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1. Introduction

Igusa and Xu [1] proposed a new design concept for the TMD to suppress vibration of a dynamical system, 
termed Multiple Tuned Mass Dampers (MTMD). Due to the limitation of detuning of single TMD, to 
increase the robustness of the response MTMDs are been used quite effectively[2,3]. As we have seen from 
the literature that people have used different objective functions as well as different optimization techniques 
with certain assumptions. The basic configuration of the MTMD is a large number of small oscillators whose 
natural frequencies are distributed around the natural frequency of a controlled mode of the structure[4,5,6]. 
The primary structure is subjected to the harmonic ground acceleration. The optimum parameters of the 
MTMD system are obtained corresponding to the minimum of the maximum response of the main structure 
using an inbuilt function fmincon in MATLAB. It is done by three different method – Equal mass, Equal 
stiffness and New mehod. Also variation of optimum parameters of MTMD with the number of TMDs and 
the mass ratio of MTMD and the main system is observed. Then, explicit formulae for the optimum 
parameters of the optimum parameters are obtained using the function Solver in Excel and error analysis on 
the proposed expressions is conducted. The aim is to improve the performance of the MTMD system 
compared to the previous studies. 

2. Methodology

The MTMD system configuration consists of a main system supported by n number of TMDs with different 
dynamic characteristics as shown in Fig. 1 and is externally excited by a harmonic force. The main system is 
idealized as a single lumped mass characterized by the stiffness, ks, the damping constant, cs, and the mass, 
ms[7]. It is assumed that the damping in the main system is of viscous type specified by the damping ratio, 
s(i.e., s = cs/2 (m_s k_s ) ). Similar to the main system, the parameters of the jth TMD are the stiffness, kj, 

the damping constant, cj, and the mass, mj. The main system and each TMD are modelled as a single degree-
of-freedom   system  under  harmonic  excitation  so  that  the  total  d.f.  of  the  combined  structural  system  are  
n+1[8,9]. 

Fig.1- Structural model of main system with multiple tuned mass dampers 

Three methods have been used to derive the optimum parameters of the MTMD system–Equal Mass method, 
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Equal Stiffness method and New method. Optimization was done using an inbuilt function fmincon in 
MATLAB. The distribution of natural frequencies in all the three methods over a specified band-width is 
kept linear. In Equal Mass method, mass  of each TMD is kept same and derived by dividing the total mass 
of the structure by the number of TMDs  while in Equal Stiffness method, distribution of natural frequencies 
of the MTMD is obtained by keeping the stiffness constant but varying the mass of each TMD[10]. In the 
new  method  there  is  no  restriction  on  the  stiffness,  mass  or  damping  ratios  of  the  n  dampers.  Hence,  the  
number of variables in the optimization of the response of the structure under external excitation are 3*n (n 
variables for n masses of the dampers, n variables for the n damping ratios of the dampers, n variables for the 
n frequencies of the n dampers). 

The natural frequency, wj (i.e., =   ) of the jth TMD is expressed by 

 = 1 +
+ 1
2 1

 (1) 

for all the three methods. 

 =     (3) 

where T is the average frequency of all MTMD; and  is the non-dimensional frequency band-width of the 
MTMD  system.  Note  that  Eq.  (1)  indicates  that  the  distribution  of  the  natural  frequencies  of  the  MTMD  
system over a specified band-width is linear.  

As suggested by Xu and Igusa [11] that the manufacturing of the MTMD with uniform stiffness is simpler 
than that with varying stiffness. As a result, the distribution of natural frequencies of the MTMD is obtained 
by  keeping  the  stiffness  constant  but  varying  the  mass  of  each  TMD (i.e.,  k1 =  k2 =  ....  kn =  kT) in Equal 
Stiffness Method. 

The damping constant of the jth TMD is expressed as  

 cj = 2 mj T j (4) 

where T is the damping ratio kept constant for all the MTMD.  

Total mass of the MTMD system is expressed by the mass ratio defined as 

 
=  

(5) 

where µ is the mass ratio of the MTMD system.  

Tuning frequency ratio of the MTMD system is expressed by 

 
=  

(2) 
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 =  (6) 

where s (i.e., =  /  ) is the natural frequency of the main system.  

The main system is excited by the harmonic force expressed by 

 ( ) =  (7) 

where F(t) is the excitation force at the main mass; F0 is the amplitude;  is the circular frequency; and i = 
1 .  

