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Abstract 

In this paper, the influence of higher-order modes on seismic response of the high-rise structures is taken into 

consideration. Making full use of the cable-bracing inerter system (CIS) providing easy access to installment, which 

enables the inerter system attached to non-consecutive floors levels of the main structure be realized easily, a novel 

brace configuration scheme of inerter system is proposed, called cross-layer installed cable-bracing inerter 

system(CCIS), to reduce both first and higher modes vibrations. A unified motion equation of a structure equipped with 

CIS is proposed. The equivalent two-degree-of-freedom system of the multiple-degree-of-freedom (MDOF) structure 

equipped with CCIS is used to illustrate the mass ratio enhancement of the cross-layer installation.  

A practical and applicable design approach, explicitly considering cost associated with control forces, is herein 

developed to identify the advantages of multiple CCISs with appropriate location distribution and optimal parameters. 

Considering the uncertainty of seismic ground motion, the seismic excitation is modeled as a stochastic stationary 

process, and the response statistics for linear structural systems are obtained through state-space analysis to meet the 

requirements of multiple iterations in optimization process. The objective function related to control forces is adopted as 

one of the two optimal objectives, whereas structural performance is incorporated in the design, representing different 

specific levels of vibration suppression be achieved through the inerter system implementation, as another. The 

proposed approach is illustrated using a 10-story benchmark structure. The optimum results and optimal parameters 

show that the same target performance, CCIS has obvious advantages in terms of minimizing the control force, and 

maintaining low damping, inerter mass requirements. The frequency-domain and time-domain analysis further 

demonstrates the high efficiency of CCIS for higher-order mode control and the advantages of CCIS over inter-layer 

installed inerter system (IIS) in seismic vibration control. 

Keywords: cross-layer; cable-bracing inerter system; multi-modal 
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1 Introduction 

Various energy dissipation devices and dampers have been developed in recent years to ensure the 

performance of structure vibration under seismic excitation. As the concept of inerter was formally proposed 

by Smith [1], inerter is increasingly used in seismic vibration control.  

Inerter is an element, which can change its inner movement mechanism, such as translating linear motion to 

high-speed rotational motion, changing the liquid flow velocity, to obtain mass amplification effect. Inerter, 

used as a surrogate of the traditional mass, has numerous application forms, the most famous of which is the 

tuned viscous mass damper (TVMD) derived from the rotary damping system proposed firstly by Arakaki 

[2], which has been applied in practical structure [3]. Ikago et al. made a series of researches on the 

optimization of TVMD, from the fixed-point method [4] of single-degree-of-freedom (SDOF) with TVMD 

to the optimization of MDOF with TVMDs using SQP [5, 6] and its simpler design method [7]. As one of 

three commonly used mechanical layouts, the damping enhancement effect [8] and 
2H  optimization [9, 10] 

of TVMD also have been studied by Pan et al. 

Meanwhile, the research on the support system of inerter, focusing on practical applications has also 

developed in recent years. Sugimura et al.[3] studied the practical design of installing the inerter system in 

the structure using a V-shape steel brace combined with nature rubbers as tune spring.  Xie et al. [11] studied   

SDOF with a CIS, showing the convenience and effectiveness of the cable-bracing method. 

Considering the practical problems caused by the excessive inerter mass and damping requirements of using 

a single inerter system to control the vibration of MDOF structure and the excessive damper number 

requirement of using multiple IISs, in this paper, we propose multiple CCISs as an alternate. The advantages 

of cross-layer installation of inerter system have been demonstrated by Taflanidis et al. [12] using a 

commonly mechanical layout TMDI. However, caused by the limitation of TMDI, as a modification method 

of pendulum-like tuned mass damper, Taflanidis et al. only focused on the form of cross-layers installed at 

the top of the structure. In [13], Ogino and Sumiyama considered the design of a high-rise building using 

TVMD installed across three consecutive layers, which proved the practicality of the cross-layers installation 

method, while the location and distribution optimizations of the cross-layer installed inerter system is 

insufficient. In this paper, we focus on filling this gap. First, in Section 2, a unified motion equation of CIS 

equipped in the structure is established. An equivalent two-degree-of-freedom system is used to illustrate the 

mass ratio enhancement advantage of cross-layer installation. In Section 3, an extended state-space equation, 

considering the Kanai-Tajimi power spectrum, is formulated and an optimization method for CIS in the 

MDOF structure is proposed. In Section 4, applying the proposed optimization method to a 10-story 

benchmark model illustrates its effectiveness. By comparing the optimum results of CCIS and ICIS in the 

frequency domain and time history analysis, the advantages of CCIS are explained. 

