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Abstract 

A tuned mass damper inerter (TMDI) is a passive vibration absorber which reduces the response of a structure to 

earthquake ground motions.  The TMDI has been shown to outperform the classical tuned mass damper (TMD) in 

reducing the vibration response of structures.  The TMDI couples the TMD with an inerter that is a linear device 

developing a resisting force proportional to the relative acceleration of its ends.  The TMDI utilizes the mass amplification 

effect of the inerter to improve the performance of a TMD or achieve the same performance with a reduced mass of the 

TMD, thus achieving a lightweight solution.  It has been shown previously that the TMDI reduces the maximum response 

of a harmonically excited undamped single-degree-of-freedom (SDOF) system and the displacement variance of a white-

noise excited undamped SDOF system.  In the present study, the optimum TMDI design parameters i.e., structural 

frequency ratio and damping ratio are obtained for structures equipped with TMDI, while considering the inherent 

damping.  For this purpose, numerical methods are used to determine the optimum parameters which correspond to the 

minimum response of a damped main mass under harmonic excitations and the minimum response variance of a damped 

main mass subjected to earthquake ground motions obtained by using a stochastic model.  The seismic excitation 

considered is represented by a spectral model taken from the literature and is an improved random process model of 

earthquake ground motions developed based on the model proposed by Kanai-Tajimi.  A particular site in Japan is chosen 

for which artificial non-stationary ground motion acceleration records were generated and used to evaluate the parameters 

of the spectral model.  The proposed method involves the solution of a nonlinear system of differential equations for the 

determination of the optimum design parameters of an SDOF system equipped with a TMDI.  In addition, the performance 

of a TMDI as compared to a tuned mass damper was also evaluated.  It was concluded that the structural damping 

considerably reduces the response of a structure equipped with TMDI and slightly affects the optimum damping and 

frequency of the TMDI.  It was also shown that the incorporation of the inerter enhances the performance of the TMD in 

reducing the vibration response of a SDOF subjected to earthquake ground motions. 
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1. Introduction 

Passive vibration absorber devices have been widely used for structural motion control.  Tuned mass dampers 

(TMD) are an example of passive vibration absorbers, which consist of a mass mounted to a main structure 

using a linear spring and a viscous damper in parallel.  Considerable research showed the effectiveness of a 

TMD in reducing the maximum displacement of an undamped primary mass subjected to harmonic excitations 

and the displacement variance under stochastic excitations [1, 2].  

While the TMD shows good performance when appropriately tuned, it has been shown that it is more 

effective with a higher mass ratio (e.g. [3]) but increasing the mass ratio leads to an additional mass on the 

structure.  

The inerter was introduced in mechanical networks [4] as a linear device with an internal resisting force 

F proportional to the relative acceleration between its ends, 
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where ( 1,2)iu i  are the displacements of the ends and b is the inertance.  To realize the inerter, the rack and 

pinion mechanism was first proposed [4].  One end of the inerter is connected to the casing and the other end 

to a rack whose translational movement causes the rotation of a flywheel.  The flywheel then converts the 

translational kinetic energy into rotational movement.  The kinetic energy kE  stored by the flywheel is 

expressed as, 
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The general expression of the inertance with multiple gears used can be written as,   
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Fig. 1 – (a) Schematic of a tuned mass damper inerter (TMDI) in a structure; (b) SDOF primary system equipped 

with TMDI. 

(a) (b) 
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where fr  and pfr  are the radius of the flywheel and the flywheel pinion, respectively, i  are the gear ratios, 

and fm  is the mass of the flywheel. 

Increasing the number of gears will multiply the inertance by the square of the gear ratio.  It can be seen 

from Eq. (3) that even modest ratios of   result in an inertance that is orders of magnitude larger than the 

physical mass of the flywheel, and thus the concept of mass amplification. 

In combination with TMD, the mechanical oscillations can be reduced without increasing the physical 

mass of a TMD.  The novel passive vibration control configuration is introduced and termed as tuned mass 

damper inerter (TMDI) by Marian and Giaralis [5].  The TMDI is designed to decrease the maximum 

displacement of structures under harmonic base excitations and the maximum response variance of structures 

under stochastic base excitations [5, 6, 7, 8]. 

The effect of the structural damping of the main structure on the response has been investigated 

previously for the case of the classical TMD [9, 10] but not for the case of TMDI.  Hence, the present study 

focuses on deriving the optimum design parameters of a TMDI considering the inherent damping of the main 

structure.  For this purpose, a numerical optimization method is adopted and the TMDI optimum design 

parameters are obtained in terms of the normalized TMDI mass, the normalized inertance and the structural 

inherent damping ratio.  Two input excitations are considered: harmonic excitations and earthquake ground 

motions. 

