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Abstract 

The goal and purpose of base isolation is to protect the building structure against strong ground motion induced in case 

of large earthquakes. We would select the stiffness of laminated rubber bearings for a base isolated structure as small as 

possible, because the response acceleration of super structure decreases as the stiffness becomes smaller. Recently, there 

has been an increasing attention focused on the risk of damage of structures possibly caused by the long duration 

earthquakes with long period component. We did not notice the risk of damage of base isolated buildings in case of large 

earthquakes until March 11, 2011 when the northern part of Japan experienced a huge earthquake with the moment 

magnitude 9.0. This event forced us to take the damage risk of base isolated structures into serious consideration under a 

large earthquake with long duration, because it contains a lot of long period component in the frequency domain.  

Indeed, there should be a lower boundary of stiffness for laminated rubber bearings as compared with that of super 

structure. In other words, we should have a rational regulation for their stiffness. The relative displacement of the super 

structure with respect to the bearings should be small to protect the structure itself when the system is under a large ground 

motion. The response displacement of the bearing with respect to the ground motion should be also small to evade the 

risk of collapse of the whole system. With these two different goals satisfied at the same time, the author proposes a 

method to adjust the damping factor and the stiffness of bearings to the optimal value. The optimum stiffness of bearings 

is determined according to the natural period of the super structure. The spectrum of the ground motion also plays an 

important role to determine the appropriate damping factor for the bearings.  

1. Introduction

Ever since the idea of base isolation was established and realized more than 30 years ago, we have paid a lot 

of attention to reduce the absolute acceleration of the super structure of base isolation system. The stiffness of 

the bearings is so small as compared with the lateral stiffness of the super structure that we think it is better to 

model it as a single degree of freedom system. Illustration in Fig.1 is the conventionally designed building 

structure, while the model of base isolation is in Fig. 2. In the past decade there have been accumulated a lot 

of ground motion data in case of major earthquake events in Japan. The Tohoku earthquake in May 11, 2011 

created a huge ground motion that propagated a long distance away from the epicenter and left significant 

damage on the buildings, houses, and bridges as well. Tall buildings in the business district of the city of Tokyo 

swayed like a pendulum despite the fact that they are more than 400km away from the epicenter. Because they 

have small damping factor and the duration of ground motion was so long that they had enough time to reach 

the steady state response motion.  

This event raised a question among engineers and scientists in Japan whether the base isolation method is the 

appropriate seismic approach to protect tall buildings in case of large earthquakes. It is true that we paid little 

attention to the deformation capacity of bearings until May 11, 2011, but we should take into consideration 

that the bearing deformation capacity is another critical factor for the base isolation system. This paper 

proposes an approach to design a base isolation system with high stiffness bearings and damping coefficient. 

The question is whether it is possible to find the optimum damping coefficient factor and the optimum modal 

frequency. If the disturbance ground motion is supposed to be the input signal and the displacement of the 

system is supposed to be the output signal, the bearings such as laminated rubber materials are the media 

between the two signals. The concept of impedance in the electric circuit is equivalent to the bearings in the 

mechanical dynamics of base isolation system. We try to reduce the bearing deformation and the reaction of 

the structure response at the same time, which is quite similar to the impedance matching of the electric circuit 

with input and output signals.  
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2. Definition of the optimum dynamics of the base isolation system 

The single degree of freedom model in Fig.1 represents the first mode dynamics of the building structure. It 

has the circular frequency  and effective mass m and stiffness k in Eq. (1). The base isolated structure in 

Fig.2 has the identical first mode dynamics shown in Fig.1. The bearings that support the vertical load of the 

super structure have the stiffness kd and damping coefficient cd.  Suppose that the damping coefficient cd varies 

from zero to infinity, the circular frequency of the base isolated system eq changes from o to 1. 

