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Abstract 
In order to ensure the safety of underground pipes during earthquakes, it is desirable not only to be able to withstand a 
certain level of shaking but also to withstand ground deformation caused by earthquakes. The cause of the deformation 
of ground surface is the subsidence of soft ground, subsidence and lateral flow due to liquefaction of the ground, and 
displacement due to instability of slope. In addition to these, there is displacement due to faults which affects to pipes 
significantly. 

In the case of a buried pipe with a relatively small diameter, the pipe is often modeled by a beam supported by a ground 
spring, and an analytical solution of the equation assuming small displacement is applied to designing. When the ground 
displacement becomes large, the design is being carried out, using the fact that the reaction force by the ground spring 
can be reduced. If the ground displacement is large to some extent, there is concern about the effect of axial force on 
bending deformation. It is unlikely that buckling will occur even if an axial force is applied in a normal burial condition. 
It is necessary to evaluate with. In particular, in the case of fault displacement that is several times the diameter, damage 
that has been greatly bent due to compressive force has been reported. 

In this study, the buried pipe is approximated by an elastic beam, and the problem of the displacement in the axial 
direction and the direction perpendicular to the axial direction is analyzed using the equation of bean-columns. The 
beam is a condition that is constrained by surrounded ground, but it is a model in which an equal distribution lord acts 
in the range where the pipe is deformed by large ground displacement. In addition, the assumption is applied that the 
axial force is constant, and the analytical solution is obtained within the range of linear equations. The evaluation 
formula proposed this time is simple calculation formula, but the cross-sectional force to ground displacement can be 
calculated with the minimum necessary parameters. These are elastic modulus, cross-sectional parameters of pipes and 
maximum ground reaction force in axial and lateral direction. 
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1. Introduction 
To ensure safety during an earthquake, buried pipes must be able to resist not only shaking to a certain extent, 
but also deformation of the ground surface caused by the earthquake. The ground surface deformation may 
be caused by various factors such as the sinking of soft ground, sinking and flowing due to ground 
liquefaction, displacements due to destabilization of inclined ground, and fault displacements. Buried pipes, 
which are subject to these seismic actions, have been constructed in networks over a long time. There is a 
wide variation in the installation period and pipe types. Old pipes, in particular, are not designed to withstand 
sufficient external force and suffer from degraded materials. Measures to enhance seismic resistance need to 
be taken after clarifying the seismic performance of individual pipe designs and network vulnerabilities. 

 Buried pipes with relatively small diameters are often modeled as beams supported by soil springs, 
and the analytic solution of the governing equations assuming minute displacement is applied during the 
design stage. The equations for axial and bending deformations become independent and can be analyzed 
independently when the minute displacement approximation is valid. Based on this idea, a design system 
considering soil springs parallel and perpendicular to the axial direction is employed in, for example, water 
and sewage systems, and utility gas networks. The governing equations of minute displacements are linear 
differential equations where the sectional force increases in proportion to the ground displacement. The 
counterforce from soil springs can be reduced to some extent when the ground displacement becomes large. 
This characteristic is reflected in the design of the buried pipes.  

 The effect of the axial force on bending deformation becomes a concern when the ground 
displacement reaches a critical level. Buckling under axial stress is unlikely under standard burial conditions. 
However, when the aforementioned soil springs yield and the subgrade reaction perpendicular to the pipe 
axis has an upper limit, the increase in bending from the axial force must be considered appropriately. In 
particular, significant bending from compressive force has been reported in pipes damaged by fault 
displacements a few times larger than the pipe diameter. 

This study approximates buried pipes as elastic beams and analyzes the translational displacements 
parallel and perpendicular to the axial direction using the governing equations for finite displacements. The 
beam is constrained to the ground in the model, and a uniformly distributed force acts where the pipe 
deforms under a relatively large ground displacement. The analytical solution of the linear equations is 
obtained under the assumption that the axial force is uniform in the region of bending deformation. This 
analytical solution can be used to calculate the bending moment, which changes with the axial force. 
 

2. Analysis conditions and the fundamental solution 
2.1 Model for analysis 
Consider the situation where the soil moves rigidly on one side of an infinitely long pipe buried underground. 
This model is shown in Fig. 1. The translation displacement with respect to the pipe axis is 2δ at the angle α. 
Along the boundary of where the translation displacement acts, the axial and bending deformation have line 
and point symmetry, respectively. At the boundary point, the bending moment is zero and the shear force is 
the largest. The schematic depicts the diagonal shifting of the soil on the right and left by 2δ, but similar 
parameters can be set for vertical and horizontal displacements. 

The pipe subject to translational displacement also undergoes axial and bending deformation, but the 
deformation range is limited. The pipe moves along with the soil without any deformation, far away from the 
translation displacement boundary. Suzuki derived the boundary conditions for the range of beam 
deformation by investigating the analytic solution for a beam supported by perfectly elastoplastic soil springs 
with bilinear characteristics, which are used in water and gas pipe design guidelines. After the boundary 
point, where the deformation converges is determined, calculations can be performed for a beam with a finite 
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length, in which the subgrade reaction after the yielding of the soil springs acts as a uniformly distributed 
force.  

