Fig. 5 can be partitioned into three parts and the ring deflection 

can be derived by adding the deformations of the three structures. Application of elastic theory yields the 

deflection caused by pipe bending: 

∆2 = ∆𝐷𝑞𝑡 + ∆𝐷𝑞𝑐 + ∆𝐷𝑞𝑠𝑜𝑖𝑙
,                                                       (13) 
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∆𝐷𝑞𝑖 =
𝑞𝑖∙𝑅

4

𝐸𝐼𝑡
(−

1

4
𝜃𝑖
2 +

1

8
𝑐𝑜𝑠2𝜃𝑖 +

𝜋

4
𝜃𝑖 − 𝑐𝑜𝑠𝜃𝑖 +

2𝜃𝑖𝑐𝑜𝑠𝜃𝑖

𝜋
−
4𝑠𝑖𝑛𝜃𝑖

𝜋
+
7

8
)                  (14) 

∆𝐷𝑞𝑠𝑜𝑖𝑙
, =

0.0213𝑞𝑠𝑜𝑖𝑙
, ∙𝑅4

𝐸𝐼𝑡
                                                            (15) 

Finally, the total ring defletion can be calculated as: 

 ∆𝐷 = ∆1 + ∆2                                                                 (16) 

        The ovalization parameter can be calculated as: 

  ∆𝑓 =
∆𝐷

𝐷
                                                                      (17) 

Note that the value of 𝜃1,2 will be given in section 2.3. 

2.3 Solution of the axial strain  

        Existing methodologies [5-7] calculate the axial strain considering non-linear stress and strain distribution 

on the circle cross section. Elliptical cross section is considered in this paper (Fig. 6).  

 

Fig. 6 Non-linear stress and strain distribution on the elliptical pipeline cross-section 

        The strain distribution on the cross-section is written as: 

𝜀 = 𝜀𝑎 + 𝜀𝑏𝑐𝑜𝑠𝜃                                                                     (18) 

        The corresponding distribution of stresses on the pipeline cross-section is given by: 

𝜎 = {

𝜎1 + 𝐸2(𝜀 − 𝜀1)                0 ≤ 𝜃 < 𝜃1
𝐸1𝜀                              𝜃1 ≤ 𝜃 ≤ 𝜋 − 𝜃2
−𝜎1 + 𝐸2(𝜀 + 𝜀1)       𝜋 − 𝜃2 < 𝜃 ≤ 𝜋

                                       (19) 

where 

𝜃1,2 =

{
 
 

 
 𝜋                          

𝜀1∓𝜀𝑎

𝜀𝑏
< −1

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝜀1∓𝜀𝑎

𝜀𝑏
)          − 1 ≤

𝜀1∓𝜀𝑎

𝜀𝑏
≤ 1

0                              1 <
𝜀1∓𝜀𝑎

𝜀𝑏

                                       (20) 

With the deformation of the pipeline section,  the area and the moment of inertia of the pipeline cross-

section change. As shown in Fig. 7, the area 𝐴𝑠
′  and the moment of inertia 𝐼′ can be derived as follow: 
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Fig. 7 Ellplical pipeline cross-section 

The elliptic equation is: 

 
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1                                                                         (21) 

where 𝑎 = (1 + 𝑓) ∙
𝐷

2
−

𝑡

2
 , 𝑏 = (1 − 𝑓) ∙

𝐷

2
−

𝑡

2
. 

𝐴𝑠
′ = 2∫ 𝑡 ∙ 𝑑𝑠

𝐵

𝐴
= 2∫ 𝑡 ∙ √1 + 𝑘𝜃

2 ∙ |𝑑𝑥|
𝜋

0
= 2∫ 𝑡 ∙ √1 + 𝑘𝜃

2 ∙ |
𝑑𝑥𝜃

𝑑𝜃
| ∙

𝜋

0
𝑑𝜃                   (22) 

