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Abstract 

The inerter system has been proven to be an effective vibration control device, however, its energy-input-dissipation 

mechanism has not been clearly revealed. In this study, the closed-form energy equations are derived for the structure 

equipped with classic inerter systems, basically explaining their energy-related characteristic. The energy equations 

establish the theoretical relationship between the input energy, the dissipation energy and the key parameters of inerter 

system in an analytical form. Furthermore, the differences of the inerter systems comprising the grounded and 

ungrounded inerters are characterized through the comparative analysis in terms of the displacement control effect, 

energy dissipation efficiency, and reduction of the input energy. Correspondingly, a unified energy-dissipation-based 

design strategy is herein developed to optimize the displacement and energy-based responses of the structure as a dual-

performance target control. Finally, numerical examples are presented to validate the derived energy equation and 

design strategy. The analysis results show that the energy equation yields the closed-form measurement to evaluate the 

input energy of the inerter-based structure and quantifies functionality of the inerter system for the energy dissipation. 

Especially, the energy equation explicitly reveals the basic fact that a grounded inerter can reduce the energy input into 

the entire inerter-based structure. Following the unified energy-dissipation-based design strategy, the target 

displacement demand can be satisfied quantitively by the optimized inerter systems, which also simultaneously 

optimizes the energy performance of the primary structure to relax its burden of energy dissipation. 

Keywords: inerter; energy dissipation; analytical stochastic response; optimal design. 
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1. Introduction 

The inerter-based control approach has attracted increased attention for vibration control in various 

engineering fields [1]. The inerter is a two-terminal inertial element that produces an inertance assuming 

mass unit while introducing negligible gravitational mass into the structure [2-5]. In an ideal linear scenario, 

the inertial force of this massless element is proportional to the relative acceleration between its two 

terminals. Known as the mass enhancement effect, the inertance can be thousands of times the gravitational 

mass of the inerter [6]. A series of “lightweight” tuned-type inerter systems [7-10] have been developed for 

effective vibration control at the cost of less tuned mass. In retrospect, ball-screw based inerter is employed 

into the traditional viscous damper to amplify the viscous damping force, which yields the mechanical 

realization of a basic inertia mass system that consists of a viscous damping element in parallel with an 

inerter. It is designated as a grounded inerter-dashpot system (IDS) in this study. Takewaki et al. [11] 

investigated the benefits of interstory inerters grounded directly to the floor to reduce the seismic response of 

buildings. Jiang et al. [12] proposed the analytical design formulae for the IDS installed in an isolation 

system for the multi-response control of a storage tank. Apart from the mentioned IDS, other typical inerter 

systems including the grounded inerter are tuned mass damper inerter [13] and tuned liquid inerter system 

[8].  

In addition to the condition of grounded inerter, inerter systems comprising an ungrounded inerter 

have been proposed by inserting other mechanical elements between the inerter and the ground (floor) or the 

controlled structure, such as the tuned viscous mass damper (TVMD) [6] and tuned inerter damper [14]. For 

IDS and TVMD, Ikago et al. [6] figured out the important damping enhancement phenomenon that the 

dashpot deformation is amplified and larger than the deformation of the entire TVMD. Zhang et. al [15] 

derived closed-form damping enhancement equation to reveal the its basic working mechanism. 

Correspondingly, more vibrational energy is expected to be dissipated through the larger dashpot 

deformation, which is a benefit of implementing a tuned spring between the ground and IDS.  

However, the theoretical basis for the energy-dissipation mechanism, and how to directly quantify the 

energy related to the dashpot deformation amplification effect remains unclear. The difference between the 

grounded and ungrounded inerters, has not been revealed in an analytical and explicit manner. In this study, 

a closed-form energy equation is derived to explain the theoretical basis and energy-input-dissipation 

characteristic of the IDS and TVMD, which are two typical inerter systems with grounded and ungrounded 

inerters, respectively. Furthermore, a unified energy-dissipation-based optimal design strategy is developed 

for the two inerter systems, as a dual-performance control to guarantee pre-specified displacement control 

demand with optimized energy dissipation cost imposed on the primary structure.  

2. Energy equation 

2.1 Mechanical models 

Consider a viscously damped single-degree-of-freedom structure (Fig. 1), the primary structure is modeled 

by a mass m , a stiffness k , and a viscous damping coefficient c . Fig. 1 (a) shows the IDS that consists of a 

single grounded inerter with inertance  inm  and a dashpot with damping coefficient dc  arranged in parallel 

without introducing any extra independent freedom. Through the insert of a tuned spring ( dk ) between the 

ground and the IDS, the inerter system with a grounded inerter evolves into a classic inerter system, i.e. the 

TVMD, comprising an ungrounded inerter shown in Fig. 1 (b). From the perspective of mechanical layout 

and concerned displacement, the IDS is a special case of TVMD that takes the assumption of dk =  .  
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(a) Structure with IDS                             (b) Structure with TVMD 

Fig. 1 – Mechanical models of considered inerter-based structures.  