The force F at the translation displacement boundary is the sectional force at this position. This force 
pushes the pipe down to the left, and the subgrade reaction acts in the opposite direction. On the other hand, 
another force pushes the pipe up to the right, and the subgrade reaction acts to push the pipe down. The 
subgrade reaction is generally a function of the relative displacement between the pipe and the soil. Many 
experimental results have confirmed that the subgrade reaction converges to a fixed value after the relative 
displacement reaches a certain value. Therefore, bilinear spring models are used. The applicability of these 
spring models must be carefully determined because the models are empirical, but a constant force can be 
assumed when the relative displacement is a few tens of centimeters.  

The deformation of the beam against the inverting subgrade reaction at the translational displacement 
boundary is at self-equilibrium. The displacement from the subgrade reaction at the convergence side and the 
soil displacement are, therefore, the same. The axial force, bending moment, and deflection angle at this 
point are all zero. Thus, the deformation range can be limited. Considering the symmetry of the deformation, 
the relative displacement at the deformation convergence boundary with respect to the soil translational 
displacement boundary is:  

        

Here, α is positive under tensile deformation and negative under compressive deformation.  

The bending equation for finite displacement is used as the governing equation. Considering the 
symmetry of the deformation, the origin is taken to be the point of translational displacement, and the right-
hand side of Fig. 1 is modeled. Fig. 2 shows a schematic of the beam analysis. N0 and Q0, which act at the 
origin in the figure, are counterforces from the decomposition of F in Fig. 1. The subgrade reaction is 
modeled as a uniformly distributed force based on the maximum soil restraint force under the assumption 
that the soil springs have yielded. The soil springs parallel and perpendicular to the axis are assumed to yield 
independently. 

The equations of the forces on an infinitesimal length are: 

 
          

where u is the axial displacement of the beam, w the deflection, N the axial force, M the bending moment, p 
the uniformly distributed force parallel to the axial direction, and q the uniformly distributed force 
perpendicular to the axial direction. The axial force and bending deformation can be calculated 
independently, while the bending moment changes with the axial force. The analytic solution of the 
differential equation for constant coefficients are  

 
 

under the assumption that the beam is elastic. Here, E is the Young’s modulus, A the cross-section area, and I 
the geometrical moment of inertia of the cross-section. The differential of axial force N'≅0 is used under the 
assumption that the axial force changes gradually. Based on this assumption, the axial force N in equation(3) 
is constant. 
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Fig.1–Schematic of deformation of ground and a pipe         Fig.2–Beam model of half space acting uniformly 

 distributed reaction force 

 

2.2 Bending deformation without any axial force 
A beam subject to a displacement at the support and a uniformly distributed force at N = 0 is considered. The 
governing equation of the beam is: 

        

This is a both ends-hinged condition. The solution where the displacement δ at x = b is: 

 
The condition where, additionally, the deflection angle is 0 at x = b can be written as: 

 
The pipe can smoothly connect to the undeformed region if the deflection angle due to the elastic 

deformation of the pipe matches the displacement angle at the support. The length b that matches this 
condition is : 

 
The maximum bending moment and shear force can be calculated once the length b is determined: 

 

 
When the soil displacement δ increases, the maximum bending moment increases proportionally to the 
square root of δ. This equation for the bending deformation in the absence of axial force is utilized in the 
liquefaction design of gas pipes in Japan.  

3. Analysis of an axial force  

3. 1 Compressive force  

The governing equation of a beam subject to a constant compressive force P and a uniformly distributed 
subgrade reaction q is: 

Q0 
q 

N0 

x=0 x=b p 

α 

2δ 

F 
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This is a linear equation with constant coefficients, and the analytical solution under given boundary 
conditions can be obtained. The solution for the both ends-hinged condition, where w = 0 at x = 0 and w = δ 
at x = b, is: 

 

The deflection angle is 0 at the boundary of the region where the beam moves together with the soil without 
deformation. The expression for this condition is: 

 

This is a non-linear equation in the variable b, but b can be numerically obtained using Newton’s method. 
The deflection and sectional force can be calculated once b is determined. For example, the maximum 
bending moment is: 

 

The Euler’s buckling load under the both ends-hinged condition, PE, is defined as: 

 

The equation for Mmax can be rewritten using PE as: 

 

The sectional force diverges as P→PE. 