The (n+1) equations of motion for system shown in Fig. 1 are expressed as [12] 
 [ ] + [ ] + [ ]{ } = { } (8) 

Where 

 { } = , , , … …  (9a) 

is (n+1) vector for displacement response relative to the base and {F} is force vector 
 { } = { ( ), 0,0, . . … .0}  (9b) 

The matrices, [M],[C] and [K], are expressed as 
 [M]=diag[ms,m1,m2,.....,mn] (10) 
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(12) 

The steady state harmonic response of the system is obtained by substituting 

 ( ) = ( [ ] + ) )  (13) 

Since the matrices [M] , [C] and [K] have non-zero terms along diagonal, the first row and first column, the 
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inverse in the above equation can be evaluated by Cramer’s rule.  

3. Response to harmonic excitation  
The amplitude of the steady state harmonic displacement of the main system, xs ), to the excitation, 

( ) =   , is expressed by [12] 
 ( ) = [ ( )]  (14) 

 
( ) =

( 2 )
2

 
(15) 

 The amplitude of the displacement of the main system is expressed in the normalized form as 
 

=
| ( )|

 
(16) 

The objective function in all the three methods is to minimize the maximum value of the response of the 
structure, R and find the corresponding optimum parameters. The maximum of the response, R of the 
structure is Dynamic Magnification Factor (DMF) evaluated as 
 =

1
( ) + ( )

 (17) 

Where 
 

( ) = 1
1 + 4

+ 4
 

(18) 

 

 

( ) = 2 +

2

+ 4
 

(19) 

Where, =  is the  mass ratio of each TMD  
= /  frequency ratio, is the ratio of the frequencies of the external force and structure 
= /  is the ratio of the frequencies of the jth TMD and structure 

DMF for an undamped main system depends upon j,  j and µj.  j depends upon j which again depends 
upon tuning frequency ratio because =  and frequency bandwidth of MTMD system,  (from Eq. 1). 

=  is obtained by mj which is obtained as follows: 

In Equal Mass method, =  , where =  is assumed a suitable value whereas in equal stiffness 
method, the stiffness is kept constant but with varying the mass of each TMD, which means k1=k2=...kn=kT 

Constant kT can be found out by following expression, 
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1

 (20) 

And mass of each TMD  can be found out by 
=                                                                                       (21) 

In equal mass and equal stiffness method, tuning frequency ratio(  =  ), non-dimentional frequency 

bandwidth ( =   ) and damping ratio( j)  is  kept  variable  their  optimum values  are  found  wheras  in  
new optimization method, frequencies, damping ratios and masses of all TMDs are kept variables and their 
optimum values are found. As the number of variables in optimization was very high, previous method of 
numerical search technique is not an effective method to find the optimum parameters. Optimization was 
done using inbuilt optimization function fmincon in MATLAB in all the three methods. This is a constrained 
minimization problem. We used the interior point algorithm for finding out the optimum parameters of the 
MTMD system. This  algorithm uses either  a  direct  newton step or  conjugate gradient  step at  each iteration 
for solving the approximate problem. 

We need to define the lower and upper boundary on the limits of the variables, that is, tuning frequency ratio 
=  , non-dimentional frequency bandwidth =   and damping ratio( j) in case of Equal Mass and 

Equal Stiffness method whereas the frequencies, damping ratios, masses of the dampers in the New Method. 
We also need to start from an initial guess estimate of the variables with the constraint that the total mass of 
all the dampers is equal to the mass ratio*mass of the structure. Frequencies initial guess was estimated 
assuming a linearly distributed frequency of the dampers with an initial guess of bandwidth and the initial 
guess tuning frequency ratio of the dampers. Initial guess for the masses of the dampers was that they have 
equal  mass in case of  the New Method.  There is  a  possibility  of  reaching a  local  minima for  the optimum 
parameters.  To  ensure  that  we  reach  a  global  minima  these  all  lower  bounds,  upper  bounds  and  the  initial  
guess estimated were run for different values and then from the minimum value of the responses, we 
obtained all the optimum parameters in achieving the objective. In some cases for larger number of dampers, 
we also need to have good estimate of initial guess for the masses of the dampers. Therefore, in some cases 
assuming a variable mass, and a linear distribution of frequency and equal damping ratio was used to find the 
initial guess for the masses of the dampers. 