2.2. Motion governing equation and closed-form solutions 

Subject to the base excitation gu , the IDS structure, the governing equation is established according to 

dynamic equilibrium condition, 

 ( ) ( ) 2

0 01 2 gu u u u    + + + + = −  (1) 

where u  is the displacement of the primary structure relative to the ground. Laplace transformation [16] is 

employed to obtain the Eq. (1) in an algebraic form., 

 ( ) ( )2 2

0 01 2 gs U s U U U    + + + + = −  (2) 

where U  and 
gU  are the Laplace transformation forms of u  and 

gu , respectively, and is = , where i  is the 

imaginary unit and   is the circular frequency of excitation. By solving Eq. (2) with respect to U , the 

structural response can be easily obtained. Supposing white noise with the amplitude of power spectra 
0S  as 

the excitation, the mean-square of the displacement 2

U  and velocity of primary structure 2

Vel  can be derived 

in closed form [16], 
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By additionally considering the degree of dashpot deformation 
du , the similar derivation for the 

TVMD structure is conducted [16], where relevant velocity response of primary structure 2

Vel  and dashpot 
2

,Vel d  are given in detail: 
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2.3. Energy-balance analysis 

Compared to the displacement- or acceleration-based performance indices, the energy-balance analysis 

yields a more stable result, and is thus more robust against various types of input ground motion. To 

characterize the dynamic behavior of the IDS structure, an energy-balance analysis model is established by 

pre-multiplying Eq. (1) by u , and then integrating over the time domain. The input energy can finally be 

distributed into the contributions, 

  ( ) ( ) ( ) ( ) ( ) ( ), , , , ,k s d s e s k IDS d IDS inputE t E t E t E t E t E t+ + + + =  (5) 
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where ( ),

0

d

t

k sE t uu t=  , ( ), 0

0

2 d

t

d sE t u u t=  , ( ) 2

, 0

0

d

t

e sE t u u t=  , and ( )
0

d

t

input gE t uu t=   are the integral of the 

kinetic energy, viscous damping energy, elastic strain energy of the primary structure, and input energy, 

respectively; and ( ),

0

d

t

k IDSE t u u t=   and ( ), 0

0

2 d

t

d IDSE t u u t=   are the integral of the kinetic energy and 

viscous damping energy of IDS, respectively. The energy balance for unit time can be established as 

 , , , , ,k s d s e s k IDS d IDS inpute e e e e e+ + + + =  (6) 

where the generic notation 
xe  represents the rate of energy (i.e. the power) 

xE  at the time instance t  [17]. 

Consider energy-balance analysis dealing with stochastic excitation 
gu ; the input power and dissipation 

power can be evaluated stochastically by applying the expectation operator  E   to the terms of the integral 

in Eq. (6). Consistently with the conservation of mechanical energy, 
,E d se   , 

,E d IDSe    are equal to zero, 

  2

, 0 0E 2 E 2d s Vele uu    = =   and   2

, 0 0E 2 E 2d IDS vele uu    = =  . Substituting the closed-form expression 

2

Vel  into above expressions, the input power of the entire IDS structure in the stationary condition is finally 

obtained as 

 ( )
( )( ) ( )0

2 2

0 0 0
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 (7) 

It should be noted that, under the stationary condition, the input power is equal to the sum of the 

dissipation powers produced by the primary structure and inerter system. With regard to an uncontrolled 

structure, the corresponding input power is easily obtained as a special case of Eq. (7) by designating 0 = , 

which can be expressed as 0

2

,0 0 ,0E 2input Vel Se     = =  , where the subscript ‘0’ refers to the condition of an 

uncontrolled SDOF structure. The dimensionless velocity response ratios of the primary structure   and 

inerter system   are defined to evaluate the dissipation power produced by the viscous damping of the 

primary structure and the inerter system, whereas the normalized input energy ratio   is given as 

 ,

,0 ,0 ,0

E
, , 

E

inputVel dVel
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e

e


  

 
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= = =

  

 (8) 

Dividing both sides of Eq. (7) by 2

0 ,02 Vel  , it is simplified as by referring to the defined 

dimensionless ratios 
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 (9) 

For the IDS structure, the   is equal to the   because of the same displacements of the primary structure 

and the dashpot in the IDS. On the basis of Eq. (9), the energy equation finally reads as 

 2 2  
1

1
,


   

 

 
+ =

+
= 

 
 (10) 

where 
1

1



=

+
 is the input energy ratio and reflects the significant reduction of input power owing to the 

implementation of the grounded inerter. 2  and 2    represent the dissipation powers of the primary 

structure and the IDS, respectively. 