 

𝜔1 = √
𝑘

𝑚
                                                                                                (1) 

𝜔0 = √
𝑘𝑘𝑑

𝑚(𝑘 + 𝑘𝑑)
                                                                                 (2) 

 

𝜔0 < 𝜔𝑒𝑞 < 𝜔1                                                                                     (3) 

 

We have to set a question. How do we select the stiffness and damping coefficient of the bearings for reducing 

the response of the base isolation system under an earthquake with long period component?  We have to make 

a dynamic model to answer this question as follows. We specify the equation of motion of the model in Fig. 2 

as shown in Eq. (4). There should be a required condition for optimizing the parameters kd and cd. For this 

purpose, we have to specify the ground motion as well. Let us suppose that the ground motion is stationary 

random process instead of nonstationary random excitation. The spectrum of the random process is supposed 

to be constant or equivalently white noise. Under this supposition, we could optimize the parameters in a 

probabilistic sense rather than deterministic one in the time domain. As a result, optimization requires no 

numerical calculations in the time domain but analytical solutions in the frequency domain. 

  

                          {   
𝑚𝑦̈ + 𝑘(𝑦 − 𝑧) = −  𝑚𝑥̈(𝑡)

𝑘(𝑦 − 𝑧) − 𝑘𝑑𝑧 − 𝑐𝑑𝑧 = 0  
                                                                    (4) 

                     

where             x(t) :  ground motion                                                                                                      

y(t) :  response displacement of the structure with respect to ground motion               

z(t) :  response displacement of the bearings with respect to ground motion                

m  :  effective mass of the structure                                                                              

                                           k :  effective stiffness of the structure                                                                         

kd :  stiffness of the bearings                                                                                        

cd :  damping coefficient of the bearings                                                                      

                                                               

 

 

 

 

 

 

 

 

 

 

 

 

        Fig. 1 Normally designed building structure                 Fig.2 Base isolated structure with bearings    
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3. Transfer functions of the base isolation system 

We introduce next substitution for the following derivations of transfer functions.  

𝜔𝑑 = √
𝑘𝑑
𝑚
           𝑎𝑛𝑑            𝜔∞ = √

𝑘 + 𝑘𝑑
𝑚

                                                              (5) 

𝑐𝑑 = 2𝑚𝜔1𝜂                                                                                           (6) 
 

We define the relative stiffness of the bearings in terms of  or equivalently by Eq. (7). 

 

𝛽 =
𝑘𝑑
𝑘
=  

𝜔𝑑
2

𝜔1
2
                                                                                         (7) 

 

With these notations and substitutions on mind, we converge Eq. (4) into Eq. (8) from which we can derive 

the Laplace Transform as Eq. (9). 

 

                          {   
𝑦̈ + 𝜔1

2(𝑦 − 𝑧) = −  𝑥̈(𝑡) = 𝑓(𝑡)

𝜔1
2(𝑦 − 𝑧) − 𝜔𝑑

2𝑧 − 2𝜔1𝜂𝑧 = 0  
                                                         (8) 

 

(
s2 + 𝜔1

2           

−𝜔1
2            

−𝜔1
2   

2𝜔1𝜂𝑠 + 𝜔1
2+𝜔𝑑

2    
) (

𝑌(𝑠)

𝑍(𝑠)
) =   (

𝐹(𝑠)

0
)                           (9) 

 

Finaly, we derive the transfer function with respect to Y as Eq. (11) .  

 

(
𝑌(𝑠)

𝑍(𝑠)
) =   (

s2 + 𝜔1
2           

−𝜔1
2            

−𝜔1
2   

2𝜔1𝜂𝑠 + 𝜔1
2+𝜔𝑑

2    
)
−1

(
𝐹(𝑠)

0
)                      (10) 

 

𝐻𝑌(𝑠) =  
  (𝜔𝑑

2 +𝜔𝑑
2
) + 2𝜔1𝜂 𝑠  

   2𝜔1𝜂 s
3 +   (𝜔𝑑

2 +𝜔𝑑
2
) s2 + 2𝜔1

3 𝜂 𝑠 + 𝜔1
2𝜔𝑑

2   
                          (11) 

 

𝑌(𝑠) = 𝐻𝑌(𝑠) 𝐹(𝑠)                                                                  (12) 
 

The stationary random disturbance of F(s) is supposed to be constant So so that we can obtain the expected 

power spectrum with respect to Y as Eq. (13).  