2. Structural Model of a SDOF System Equipped with TMDI 

A primary structure consisting of a SDOF dynamical system is modeled by a mass sm  connected to the ground 

by a linear spring of stiffness sk and a linear viscous damper with a damper constant sc .  The arrangement of 

a TMDI on the main structure is shown in Fig. 1, where TMDIm , TMDIk  and TMDIc  denote the mass, stiffness 

and damper constant of the TMDI, respectively.  The governing equations can be written in matrix form as, 
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where ga  is the acceleration applied to the base of the main structure. Applying Fourier transform to the 

governing equations, the complex frequency response function (FRF) ( )sG  is obtained in the domain of 

frequency   as, 
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where  
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and where the normalized TMDI mass TMDIm , the normalized inertance b , TMDI frequency TMDI and 

damping coefficients TMDI  and s  are defined by,  
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respectively. The dynamic amplification factor ( )sG  , defined as the ratio of the amplitude of vibration of 

the main mass to the amplitude of the input vibration is, 
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3. Design of TMDI for SDOF Systems under Harmonic Excitations 

For damped main systems, the fixed point method of Den Hartog [11, 12] cannot be used to derive the 

equations for the optimum parameters as it can be easily proven that the response curves for damped main 

systems do not pass through two fixed points for a fixed mass and tuning frequency of the TMDI.  Therefore, 

the optimum parameters are determined by minimizing the response peak for harmonically excited systems.  

To this end, an iterative numerical search method plots the different response curves, as shown in Fig. 2(a), 

for a specified structural damping ratio s  and normalized TMDI mass TMDIm , and a set of tuning frequency 

ratios TMDI , tuning damping ratios TMDI  and normalized inertance b .  For a fixed value of b and TMDI , 

the maximum response amplitude for each value of TMDI  are stored, then the minimum among them is 

selected.  Then, a loop on TMDI will assign to each value of TMDI the minimax response and its 

corresponding TMDI .  Finally, another loop on b , followed by one on TMDIm , will determine for each value 

of b  and TMDIm  respectively, an optimum TMDI  and TMDI which lead to the minimization of the peak 

response.  This search method is implemented using JAVA programming language.  

The dynamic amplification factor ( )sG   i.e., the amplitude of transfer function, for damped main 

systems decreases significantly with higher structural damping and normalized inertance as shown in Fig. 2(b).  

Therefore, it is possible to enhance the performance of a TMDI by increasing the inertance instead of the 

physical mass of the TMD itself.  The plots of Fig. 3 show the optimum parameters i.e., frequency ratio and 

damping ratio, in terms of normalized inertance for a fixed normalized TMDI mass and structural damping.  

By using curve fitting techniques, the explicit equations for the optimum frequency ratio TMDI  and the 

optimum damping ratio TMDI  are expressed as, 
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Fig. 2 – (a) Response curves of a damped SDOF system with a TMDI for different tuning damping ratio; (b) 

Dynamic amplification factor in function of the normalized inertance and the structural damping ratio. 
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Fig. 3 – (a) Optimum TMDI frequency and (b) damping ratio for a normalized TMDI mass of 8% and 

structural damping ratio of 2%. 
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4. Design of TMDI for SDOF Systems under Seismic Excitations 

4.1 Earthquake ground motions for Hino, Tottori 

The Kanai-Tajimi model [13, 14] assumes that the ground acceleration is an ideal white noise at bedrock level, 

which is filtered by the overlaying soil layers.  The soil is modelled by a mass gm  connected to the bedrock 

by a Kelvin-Voigt contact element (Fig. 4).  The elastic spring and viscous damper of the Kelvin-Voigt model 

reflect the visco-elastic property of the ground.  In order to make the Kanai-Tajimi model non-stationary Fan 

and Ahmadi [15] proposed that the predominant ground frequency is considered as a time dependent function 

and introduced an amplitude envelope function ( )e t .  The coupled system of differential equations can be 

written as, 
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where ( )n t  is a white noise process, ( )fx t  is the filtered response, g  is the damping ratio, ( )g t  is the 

frequency of the ground.  The parameters g  and ( )g t  are obtained from previous earthquake records or the 

geological features of the site.  The white noise process is a stationary Gaussian process whose expected values 

are 

  ( ) 0E n t  , (22) 

    1 2 0 1 2( ) ( ) 2E n t n t S t t    , (23) 

 

Fig. 4 – Oscillator representing the soil layers between the bedrock and the ground surface. 
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where   is the Dirac delta function and 
0S  is the power spectral density at the bedrock level (constant power 

spectrum).  

 Using the coupled differential equations and a moving time window technique [16, 17], artificial ground 

records are generated for the NS component of the 2000 Tottori earthquake using the record of Fig. 5 [18].  