Repeating the same energy-balance analysis for the TVMD structure, it can be obtained as 

.
2g-0171

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2g-0171 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

5 

 
( ) ( )

0

2 2

2 2

0 0

2

0,

2

0

+ +
E 2 2input Vel Vel d

D
S

D
e S S

D

    
   

   
    +=

−
=+ =  (11) 

where, 

 ( )( ) ( ) ( )( )3 2 2 2 2 2 2 2 2 2 2 2 2 24 4 4 1 1 4 2 2D                    = + + + + + + + + + + − + +  (12) 

Dividing both sides of Eq. (11) by 2

0 ,02 Vel  , the energy equation for TVMD reads as 

 ( )2 2 , =1


   


+ = 　  (13) 

Referring to the energy balance revealed by the energy Eq. (10) and Eq. (13), 
1

1



=

+
 in Eq. (10) is 

lower than 1 =  in Eq. (13); therefore, in an IDS structure (Fig. 1 (a)), implementation of an inerter between 

the controlled structure and excitation source (ground) can significantly reduce the input power compared 

with the cases of the TVMD structure (Fig. 1 (b)).  

3. Unified energy-dissipation-based design 

3.1 Design equations 

Following the derived energy equation and energy working mechanism, a unified optimal design framework 

is proposed for the inerter system with grounded or ungrounded inerter, i.e., the IDS and the TVMD 

respectively. Taking the displacement and energy performance control into consideration, it is preferentially 

suggested for the primary structure to achieve a dual-control, which are represented by   and 2 , 

respectively. Once the displacement response factor   is selected as a measurement of the vibration control 

effect of an inerter system (for instance the target demand of displacement 
t ), the energy-based factors for 

the primary structure ( 2 ) is the key supplementary indicator to be minimized for releasing the control cost 

and the energy dissipation burden imposed on the primary structure. 

 
,0

U

U





=  (14) 

Correspondingly, the unified optimal design problem of the IDS and TVMD is expressed in a mathematical 

form, 

 

2 Minimize   energy cost 

 subject to  
t

v V



 




=




 (15) 

where v  is the variable vector of the IDS parameters (  = ,  v   ) or the TVMD parameters (  = ,  ,  v    ); 

V  is the considered feasible domain of the v . Integrating the difference of the energy working basis between 

the IDS and TVMD, the unified design problem in Eq. (15) can yield targeted design equations for the two 

systems as follows.  

The design of IDS includes the determination of two key parameters, namely   and  . According to 

the closed-form expressions of 2

U  ( related to  ) in an IDS structure, the displacement response control 

effect t  is totally dependent on the damping ratio   for a structure with given  . Correspondingly, the 

first-line step is to determine the damping ratio   to quantify the specific level of  . Then, referring to the 
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2

Vel  ( related to 2 ), the 2  is inversely proportional to the implemented inertance-mass ratio  , of which 

the derivative with respect to   is 
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2
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1 


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 
−

+
=




+


 (16) 

The minimization of the 2  in the unified design Eq. (15) lies in the upper boundary of  , which is 

consistent with the minimization of input energy ratio   in Eq. (10). In this situation, the desired target 

reduction of the input energy 
t  is integrated into the IDS design to determine the value of the upper 

boundary of  , potentially reducing the input energy and control the force of the dashpot. To sum up, the 

design equation of IDS is expressed as,  

 
2

1
1

1
1

t

t

 





  
= −  

  

 = −



 (17) 

For TVMD, there exist three key parameters to be designed, the  ,  , and  . As revealed in the 

energy Eq. (13), the input power into the TVMD structure is unit, which is different from the case of a 

structure with a grounded inerter. Referring to the parametric analysis results of   and 2  in Fig. 2, for a 

TVMD structure with a temporarily given tuned spring  , the variation patterns of   and 2  resemble a 

valley topology, for which the basin (marked by the yellow and white triangles for   and 2 , respectively) 

denotes to the lowest value. The yellow and white triangles locate near each other, implying that the 

parameter set marked by the triangle is an efficient solution to determine   and   for the simultaneous 

control of displacement response and energy dissipation.  

 

                              (a)                                                   (b)                               (c)  

Fig. 2 – Contour curves of  ,  , and 2  of TVMD structure for 0.02 = ,  0.001,  1.0  , and 

 0.001,  1.0  , where minimum   and 2  are marked by the yellow and white triangles,  respectively. (a) 

Displacement response ratio  , (b) dashpot deformation amplification ratio  , and (c) energy dissipated by 

structure 2 . 