𝐼′ = 2∫ 𝑦𝜃
2 ∙ 𝑡 ∙ √1 + 𝑘𝜃

2 ∙ |
𝑑𝑥𝜃

𝑑𝜃
| ∙

𝜋

0
𝑑𝜃                                               (23) 

where 𝑘𝜃 = −
𝑥𝜃

𝑦𝜃
∙
𝑏2

𝑎2
, 
𝑑𝑥𝜃

𝑑𝜃
=

𝑅𝜃

𝑑𝜃
∙ 𝑠𝑖𝑛𝜃 + 𝑅𝜃 ∙ 𝑐𝑜𝑠𝜃, 𝑅𝜃 = √

𝑎2𝑏2

𝑏2𝑠𝑖𝑛2𝜃+𝑎2𝑐𝑜𝑠2𝜃
, 
𝑅𝜃

𝑑𝜃
=

1

2
∙
1

𝑅𝜃
∙
𝑎2𝑏2(𝑎2−𝑏2)∙𝑠𝑖𝑛2𝜃

(𝑏2𝑠𝑖𝑛2𝜃+𝑎2𝑐𝑜𝑠2𝜃)2
 

        The axial force can be evaluated by the intergration over the elliptical cross-section: 

𝐹𝑎 = 2∫ 𝜎 ∙ 𝑡 ∙ 𝑑𝑠
𝐵

𝐴

= 2∫ 𝜎 ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |𝑑𝑥|

𝜋

0

= 2∫ 𝜎 ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜋

0

𝑑𝜃

= 2∫ [𝜎1 + 𝐸2(𝜀 − 𝜀1) ] ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜃1

0

𝑑𝜃

+ 2∫ 𝐸1𝜀 ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜋−𝜃2

𝜃1

𝑑𝜃

+ 2∫ [−𝜎1 + 𝐸2(𝜀 + 𝜀1)] ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜋

𝜋−𝜃2

𝑑𝜃 

(24) 

The axial strain can be evaluated using the equilibrium condition between the applied axial force (Eq. (6)) 

and the one obtained from  Eq. (24). 

2.4 Iteration of Young’s modulus and ovalization 

        Using the already defined stress distribution on the pipeline cross-section, the corresponding bending 

moment can be calculated using Eq. (25) 
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𝑀𝑚𝑎𝑥 = 2∫ 𝑅𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝜎 ∙ 𝑡 ∙ 𝑑𝑠
𝐵

𝐴

= 2∫ 𝑅𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ [𝜎1 + 𝐸2(𝜀 − 𝜀1) ] ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜃1

0

𝑑𝜃

+ 2∫ 𝑅𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝐸1𝜀 ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜋−𝜃2

𝜃1

𝑑𝜃

+ 2∫ 𝑅𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ [−𝜎1 + 𝐸2(𝜀 + 𝜀1)] ∙ 𝑡 ∙ √1 + 𝑘𝜃
2 ∙ |

𝑑𝑥𝜃
𝑑𝜃

| ∙
𝜋

𝜋−𝜃2

𝑑𝜃 

(25) 

Therefore, the secant modulus for the next iteration can be calculated as: 

 𝐸𝑠𝑒𝑐
′ =

𝑀𝑚𝑎𝑥𝐷

2𝐼′𝜀𝑏
𝐼 =

𝑀𝑚𝑎𝑥𝐷

2𝐼′
(
1

𝜀𝑏
−

1

𝜀𝑏
𝐼𝐼)                                                (26) 

 

        In Section 2.2, the value of bending strain is needed to solve the ovalization parameter, so an initial value 

of the ovalization should be assumed before calculating, and step 2.1-2.4 are repeated, until convergence is 

accomplished. 

2.5 Judgement of failure modes 

        Three failure modes are considered in this paper: tensile failure, pipe buckling failure and excessive 

ovalization failure.  

∙ Longitudinal tensile strain limit of 3%, as recommended within the Eurocode [9]. 

∙ Excessive ovalization of the pipeline cross-section characterized by the critical ovalization parameter is 

assumed equal to 15% [10]. 