 

𝐸[𝑌2] = ∫ 𝐻𝑌(𝑖𝜔)𝐻𝑌(−𝑖𝜔)𝑆𝑜 𝑑𝜔
∞

−∞

                                                    (13) 

 

Substituting Eq. (11) into Eq. (13), we obtain Eq. (14) by means of residue integral in the complex damain.  

 

𝐸[𝑌2] =   
2π𝑆𝑜  

   𝜔1
3   

(𝜂 +
𝜔∞

6

  4𝜔1
4𝜔𝑑

2 𝜂  
)   =  

2π𝑆𝑜  

   𝜔1
3   

 𝐺(𝜂, 𝛽)                                     (14) 

 

 𝐺(𝜂, 𝛽) =   𝜂 +
𝜔∞

6

  4𝜔1
4𝜔𝑑

2 𝜂  
  =  𝜂 +

(1 + 𝛽 )3

  4 𝛽   
 
1

  𝜂  
                                    (15) 

 

We would like to obtain the optimum set of parameters  and  that could minimize the response displacement 

of the base isolated system under stationary random white noise.  
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4. The optimum stiffness and damping of the bearings for base isolation system 

Our final goal is to minimize the response displacement of the base isolation system so that we could find the 

optimum set of two parameters by differentiating Eq. (15) with respect to  or .  

 ∂𝐺 

 ∂𝜂
=  1 − 

(1 + 𝛽)3

  4𝛽  

1

  𝜂 2  
 = 0                                                                (16) 

 
 ∂𝐺 

 ∂𝛽
=   2𝛽 + 3 − 

1

  𝛽2  
=   0                                                                     (17) 

 

We have found the optimum parameter from Eq. (17) as well as  from Eq. (16). 

 

 𝛽𝑜𝑝𝑡 = 0.5                                                                                 (18) 

 

𝜂𝑜𝑝𝑡 = √
(1 + 𝛽)3

4𝛽
   =   1.30                                                                  (19) 

 

Substituting Eq. (18) and (19) into Eq. (14), we obtained Eq. (20).  

 

𝐸[𝑌2] ≧
2π𝑆𝑜  

   𝜔1
3   

 𝐺𝑚𝑖𝑛(𝜂, 𝛽) >
5.2π𝑆𝑜  

   𝜔1
3   

                                               (20) 

 

There exists the optimum stiffness and damping factor that minimizes the expected power spectrum of the 

response Y under stationary white noise excitation. In the past study, as the stiffness of the bearings came 

down, the better performance was expected for base isolation system. It, however, has been  proved that it is 

not necessary to reduce the stiffness and damping factor associated with the bearings more than the specified 

value of Eq. (18) and (19). If the selection of the optimum parameters  and  is sensitive and has significant 

effect on the performance of the base isolation system, we must clarify how sensitive it would be. The function 

G(,) is converted from Eq. (15) into Eq. (21) and (22).  

 

𝐺(𝜂, 𝛽) =  𝜂 +
(1 + 𝛽 )3

  𝛽   
 
1

  4𝜂  
= 𝜂 + 

𝑓(𝛽)

  𝜂  
                                              (21) 

 

𝑓(𝛽) =   
1

  4  
(𝛽2 + 3𝛽 + 3 + 

1

  𝛽  
)                                                         (22) 

 

As we have already discussed that function f () is minimized when  is 0.5.     Function f ()  is shown in 

Fig. 3, from which  we understand that f () varies from 1.69 to 2.16 while  is between 0.2 and 1.0 .  