 

3.2 Tensile force 

The situation when a tensile force acts is considered next. The governing equation under a tensile force P is: 
 

A solution under the boundary conditions can be similarly obtained in the compressive force case: 
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The cos and sec functions in Eq. (13), which is the solution for a compressive force, are replaced by cosh and 
sech, respectively, which are exponential functions. The condition where the deflection angle is 0 at x = b can 
be written as: 

 

Although b cannot be given explicitly, b can be numerically obtained using Newton’s method. The deflection 
and sectional force can be derived once b is determined. The maximum bending moment is: 

 

4. Approximate calculations using the buckling amplification function 
4.1 Approximate equation of deflection and sectional force 
The analytical solutions were calculated separately for compressive and tensile forces in section 3. The effect 
of the axial force is evaluated with a simple equation in a fractional form in both cases. The amplification 
function β is defined using N0 in the definition of the axial force:  

 
The equation for deflection without any axial force is given in Eq. (7). The appropriate expression for 
deflection is β times the distributed force term in the equation plus the support displacement: 

 
The Euler’s buckling load PE is a function of b2. The compatibility condition of the deflection angle is a thus 
quadratic equation in b2 and can be solved analytically: 

 

 
The range that the soil yields, b, obtained from Eq. (25) is good approximation of the result of Eq. (14) or Eq. 
(20), respectively confirmed by numerical calculation. The range b becomes longer and shorter compared to 
when there is no axial force at N0 > 0 and N0 < 0, respectively. The approximate equation of the maximum 
bending moment is: 

 
This function increases and decreases in the presence of the axial force compared to when the axial force is 
absent for N0 > 0 and N0 < 0, respectively. The boundary of the region that moves with the surrounding soil 
without displacement becomes closer and farther to the origin when compressive and tensile forces are acting, 
respectively. The displacement at the support δ behaves in the same manner. Thus, the deflection increases 
when the distance decreases. 
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4.2 Example calculations 
Calculations when both axial and bending deformation are present, as in Fig. 1, are performed. The range of 
deformation is determined by the yielding of the pipe material. The relative amount and direction of soil 
movement are considered and the sectional forces are superimposed. The sign of the axial force changes the 
equation, thus: 

    (27) 

is used. Here, sign is the sign function and the direction in Fig. 1 is taken as the positive direction. The sine 
function in the square root is calculated using the absolute value. The δ in this equation is the displacement 
on one side, and the displacement of the soil is 2δ. 

The range that the soil yields, b, and the maximum bending moment are calculated using below:  

 

 
As the pipe material is elastic, the superposition of the sectional forces is obtained by a simple sum. The 
evaluation is performed for compressive and tensile stress when the deformation is compressive and tensile, 
respectively.  

The calculation results under the conditions in Table 1 are shown below. The axial and bending 
stresses are calculated for increasing soil displacement δ and constant translational displacement angle α. Fig. 
3(a) shows the results for a tensile force and α=π/4. One side is modeled for δ = 0.1 m, which corresponds to 
a translational displacement of 0.2 m. The axial and bending stresses are about the same in this case. In Fig. 
3(b), a compressive force is present and α=-π/4. The axial stress is the same as in Fig. 3(a), but the change in 
bending stress is increased, indicating that a compressive force increases the bending stress.  

The results when the angle α is varied and the soil displacement kept constant are shown in Fig. 4. 
δ=0.03 m, and positive and negative α indicate tension and compression, respectively. Bending dominates 
when the angle is small, but the axial force becomes larger when the angle is increased. The bending stress 
becomes larger on the compression side and peaks at α=-0.5 –1 rad. These examples are introduced with the 
elastic range of steel pipes in mind, but the response to soil displacement can be easily derived using the 
approximate solution and the bare minimum of parameters. 

 

Table 1 –Data list of example calculation 

Items Values 
Diameter D 
Thickness t 
Young’s Modulus E 
Yield stress of ground in axial direction, τg 
Yield stress of ground in lateral direction, σg 
Area of cross-section, A 
Geometrical moment of inertia, I 
Section modulus, W 
Uniformly distributed load in axial direction, p 
Uniformly distributed load in lateral direction,  q 

0.4[m] 
0.006[m] 
200[GPa] 
15[kPa] 
170[kPa] 
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Fig.4 – Relationship between ground shifting angle and stress (δ=0.03 m) 

5. Conclusions 
This study calculated the deflection when a translational displacement acts at a point on a pipe buried near 
the ground surface. It was assumed that the pipe deforms elastically, and that the pipe is supported by soil 
springs that completely and independently yield parallel and perpendicular to the axial direction. The elastic 
range of the soil springs is smaller when they yield perpendicular to the axial direction than that when they 
yield parallel to the axial direction. A uniform axial force approximation is thus possible in the range 
considered in the deflection calculations. The fundamental equation considers the action of a uniformly 
distributed force on a beam-column under a constant axial force. Translation of the soil springs support 
results in the deflection of the pipe limited to the near vicinity of the translational displacement. The pipe 
simply follows the soil outside this region. The procedure to calculate the range and shape of the deflection 
as well as the maximum sectional force was outlined. The relations between the bending moment and the 
compressive or tensile force, which vary with respect to the translational displacement angle, were 
formularized. The bending moment increases and decreases under a compressive and tensile force, 
respectively. 
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Fig.3(a)–Relationship between ground 
displacement and compressive stress (α=–π/4) 

Fig.3(b) – Relationship between ground 
displacement and tensile stress (α=π/4) 
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