∙ According to ABS guideline [11], which  takes into account the effects of pipe ovalization, the compressive 

strain should satisfy Eq. (27) 

𝜀

𝜀𝑏
+
𝑝𝑒−𝑝𝑖

𝑝𝑐
≤ 𝑔(𝑓)                                                                  (27) 

3. Case study 

3.1 Results compared with Karamitros’ [7] 

The maximum strain of the pipeline was studied in Karamitros’ work. Fig. 8(a) shows the comparison 

between analytical predictions of maximum strain, axial strain and bending strain using the method proposed 

in this paper and in reference [7]. Fig. 8(b) shows relationship between maximum ovalization parameter of the 

pipeline and fault displacement. The angle formed by the fault trace and the pipeline axis 𝛽 is 60° and the 

corresponding pipeline parameters are listed in Tab. 1. The limit stress for transverse soil springs and the limit 

soil-pipeline friction force are given by ASCE [12]. 

Tab. 1 Pipe size and steel properties 

Outer 
diameter (m) 

Wall 
thickness (m) 

Buried 
depth (m) 

Elastic Young’s 
modulus (E1) 

Plastic Young’s 
modulus (E2) 

Yield 

stress (𝜎1) 

Failure 

stress (𝜎2) 

0.9144 0.0119 4 210GPa 1.088GPa 490MPa 531MPa 
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(a)  

(b)  

Fig. 8 Pipeline performance at strike-slip faults (𝛽 = 60°) 

        From Fig. 8(a), when the ovalization of the pipeline is taken into account, the maximum strain and 

bending strain decrease slightly, while the axial strain remain basically unchanged. Fig. 8(b) shows that the 

ovalization of the pipeline increases with the increase of the fault displacement, but in the region of large 

displacements, the bending strain of the pipeline and the lateral force of the soil basically remain unchanged, 

resulting that the pipe ovalization also tends to be stable. 

3.2 Effects of pipe diameter and crossing angle β 

        Two pipe diameters are adopted and the corresponding parameters are listed in Tab. 2. For these two steel 

pipes, the limit fault displacements corresponding to each crossing angle are summarized in graphical form in 

Fig. 9.  

Tab. 2 Pipe size and steel properties 

Outer 

diameter (m) 

Wall 

thickness (m) 

Buried 

depth (m) 

Elastic Young’s 

modulus (E1) 

Plastic Young’s 

modulus (E2) 

Yield 

stress (𝜎1) 

Failure 

stress (𝜎2) 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 . 5 0  1 . 0 0  1 . 5 0  2 . 0 0  

st
ra

in

∆f/D

maximum strain in this paper bending strain in this paper
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0.325 0.0055 1 210GPa 1.088GPa 490MPa 531MPa 

3 0.03  8 210GPa 1.088GPa 490MPa 531MPa 

 

(a)  

(b)  

Fig. 9 Normalized critical fault displacement for various performance limits at different angles of β  

((a) D=0.325m, (b) D=3m) 

For a small-diameter pipeline, Fig. 9 (a) indicates that tensile failure is the dominant limit state, and the 

ovalization of the pipeline is small. However, as shown in Fig. 9 (b), large-diameter pipelines, which have a 

large diameter-thickness ratio and buried depth, will undergo large cross-section deformation when crossing 

faults, and the failure form is not just tensile failure. When β is close to 90 °, buckling failure and excessive 

ovalization are the dominant limit states; and when β is smaller, tensile failure is the dominant limit state. 

4. Conclusion 

This paper proposes an analytical method for pipeline crossing strike-slip faults. Compared with existing 

methods, pipe ovalization and pipe buckling are taken into account in this method proposed this paper. The 

pipeline cross-section is assumed elliptical to derive the pipeline response, which is more consistent with the 
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actual situation. In order to illustrate above methods, several cases are studied. Results show that both pipe 

diameter and crossing angle have a certain effect on pipeline performance; for large-diameter pipeline, 

buckling failure and excessive ovalization can be the dominant limit states; and the pipe generally has the 

largest normalized critical fault displacement when the crossing angle is close to 80°.  
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