 

𝐺(𝜂, 𝛽) = 𝜂 + 
𝑓(𝛽)

  𝜂  
> 𝜂 + 

𝑓(0.5)

  𝜂  
=  𝜂 + 

1.69

  𝜂  
=  𝑔(𝜂)                                    (23) 

 

According to Eq. (23) we can define function g () that gradually decreases from 5.93 as increases from 

0.3 until it comes to 1.3 that is the optimum damping factor or equivalently Eq. (19). As compared with 

ordinary base isolation system, bearing stiffness is relatively high and damping coefficient is several times 

larger than ordinary values for conventially designed base isolation structures. It is also interesting that the 

power spectrum of the response is not sensitive to the deviation of the parameters from the optimum values.  
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Fig. 3  Function  f ()                                                      Fig. 4    Function  g () 
 

5. Comparison with the conventionally designed base isolation system 

We have obtained the optimum parameters of bearings for high impedance base isolation system. They are 

so different from those values conventionally designed in the past application projects. For example, we 

selected the stiffness parameter  in Fig.3 as small as possible. In fact,  is set less than 0.2 for ordinary base 

isolation systems. As far as damping factor  is concerned, it is usually less than 30 % or 0.3 in Fig.4. Here 

arises a natural question: how much is the performance of the high impedance base isolation compared with 

the conventionally designed base isolation? We discuss the performance of the high impedance base isolation 

as compared with a single degree of freedom model with the same natural frequency and damping factor. For 

this purpose, we evaluate the power spectrum of SDOF under white noise excitation of So. The transfer 

function of SDOF model is as follows.  

 

     𝑦̈ + 2𝜔𝑒𝑞𝜂𝑒𝑞𝑦 + 𝜔𝑒𝑞
2𝑦 = −  𝑥̈(𝑡) = 𝑓(𝑡)                                                   (24) 

 

𝐻𝑌(𝑠) =  
1 

    s2 + 2𝜔𝑒𝑞𝜂𝑒𝑞 𝑠 + 𝜔𝑒𝑞
2   

                                                     (25) 

 

𝑌(𝑠) = 𝐻𝑌(𝑠) 𝐹(𝑠)                                                                  (26) 
 

The power spectrum with respect to Y under white noise So is calculated in the same manner as Eq. (13). 

Finally, we obtained Eq. (27) for SDOF model.  

 

𝐸[𝑌2] =
π𝑆𝑜  

   2𝜔𝑒𝑞
3𝜂𝑒𝑞   

                                                                (27) 

 

The fist modal frequency eq of the high impedance base isolation with opt and opt is approximately                

Eq. (28), which is substituted into Eq. (20).  

 

𝜔𝑒𝑞 = √
𝜔𝑜

2 +𝜔1
2

2
  ≅ 0.809𝜔1                                                          (28) 
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Eq. (20) is equivalent to the power spectrum of SDOF under stationary white noise excitation.  

 
5.2π𝑆𝑜  

   𝜔1
3   

=   
π𝑆𝑜  

   0.3632𝜔𝑒𝑞
3   

   =   
π𝑆𝑜  

   2𝜔𝑒𝑞
3𝜂𝑒𝑞   

                                           (29) 

 

The equivalent damping factor eq that we derive from Eq. (29) represents the performance of the high 

impedance base isolation.   

 

𝜂𝑒𝑞 = 0.186                                                                               (30) 

 

In summary, it is not necessary to set the bearing stiffness and damping factor excessively small in order to 

improve the seismic protection performance of base isolation. It is also important to notice that the appropriate 

bearing stiffness and damping coefficient depends on the original structure dynamics rather than spectrum of 

the ground motion. Therefore, the low rise building structure should be isolated with much higher impedance 

bearings.   

 

6. Ground motion data on March 11, 2011  

In the following chapters, we demonstrate several numerical calculations with the intension of comparing the 

performance of high impedance base isolation with conventionally designed base isolation under 

nonstationary random disturbances. The ground motion data at the campus of Tokyo City University on 

March 11 in 2011 has a long duration more than 300 seconds and contains a lot of long period component. 