2 Cable-bracing inerter system 

2.1 SDOF structure with the cable-bracing inerter system and its formulation 

The cable-bracing inerter system consists of four parts: displacement transfer cable, soft spring for tuning, 

inerter, and energy dissipation element. The connection methods between the CIS and the main structure 

have been expanded due to the introduction of the cable. For simplicity, this article only discusses a direct 

installation scenario, as shown in Fig. 1.  

The governing equation of motion of an SDOF with the CIS can be expressed as: 

 
d d 0

d d d d d d

2 ( cos )cos

2 ( cos ) 0

mu cu ku k u u mu

m u c u k u u

 



+ + + − = −


+ + − =
 (1) 
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where, u and du are the displacement of the SDOF structure and the relative deformation of the inerter 

respectively; ,  ,  m k c are the mass, stiffness damping coefficient of the SDOF structure respectively; 

d d d,  ,  m k c are the inerter coefficient, tuned soft spring stiffness and damping coefficient of energy 

dissipation element;   is the installation angle of the cable. 

 

 

Fig. 1 Schematic of an SDOF structure with the CIS  

To unify different installation forms, the installation efficiency coefficient β, defined by the displacement of 

the inerter system caused by the unit structure displacement, should be introduced. From the geometric 

relationship shown in Fig. 1, the installation efficiency coefficient β of the direct installation scenario equals 

to cosα. Defining the equivalent inerter displacement as d
e

u
u


= , as shown in Fig. 2, the Eq. (1) can be 

rearranged as: 

 
e 0

e e e e e e

( )

( ) 0

emu cu ku k u u mu

m u c u k u u

+ + + − = −


+ + − =
 (2) 

where, 
2

e dm m = ,
2

e dc c = ,
2

d2ek k = are equivalent inerter coefficient, equivalent damping and 

equivalent stiffness respectively. 

 

Fig. 2 Simplification process of direct installed CIS 

2.2 MDOF structure with the cable-bracing inerter system and the mass ratio enhancement of the 

cross-layer installation 

The governing equation of motion of an n-DOF without controlled is as follows: 
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 p p p p p p p p 0x x x x+ + = −M C M r  (3) 

where  p p1 p2 pn, ,
T

x x x x= is the displacement vector of the MDOF structure relative to the ground; 

 p 1 2 n, ,diag m m m=M , p p1 p2 pn( , , )T diag k k k=K T T , p p1 p2 pn( , , )T diag c c c=C T T denote mass, 

stiffness and damping matrices of the primary structure respectively;  p 1,1, ,1
T

=r is the influence 

coefficient vector. T is an n-dimension square matrix with 1 in the diagonal and -1 in the first off-diagonal 

denoting a transformation matrix defining relative deformation between consecutive floors. 

Similar to the SDOF structure, the n-DOF structure in which a CIS directly installed between the r-th and s-

th layer (r<s) can be simplified to the model shown in Fig. 3. The motion equation is described as: 

 
0x x x x+ + = −M C Mr  (4) 

where  p e,
T

Tx x u= ,  p ,0
T

T=r r ,
p

em

 
=  
 

Μ
Μ ,

p

ec

 
=  
 

C
C ,

p c e c e c

c e e

-

-

T

T T

r k r k r

r k k

 +
=  
 

K
K ;

cr  is an 

n-dimension vector, denoting the installation location of the CIS. Only the r-th and s-th entry of 
cr  are -1 and 

1 respectively, and the remaining entries are all 0. 

 

Fig. 3 Schematic of an MDOF structure with the CIS 

Eq. (4) is a general equation, which can express different types of CIS connection methods by changing 

parameters( 1s r− = denotes the ICIS, 1s r−  denotes the CCIS ). At the same time, 
e e e e c, , , ,u m c k r can be 

expanding into suitable matrixes to denote the situation of multiple CIS installed in the structure, which will 

be used in section 3. 