 

In this section, the pursuit of minimum 2  (the white triangle) can be interpreted as the partial 

derivative of 2  with respect to  , with   set zero. Hence, the dual-performance control problem of TVMD 

is finally expressed in mathematical form as 
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    



     



=
  =  

→   
 =   =
 

. (18) 

Substituting the closed-form expression of 2  of Eq. (4) into Eq. (18), the values of   and   can be 

determined theoretically, although the detailed expression is complicated. Considering that the inherent 

damping ratio   of the superstructure is always small, the analytical expressions of   and   can be 

simplified as functions of   by assuming that 0 = : 

 
( )

( )

( )

( )

3

2 3

2 4 31
.

42 1
,  

1


   


 

+ +

+ +
= =   (19) 

which can be further used in the conceptional design.  

3.2 Design cases 

Utilizing the proposed energy-dissipation-based optimal design strategy, an illustrative example of typical 

IDS and TVMD structures are designed and analyzed. At the same time, the differences between IDS and 

TVMD in terms of displacement response control and energy dissipation are characterized by the 

comparison. After the initial dynamic analysis of the original uncontrolled structure, the dynamic 

performance is improved by IDS or TVMD, where 
t  is assumed as 0.30. Considering the determined value 

of 
t , the IDS and TVMD are obtained analytically from Eqs. (17) and (18), whose results are summarized 

in Table 1.  

Table 1. Designed inerter system parameters and structural response results. 

Case IDS 
Pre-specified Optimal parameters Structural responses 

t  
t        ( )2 2 =  

Case-A 0.30 0.50 0.202 1.000 - 0.045 

Case-B 0.30 - 0.115 0.278 0.580 0.094 

 

To further characterize the dynamic performances of IDS and TVMD structures under white noise and 

more realistic excitation, time history analyses were conducted for white noise and N–S records of the El 

Centro 1940 earthquake. The intensity measure of the excitation (for instance, the peak ground acceleration) 

does not affect the results in terms of vibration control ratios, under the assumption of the postulated linear 

behavior of the controlled system. Considering Case-A and -B, the structural displacement u  is shown in Fig. 

3, of which the corresponding values of the displacement response ratio   are also calculated and are 

depicted in the figures.  

For both the white noise and actual excitation, the structural displacement is reduced effectively by 

IDS and TVMD, whose   matches the pre-specified values shown in the title of the figure. This reflects the 

fact that the proposed energy-dissipation-based optimal strategy under the assumption of white-noise 

excitation can also produce a satisfactory performance for a structure subject to real excitation. Fig. 4 plots 

the hysteretic curves of the inherent damping element of primary structures with the same  , in which the 

maximum damping deformation and maximum damping force of the IDS structure are lower than those of 

the TVMD structure. For Case-A and B, IDS and TVMD are designed under the same t  to provide the 

primary structure with the same mean-square displacement responses. Benefiting from the grounded inerter, 

the total energy input into the IDS structure is much lower than that of the TVMD structure, as shown in Fig. 

5, which relaxes the energy-dissipation burden of the primary structure and inerter-based system. 
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           (a)                                                                                   (b) 

Fig. 3 – Displacement responses of an uncontrolled structure and structures with an IDS and a TVMD for 

Case-A and B ( 0.30 = ). (a) White noise and (b) El Centro earthquake. 

 

  (a)                                                                        (b)  

Fig. 4 – Hysteretic curves of structural inherent damping elements for Case-A and B ( 0.30 = ). (a) White 

noise and (b) El Centro earthquake.  

Less input energy because of 

the grounded inerter

Energy-dissipation burden of 

TVMD structure is heavier

 

Fig. 5 – Normalized energy curves of structures with an IDS and a TVMD in Case-A and B ( 0.30 = ) under 

excitation of the white noise. (a) Structure with TVMD and (b) structure with IDS.   
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4. Conclusions 

This study derives a closed-form energy equation and proposes a unified energy-dissipation-based optimal 

design strategy to achieve dual-performance control. The main conclusions of this study can be summarized 

as follows: 

(1) Energy equations explicitly establish the theoretical relationship between the input power, 

dissipation power, and parameters of inerter system, which can explain the energy-input-dissipation 

mechanism of the inerter systems in a direct manner.  

(2) Inerter systems comprising a grounded inerter have the dual benefits of reducing the input power 

and energy into the entire inerter-based controlled structure and dissipating the vibrational energy at the same 

time.  

(3) Employing the energy equation, the unified energy-dissipation-based optimal design strategy 

effectively minimizes the burden of dissipated energy contributed by the inherent damping of the primary 

structure, simultaneously providing a satisfactory displacement performance. 
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