The time history in Fig. 5 is the acceleration data of the ground motion in North-South direction, while 

response velocity spectrum in Fig. 6 shows its flat spectrum over the low frequency domain. The location of 

the campus is more than 400 km away from the epicenter. The peak acceleration and the velocity in the North-

South direction are 129.0 cm/s2 and 17.7 cm/s, respectively. The response velocity spectrum over the low 

frequency domain is almost constant that is 20 cm/s when the damping factor is 20 %. In other words, if the 

ground intensity is 5 times greater than the original motion, the response velocity of ordinary base isolation 

is almost 100 cm/s.    If the system natural period is 6 second, the response displacement is approximately 

100 cm or more. This number is almost double as compared with the conventionally designed base isolation 

system. There has been an increasing attention focused on the risk of damage of tall building structures and 

base isolation system in case of large earthquake event, even if the intensity level of the ground motion is the 

same as used be.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Ground acceleration at Tokyo City University on March 11 in 2011 N-S direction  
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       Fig. 6 Velocity Response Spectrum of the data on March 11, 2011 

7. Numerical calculation  

There are two example case studies conducted in this chapter. We selected the original structure circular 

frequency 1 is 2.0 rad/sec, while the parameter  is set to the optimum value 0.5. The damping factor  is 

also set to the optimum value 1.3 according to Eq. (19). As a result, the equivalent SFOF model has the 

circular frequency eq = 1.63, and damping factoreq= 0.186. This is the case 1 study. The optimum 

parameters obtained from Eq. (1), (2), (18), (19), (28), and (30) are in Table 1, where two examples, CASE 

1 and 2, are explicitly given. The peak response values are numerically calculated and shown in Table 2, 

while the corresponding equivalent SDOF model with the equivalent frequency and damping factor are in 

Table 3. As compared with Table 2 and 3, we confirmed that Eq. (28) and (30) give us the appropriate 

performance evaluation for the high impedance base isolation. Comparing Fig. (7) and (8), we notice that the 

deformation capacity required for base isolation material is reduced significantly, even though the ground 

motion contains a lot of long period component. The high impedance base isolation shows us the feasibility 

and capability to reduce the risk of damage of base isolation system.  

 

 

 

Table 1 – The Optimum Parameters for the Base Isolation System 

   d ∞ eq m k   kd cd 

CASE1 2.0 1.15 1.41 2.45 1.63 1.0 4.0 0.5 1.3 2.0 5.20 

CASE2 1.0 0.577 0.707 1.22 0.809 1.0 1.0 0.5 1.3 0.5 2.60 
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Table 2 – Maximum response of the high impedance base isolation 

    y (cm) z (cm) 𝑦̈ + 𝑥̈ 
(cm/s2)  

𝑧̈ + 𝑥̈ 
(cm/s2)  

CASE1 13.4 4.60 43.9 129.2 

CASE2 19.5 6.95 16.6 127.3 

Table 3 – Maximum response of the equivalent SDOF model  

    y (cm) 𝑦̈ + 𝑥̈ 
(cm/s2)  

CASE1 12.7 40.0 

CASE2 16.8 12.4 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  Response displacement CASE 1 under the ground motion of Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  Response displacement CASE 1 under the ground motion of Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

Fig.9  Response acceleration CASE 1 under the ground motion of Fig. 5 
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Fig.10  Response displacement CASE 2 under the ground motion of Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11  Response displacement CASE 2 under the ground motion of Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12  Response acceleration CASE 2 under the ground motion of Fig. 5 

 

8. Conclulsive remarks 

This paper reports how to select the stiffness and damping coefficient for the bearing materials that are most 

appropriate for the base isolation system under large earthquakes with long duration and low frequency 

component. There are the optimum parameters that could reduce the response displacement of the isolated 

building structure as small as possible under stationary random disturbances with constant power spectrum. 

There are also example numerical calculations carried out to demonstrate the validity of the theoretical 

prediction. The author used the ground motion data at the Tokyo City University on March 11 in 2011 when 

Tohoku Earthquake took place in the northern part of Japan. The proposed parameters for the base isolation 

have much higher dynamic stiffness or equivalently high impedance dynamic property.  
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