Previous studies [14] have shown that the vibration modes of the structure with TVMD distributed 

proportional to the structural stiffness is almost the same with those of uncontrolled structure. To analyze the 
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mass ratio enhancement of the cross-layer installation through an equivalent two-degree-of-freedom system, 

it is assumed that the n-DOF structure equipped with a CIS vibrates approximately in an uncontrolled mode 

i . The displacement vector of the primary structure
px and the equivalent inerter displacement eu  be 

represented by modal coordinate 
pi  and 

di  respectively as follows: 

 
p p

e d c

i i

T

i i

x

u r

 

 

=


=

 (5) 

Therefore, the kinetic energy TE ,strain energy UE and dissipated energy DE  of the MDOF structure with 

the CCIS can be expressed by the following equation: 

 

2 2

T p p d c e c

2 2

U p p p d c e c

2 2

D p p d c e c

1 1

2 2

1 1
( )

2 2

1 1

2 2

T T T

i i i i i i

T T T

i i i i i i i

T T T

i i i i i i

E r m r

E r k r

E r c r

     

      

     


= +




= + −



= +


Μ

K

C

 (6) 

Assuming T UL E E= − ,the Euler-Lagrange equation of the MDOF structure with the CIS as follow: 

 

D

p p p

D

d d d

0

0

i i i

i i i

d
L L E

dt

d
L L E

dt

  

  

    
− + =       


   

− + =     

 (7) 

Substituting Eq. (6) into Eq. (7) gives the following equation. 

 
p p p p p p c e c p d

c e c d c e c d c e c d p

+ + + ( ) 0

( ) 0

T T T T T

i i i i i i i i i i i i i

T T T T T T

i i i i i i i i i i

r k r

r m r r c r r k r

            

         

     − =


 +  +  − =

Μ C K
 (8) 

Compared Eq. (8) with Eq. (2), the generalized mass, generalized damping coefficient and generalized 

stiffness of the CIS can be expressed as: 

 

d c e c

d c e c

d c e c

T T

i i

T T

i i

T T

i i

M r m r

C r c r

K r k r

 

 

 

 =


=


=

 (9) 

According to Eq. (9), when the CIS is installed cross layers, the vector 
cr , denoting the installation location 

of the CIS, causes the model displacement between the r and s layers to be superimposed, thereby bring 

about mass ratio enhancement.  

3 Optimum Seismic Control of a MDOF system with CIS 

3.1 Evaluation of Seismic Response 

Considering the uncertainty of seismic ground motion, instead of using any particular recorded seismic 

motion, the seismic input action is simulated as a Kanai-Tajimi power spectrum: 
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4 2 2 2
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g 02 2 2 2 2 2

g g g

4
( )

( ) 4
S S

   

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+
=

− +
 (10) 

where, 
g ,

g  are frequency and damping coefficient, respectively, of the SDOF, used to represent the 

supporting ground properties. 0S  is the intensity of the white noise excitation at the bedrock. 

During the optimization process, iterative evaluation of the seismic response is required. Therefore, the state-

space approach, which is efficient at calculating the seismic response, is employed. Extend Eq. (4) into the 

motion equation of a MDOF structure with t CISs and rewrite it into a state-space equation as:   

 
R R R Rx x w= +A E  (11) 

where,  R p e p e=
T

T T T Tx x x x x ,
(n+t) (n+t) (n+t) (n+t)

R -1 -1

R R R R
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- -
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=  
 

I
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M K M C
, R 1 (n+t) p 1 t0 - 0

T
T

 
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the white noise input and 
p

R

e
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=  
 

Μ
Μ

M
,

p

e

 
=  
 

C
C

C
,

p c e c e c

c e e

-

-

T

T T

 +
=  
 

K R K R K R
K

R K K
; ex , 

eM , 

eC , eK , cR  are expanded equivalent inerter coefficient matrix, equivalent damping matrix and equivalent 

stiffness matrix and the CIS location matrix respectively. 