4. Results 
Different optimum parameters  i.e. maximum response, average of frequencies, range of the frequency, and 
average damping ratio of the dampers for different mass ratios of the MTMD system for number of dampers 
equal to 2,3 and 5 by New method, Equal mass method and Equal Stiffness method are presented in Tables 
1-6. Individual masses, frequencies and damping ratios of each TMD for different number of TMDs for mass 
ratio, µ equal to 0.01 and 0.05 are presented in Table 7-8. Optimum parameters by New method, Equal mass 
method and Equal Stiffness method for different number of TMDs for mass ratio, µ=0.01 and 0.05  are 
presented in Table 9. Different comparison plots of the dynamic magnification factor with the frequency 
ratio of the excitation frequency and structural frequency by the three method for different number of TMDs 
and mass ratio, µ=0.01 are shown in Fig. 2-7. Optimum response of structure and optimum parameters of 
TMDs are plotted aginst different number of TMDs for mass ratio, µ=0.01 and 0.05 in Fig. 8-11. Optimum 
response of structure and optimum parameters of TMDs are plotted aginst different mass ratios for n=2,3and 
5 in Fig.12-15. Individual frequencies and damping ratios are plotted with their respective number of TMDs 
in Fig.16-17.  
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Table 1  Different optimum parameters by New method, Equal stiffness method and Equal mass method for 
µ=0.01 and µ=0.05 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

µ=0.01
n Ropt favg

opt frange
opt

avg
opt n Ropt fopt opt

T
opt n Ropt fopt opt

T
opt

2 12.5488 0.99131 0.0589 0.0401 2 12.54319 0.993051 0.059298 0.040744 2 12.55694 0.991767 0.059113 0.040597
3 11.89827 0.99251 0.0856 0.0322 3 11.94432 0.994418 0.0861 0.03187 3 12.12691 0.992809 0.08343 0.032601
5 11.32305 0.993036 0.111873 0.024388 5 11.44527 0.995701 0.111636 0.024022 5 11.67373 0.993588 0.110833 0.024164
7 11.06423 0.992902 0.125587 0.020419 7 11.27982 0.996217 0.122902 0.021103 7 11.52738 0.99394 0.124021 0.020427
9 10.94505 0.993157 0.132843 0.018765 9 11.20847 0.996628 0.130741 0.018497 9 11.45563 0.995647 0.128228 0.018706
11 10.85223 0.99293 0.138784 0.017057 11 11.17812 0.996838 0.135328 0.01725 11 11.41906 0.995797 0.132288 0.017915

µ=0.05
n Ropt favg

opt frange
opt

avg
opt n Ropt fopt opt

T
opt n Ropt fopt opt

T
opt

2 5.7241 0.96536 0.1313 0.0814 2 5.706922 0.967299 0.135205 0.084119 2 5.722485 0.960121 0.128758 0.089342
3 5.40679 0.96641 0.1900 0.0678 3 5.457206 0.973143 0.190865 0.068336 3 5.653559 0.964654 0.175654 0.072355
5 5.1451 0.96804 0.2443 0.0516 5 5.224664 0.979142 0.246461 0.052251 5 5.509966 0.964267 0.238626 0.058426
7 5.048555 0.969763 0.2728 0.043013 7 5.141832 0.981845 0.272218 0.045265 7 5.489639 0.963488 0.271617 0.05093
9 4.99366 0.969926 0.2859 0.041872 9 5.106845 0.983479 0.287741 0.040916 9 5.489714 0.96688 0.276012 0.049003
11 5.008765 0.960725 0.2850 0.045281 11 5.091167 0.98499 0.300208 0.036635 11 5.485763 0.965184 0.282927 0.050234

NEW METHOD EQUAL STIFFNESS EQUAL MASS

NEW METHOD EQUAL STIFFNESS EQUAL MASS

Figure 3 Plot of R versus Frequency 

ratio for µ=0.01 and n=2 by Equal 

masss, Equal stiffness and New 

 

Figure 2 Plot of R versus Frequency 

ratio for µ=0.01 and n=3 by Equal 

masss, Equal stiffness and New method 

Figure 1  Plot of R versus Frequency 

ratio for µ=0.01 and n=5 by Equal 

mass, Equal stiffness and New method 

Figure 6 Plot of R versus Frequency ratio for 

µ=0.01 and n=7 by Equal masss, Equal 

stiffness and New method 

Figure 5 Plot of R versus Frequency 

ratio for µ=0.01 and n=9 by Equal 

masss, Equal stiffness and New 

method 

Figure 4 Plot of R versus Frequency 

ratio for µ=0.01 and n=11 by Equal 

masss, Equal stiffness and New method 
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Figure 7 Optimum Maximum Response versus Number of TMDs by New method 