The ground motion duration corresponds to the window containing the 5-95% of the Arias intensity, 
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The first 7.62 s of the record is taken and using a time averaging procedure, which uses a time window moving 

along the record, the standard deviation of the ground acceleration is obtained from 

  
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2 2( ) [ ] [ ]t E X E X   . (25) 

The standard deviation is then fitted to a smooth algebraic equation expressed by a third order Gaussian. Then, 

the amplitude envelope function is given by, 
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Fig. 5 – Ground motion record for the 2000 Tottori earthquake (Mω 7.3), Hino station, Japan. 
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Fig. 6 – (a) Standard deviation, and (b) rate of zero crossing for the 2000 Tottori earthquake (Mω 7.3) ground 

motion record. 
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Fig. 7 – Artificial ground motion records, based on (a) 1( )n t  and (b) 2 ( )n t , generated for Hino, Tottori. 

In order to incorporate the non-stationarity of the frequency content, the zero crossing rate F(t) is plotted and 

smoothened using a fourth order polynomial. The ground frequency function is given by, 

 ( ) ( )g t F t  . (27) 

The standard deviation and the rate of zero crossing are shown in Fig. 6. 

A white noise process is used to generate the synthetic accelerograms after numerical integration of Eq. 

(20) and Eq. (21).  Two synthetic accelerograms are shown in Fig. 7.  The generated records preserve the 

amplitude and frequency content of the original record. 

4.2 Optimum parameters TMDI  and TMDI   

Considering the stochastic excitation represented as a double sided spectral density function by Eq. (28), and 

applying it to the system of Fig. 1, the variance of the relative displacement of the primary structure is 

expressed as, 

 
22 ( ) ( )s s XG S d   




  , (28) 

where ( )sG  is the modulus of the frequency response function defined in Eq. (8) and ( )XS   is the power 

spectral density of the ground motion records.  The optimization problem consists of minimizing 
2

s subject 

to  ,TMDI TMDIk c  or equivalently  ,TMDI TMDI   . 

 For the numerical evaluation of the integral in Eq. (28), an adaptive Gauss-Konrod method [19] is used. 

The normalized response variance is plotted as a function of the normalized TMDI mass for different 

normalized inertance in Fig. 8(a) and as a function of the normalized inertance for different normalized TMDI 

mass in Fig. 8(b).  It can be seen from Fig. 8 that increasing the inertance and/or the TMDI mass decreases the 

response variance. It is also observed that the mass amplification effect of the TMDI, which allows to increase 

the effective mass without increasing the physical mass, is more pronounced for lower mass.  In addition, in 

contrast to a TMD ( 0b  ), the response variance is more sensitive to the variation of the inertance than that 

of the TMDI mass. 

The optimum TMDI parameters as a function of the normalized inertance and for different normalized 

TMDI mass are plotted in Fig. 9.  The normalized response variance in function of the structural damping ratio 

for different normalized TMDI mass is plotted in Fig. 10.  It can be seen from Fig. 10 that the structural inherent 

damping of the main mass significantly decreases response variance.   

(a) (b) 
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Fig. 8 – Normalized response variance (a) in function of the normalized TMDI mass TMDIm for different 

normalized inertance b , and (b) in function of normalized inertance b  for different normalized TMDI 

mass TMDIm and for 4% structural damping. 
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Fig. 9 – (a) Optimum frequency ratio TMDI , and (b) optimum damping ratio TMDI  in function of the 

normalized inertance b  for different normalized TMDI mass TMDIm and for 4% structural damping. 
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Fig. 10 – Normalized response variance in function of the inherent structural damping ratio s for different 

normalized TMDI mass TMDIm . 
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In view of the discussed results, the TMDI is proven to be more effective in reducing the response 

variance of a structure subjected to earthquake ground motions.  It can also be seen that the inherent damping 

of the main structure significantly affects the response variance and thus should be taken into consideration 

when determining the desired maximum allowable response.  The optimum tuning parameters on the other 

hand are not significantly sensitive to the inherent damping of the main structure. 

5. Conclusions 

The optimum parameters of a TMDI on a damped SDOF system subjected to harmonic excitations and to 

earthquake ground motions were obtained.  The considered method accounts for the structural damping of the 

main mass and the earthquake excitations were represented by a power spectral density model.  In this regard, 

the optimum parameters were obtained by deriving the governing differential equations for a damped SDOF 

system equipped with a TMDI to minimize the fundamental mode of vibration.  Referring to the results, it has 

been concluded that the inerter significantly decreases the response of a SDOF system when subjected to 

earthquake ground motions, thus resulting in a lower required TMDI mass.   

For the evaluation of the optimum TMDI parameters, neglecting the structural damping provides a good 

estimation of the parameters, when stochastic excitations are considered. But incorporating the structural 

damping significantly reduces the response variance.  Therefore, neglecting its contribution results in an 

overestimation of the damping forces demand. 
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