Rewrite the Kanai-Tajimi power spectrum Eq. (10) into the form of state-space equation: 

 
q q q q

g q q

x x w

x x

= +


=

A E

C
 (12) 

where, 2q

g g g2

0 1

  

 
=  
− − 

A , 2

q g g g02 2S    − − =C , q

0

1

 
=  
 

E  

Combining Eq. (11) and Eq. (12), an extended state-space equation considering Kanai-Tajimi power 

spectrum excitation can be obtained: 

 
s s s s

s s

x x w

z x

= +


=

A E

C
 (13) 

where
R

s

q

x
x

x

 
=  
 

 ,
R R q

s

2 (2 2 ) q0 n t +

 
=  
 

A E C
A

A
,

(2 2 ) 1

s

q

0 n t+  
=  
 

E
E

. The output matrix
sC , used to calculate the 

performance vector z that includes inter-story drifts and forces of CISs , is 
(2 2 2)

c e e ( 2)

0

- 0

n n t

T T

t n t

 + +

 + +

 
 
 

T

R K K
. 

According to the extended state-space Eq. (13), the covariance matrix of the output vector z is: 

 s s

T

zz =K C PC  (14) 

where, the state covariance matrix P can be obtained by solving the Lyapunov equation, which can be easily 

done with the ‘lypa’ function in MATLAB: 

 s s s s 0T T+ + =A P PA E E  (15) 

 3.2 Formulation of the Optimum Design Problem 
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The design of the CISs used to control the MDOF structure seismic response，includes layout design and 

parameters optimization design. Based on the uncontrolled relative modal deformation between the structural 

layers, the layout design can be predetermined. The parameters of each CIS need to be obtained through 

optimization, considering the seismic building performance and the CIS cost comprehensively. 

The first objective
pJ , representing the engineering demand, is defined by the sum of the CISs equipped 

structure story drifts, normalized by uncontrolled structure ones, with the same weight:   

 
d

z
p d

1 z0

1 ( )

( )

n

i

i
J

n i



=

=   (16) 

where, 
d

z ( )i ,
d

z0( )i denote the CISs equipped structure and the uncontrolled structure i-th story drift 

variance respectively. 

The second objective 
dFJ , representing the CIS cost, is defined by the maximum force of those CISs 

equipped in the structure: 

  
d dF F

1
max ( )

t

i
J i

=
=  (17) 

where, 
dF ( )i  denotes the i-th CIS control force response variance. 

Although the increase of connection stiffness can achieve better control effect, it comes at the cost of tuning 

effects, which tremendously increase damping and quality requirements. To maximize the tuning effect of 

the CIS, the frequency of the CIS should be tuned to a certain mode, as Ikago et al. did in [5]: 

 0

1

1
j r j

j

 


=
−

 (18) 

where, j r , 0j  denote the frequency of CIS and uncontrolled structure respectively, and the left subscript 

j denotes the j-th mode. The j-th modal effective mass ratio j is defined as follows: 

 
c e c

p

T T

j j j j j

j T

j j

 


 
=

R M R

M
 (19) 

where, ej M , cj R donate the equivalent inerter coefficient matrix and location matrix of those CISs tuned to 

the j-th mode respectively. 

Thus, the optimum design problem for CIS for the control of multi-modal seismic vibration is formulated as 

follows： 

 

d

e1 e2 et 1 2 1 2

F

p target

1 1 0 2 2 0 1 1 0

1 2 1

find                = , ,..., , , ,..., , , ,...,

to minimize   ( )

( )

subject to       1 1 1
, ,...,

1 1 1

r r j r r r j r

r r r

y M M M

J y

J y J

     

     
  





= = = − − −
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where, t, j denote the number of types of CIS installed in the structure and controlled modes of the 

structure.
targetJ  is the target engineering demand limitation determined initial analysis of primary structure. 