Figure 8 Optimum Average Frequency versus Number of TMDs by New method 

Figure 9 Optimum Frequency Range versus Number of TMDs by New method 
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Figure 10 Optimum Average Damping Ratio versus Number of TMDs by New method 

                   
Figure 11 Variation of Optimum Maximum Response versus Mass ratio for different number of TMDs by 

New Method 

                  
Figure 12 Variation of Optimum Average Frequency versus Mass ratio for different number of TMDs by 

New Method 
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Figure 13 Variation of Optimum Frequency Range versus Mass ratio for different number of TMDs by New 

Method 

                   
Figure 14 Variation of Optimum Average Damping Ratio versus Mass ratio for different number of TMDs 

by New Method 

 
 

Figure 15 Frequency of TMDs versus Number of TMDs 
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Figure 16 Damping Ratio of TMDs versus Number of TMDs 

5. Explicit formulae for optimum parameters for New Method 
Since the structural system considered is relatively complicated, therefore, it is extremely difficult to get the 
exact closed form expressions for the optimum parameters of MTMD system theoretically. However, the 
explicit formulae for optimum parameters can be obtained by applying the curve fitting technique, using the 
optimum parameters of the MTMD obtained previously. The optimum parameters of the MTMD system and 
response of the main structure will be function of the mass ratio, µ, and number of the MTMDs, n [13,14]. 
This  implies  that  suitable  curves  shall  be  selected  which  is  function  of  the  two  parameters  (i.e.,µ  and  n).  
After  several  trials  and  errors  the  following  expressions  of  the  optimum  parameters  are  found  in  
Bandivadekar and Jangid (2012a) to give the minimum error for the optimum parameters. 
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The coefficient values in the expressions are given in Table, which are obtained using minimizing the sum of 
square error by Solver function in Excel. 

Table 10 Coefficients values in the expressions of the optimum parameters for the New Method for 
Undamped main system 

Coefficients Ropt favg
opt opt/frange

opt
avg

opt 
a1 0.435442 0.097908 1.177999 0.220455 
a2 -0.12349 -0.31723 -0.11811 -0.46002 
a3 0.112151 5.747784 -0.27524 1.346828 
a4 -0.95219 -0.3936 0.097039 -2.87821 
a5 2.959278 -0.02839 -0.07505 3.795511 
a6 -1.27837 0.433564 2.021126 
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5 Conclusions 

1. Different comparison plots of the dynamic magnification factor with the frequency ratio of the
excitation frequency and structural frequency by the three method for different number of TMDs are
plotted. It is found that DMF is a continuous and differentiable function of the frequency ratio. The
number of the minima peaks is equal to the number of dampers and hence the number of maxima is
equal to number of dampers +1.

2. For both, a particular mass ratio,µ and the number of dampers,n the most effective and robust
method is the new method followed by equal stiffness method and the least as equal mass method.
Comparing the new method, equal stiffness method and equal mass method, we get that the new
method is the most effective method among the three due these following two reasons:

a. R value, that is, the maximum response is the least for the new method.

b. The  degree  of  flatness  is  most  in  the  new  method,  hence  the  sensitivity  is  the  least  making  it
most robust.

3. It  is  also  observed  that  with  the  increase  of  number  of  MTMD  the  optimum  damping  ratio  and
displacement of the main system decreases whereas the optimum band- width and tuning frequency
increases. On the other hand, the optimum damping ratio and band-width increases and tuning
frequency and corresponding displacement of the main system decrease with the increase of the
mass ratio of the MTMD system.

4. Frequency of TMDs are linearly distributed over a frequency range around the natural frequency of
the structure and Damping Ratios are almost constant.

5. Comparison of optimum parameters by optimization method in MATLAB and explicit expressions
for different mass ratios of the multiple tuned mass dampers for n=5 showed that there is good
agreement between the optimum parameters by the two approaches. The maximum error for any
value of T, , opt , fopt and Ropt is observed to be 10.171, 4.86, 0.70 and 3.36%, respectively. The
magnitude of error for optimum damping ratio is relatively more. This is due to the fact that the
optimum damping ratio of the MTMD system is sufficiently low.
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