4 Design Example 

4.1 Analysis Model 

The benchmark structure used in this study is a 10-story building proposed by the JSSI [15], the detail 

information of which is shown in Table 1 and Fig.4 

Table 1 Characteristics of the benchmark building 

Story Mass im  (
310 kg) Stiffness 

ik  (
310 N/m) Height(m) 

10 875.4 158550 4 

9 649.5 180110 4 

8 656.2 220250 4 

7 660.2 244790 4 

6 667.2 291890 4 

5 670.1 306160 4 

4 675.7 328260 4 

3 680.0 383020 4 

2 681.6 383550 4 

1 699.9 279960 6 

 

Fig. 4 participation mode vector of the uncontrolled benchmark building 

4.2 Details for design optimization 

In this model, it is assumed that three kinds of inerter are used, which is limited by practical applications. As 

is shown in Fig. 5, two layouts of CIS (CASE A, CASE B) are determined on the principle of modal relative 

displacement maximization. For CASE A, the ICIS of the upper four layers are tuned to the second mode, 
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while other ICISs are tuned to the first mode. For CASE B, the CCIS crossing the top three layers is tuned to 

the second mode, while others are tuned to the first mode. 

 

Fig. 5 Schematic of the benchmark building with CISs (a) CASE A (b) CASE B 

In this study, the parameters g , g , 0S of the Kanai-Tajimi power spectrum are taken to have values 

g 4 = , g 0.6 = and 
2 3

0 0.0156m sS −=  .The initial analysis and iterative calculation of the primary 

structure show that the targetJ  can be selected as 0.5. 

4.3 Results and discussion 

Table 2 shows the optimum design parameters and two optimized objectives of CASE A and CASE B. It 

shows that under the same performance objective pJ , the maximum control force 
dFJ  in  CASE B, which 

uses the CCISs, is reduced by about 7% compared with the ICISs used in CASE A, proving the advantage of 

CCIS in reducing control forces. From the perspective of parameter requirements, the maximum reduction in 

additional inerter and damper required by CCISs used in CASE B compared to ICISs in CASE A is 63.3% 

and 59.0% respectively, verifying the mass ratio enhancement of the cross-layer installation. 

Table 2 Optimum designs 

 CASE A CASE B 

e1M  61.87 10 kg 60.79 10 kg 

e2M  62.53 10 kg 61.29 10 kg 

e3M  61.07 10 kg 60.39 10 kg 

1 r  3.21 3.23 

.
2g-0148

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2g-0148 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

10 

2 r  9.44 9.32 

1 r  0.26 0.31 

2 r  0.60 0.67 

pJ  0.50 0.50 

dFJ  57.67 10  57.14 10  

 

Fig. 6 frequency response functions (FRFs) of CASE A, CASE B and CASE C (the uncontrolled building) 

The frequency response functions of CASE A and CASE B show that, as is shown in Fig. 6, both of them 

have similar excellent control effects on the first and second modes. 

An artificial earthquake BCJ-L2 is employed as the input ground motion for time history analysis to further 

study the control effect of CASE A and CASE B. The analysis results, shown in Fig. 7, illustrate that the 

responses of the MDOF structure equipped with optimum CISs, regardless of CASE A or CASE B, is greatly 

reduced compared to the uncontrolled structure, which is shown in the figure as CASE C, and the story drifts 

generally does not exceed the limit of 0.01 with engineering accuracy. The damper forces, shown in Fig. 8, 

illustrates that the cross-layer installation can reduce the maximum control force, which is consistent with the 

analysis of  the control force objective 
dFJ . 

 

Fig. 7 Seismic responses (BCJ-L2) for CASE A, CASE B and CASE C (the uncontrolled building) 
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Fig. 8 Control forces in the CISs of CASE A, CASE B 

5 Conclusions 

In this paper, the authors present the multi-mode optimum designs for a MDOF structure equipped with ICIS 

and CCIS. The contributions of this study are as follows: 

1. The installation efficiency coefficient β, which unifies the CIS with different installation forms, is 

proposed. 

2. The equivalent two-degree-of-freedom system is used to prove the mass ratio enhancement effect of the 

cross-layer installation. 

3. By constructing a reasonable state-space equation, a fast calculation method of seismic response 

considering a Kanai-Tajimi power spectrum input is established. The optimization problem of a MDOF 

structure equipped with CISs is transformed into a single-objective optimization problem with 

constraints by defining performance objective and cost objective. 

4. A 10-story benchmark structure is taken as a design example, illustrating that the CCIS not only can 

reduce the control force but the requirements of additional inerter and damper. The seismic responses 

given by CCISs and ICISs are almost identical, verified in the paper through frequency domain and time 

domain analysis. 
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