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Abstract 

This research discusses the optimal height-wise distribution of viscous dampers in multistory structures considering 

practical design issues, all quantified with respect to the implementation cost. Seismic excitation is modeled as a stochastic 

process (filtered white noise), and response statistics of linear structural systems are obtained through state-space analysis. 

For applications involving nonlinear dampers, statistical linearization principles are employed to approximate damper 

and structural response. Emphasis is placed on three practical design issues: (i) realistic quantification of damper upfront 

cost, based on damper force capacity rather than merely on damping coefficients; (ii) explicit incorporation (into the 

optimization procedure) of the cost of column strengthening that might be required to accommodate the additional forces 

(with respect to those on the bare structure) due to the action of the supplemental dampers; and (iii) the maximum feasible 

force capacity of the dampers. Five different objective functions are defined to address these issues, all of them 

incorporating cost characteristics (for dampers and strengthening) at different fidelity levels. The impact of the statistical 

linearization when the objective function is defined in terms of peak response quantities (instead of RMS quantities) is 

discussed. The optimal design problem considers primarily the structural performance as a constraint, requiring that a 

specific level of vibration suppression be achieved (with respect to the structural response without dampers) through the 

damper implementation. The proposed framework is illustrated through the design of a supplemental viscous damping 

system for an actual Chilean 26-story building, considering an excitation that is compatible with the regional seismic 

hazard. Results demonstrate that explicitly optimizing for cost functions that consider practical design issues leads to 

substantial economic benefits with respect to optimization for simplified cost metrics. 

Keywords: viscous damper optimization; stochastic excitation; multi-objective optimization 
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1. Introduction 

Fluid viscous dampers are an attractive seismic protection device for new and existing buildings [1]. Their 

effectiveness in reducing the seismic response of multistory buildings is sensitive to their chosen distribution 

[2, 3], and a variety of optimization approaches, considering different performance quantifications and 

modeling assumptions, have been developed for this task [4-11]. They range from approaches utilizing simple 

schemes, distributing total damping coefficient according to pre-selected simplified criteria, with the total 

damping coefficient chosen so that a specific performance is achieved, to approaches that establish a formal 

optimization procedure based on some chosen performance objectives. Simplified approaches adopt a modal 

analysis philosophy, emphasizing the damping ratio (or transfer function) at the fundamental mode. Other 

methodologies use time-history analysis and peak response quantities to evaluate structural performance. 

Between these two extremes in terms of complexity, another wide range of approaches evaluate performance 

using random vibration theory, modeling the seismic excitation as a stationary stochastic process. 

This study investigates the optimal height-wise distribution of viscous dampers in multistory structures 

with emphasis on design considerations that are relevant in practical applications but have not been yet fully 

explored in past studies. Since intent is to address practical applications, a damper distribution approach 

appropriate for such a setting is adopted, avoiding unnecessary modeling complexity that might reduce the 

applicability, for example need to examine a small only number of devices [10] (i.e. have a small only number 

of design variables in the design optimization to accommodate for the complexity stemming from the adoption 

of complex models for describing structural performance). This is facilitated by modeling structural 

performance through stationary response statistics. Within this context, the main topics addressed are: the force 

demand on the supplemental dampers, the cost of the supplemental dampers, and the forces on structural 

members due to the supplemental damping system. Though the importance of explicitly incorporating the 

upfront damper cost has been demonstrated in studies relying on advanced numerical modeling of structural 

behavior [10, 11], this cost is commonly ignored, or is only approximately addressed, in simplified design 

frameworks like the one considered here. In these latter cases usually the total damping coefficient is 

considered [2], but this quantity does not explicitly indicate the damper cost, which is actually more related to 

the force capacity rather than to the damping coefficient. 

2. Equations of motion and space-state representation 

2.1 State-space formulation 

Consider a ns-story building equipped with nd viscous dampers (linear or nonlinear) connecting adjacent (i.e., 

consecutive) floor levels. Let sn

s
x  be the vector of floor displacements of the primary structure relative to 

the ground and 
g

x   be the ground acceleration. The equation of motion of the structure is given by: 

 ( ) ( ) ( ) ( ) ( )T

s s s s s s d d s s g
t t t t x t    M x C x K x T f M R  (1) 

where xs sn n

s
M , xs sn n

s
C , and xs sn n

s
K are the mass, damping, and stiffness matrices of the primary 

structure, respectively, sn

s
R  is the earthquake influence coefficient vector (vector of ones), dn

d
f  is 

the vector of damper forces and d sn xn

d
T  is the connectivity matrix that relates the velocities of the global 

degrees of freedom to the vector of relative velocities between the ends of each damper so that = 
d s

v  T x , where 

v  stands for the damper relative velocities. Let 
g

x  be modeled as a stationary filtered Gaussian white noise 
stochastic process. A state-space formulation is utilized to determine the response statistics. In this setting, the 
excitation model is: 

 ( ) ( ) (t);    ( ) ( )
q q q q g q q

t t w x t t  x A x E C x   (2) 

where ( )w t   is a zero-mean Gaussian white-noise process with spectral intensity equal to Sw = 1/(2π); 
( ) qn

q
t x  is the state vector for the excitation; 

xq qn n

q
A , 

x1qn

q
E  and 

1x qn

q
C  are the state-space 
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excitation matrices. Combining excitation model of Eq. (2) with the equations of motion of the structural 
system (Eq. (1)) provides the augmented state-space system: 

 ( ) ( ) ( ) ( );  ( ) ( ) ( )
d d

t t t w t t t t    x Ax Bf E z Cx Df  (3) 

where ( ) xn
t x  is the state vector with nx = 2ns + nq; ( ) znt z  is the vector of performance variables 

(response output of the system) with zi denoting the ith output; and A, B, E, C, D are the system state-space 
matrices. Note that the proposed formulation takes into account the spectral characteristics of the stochastic 
excitation by appropriate augmentation of the state equation [12]. The derivation of the state space matrices is 
discussed in the Appendix. 

The force demand on the i-th viscous damper of the system is given by sgn( )
iα

di di i i
f c v v  where αi, 

cdi and i
v  are the viscous exponent, damping coefficient and relative velocity of the i-th viscous damper, and 

sgn(.) is the signum function. For linear dampers αi = 1 whereas for nonlinear dampers statistical linearization 
can be employed to replace the nonlinear force with an equivalent linear one. In this case, the equivalent 
damping coefficient of the i-th viscous damper ceqi is given by [13]: 

 

1
2

1

2 Γ(1 )
2

2

i

i

α

i

α

eqi di vi

α

c c σ
π







  (4) 

where Γ(.) is the Gamma function and 
vi

σ  is the standard deviation of 
i

v . The linearized damper force is then 

di eqi i
f c v . The damper force vector fd, with elements fdi, can be expressed as ( )

d eq
f K c v  where ( )

eq
K c is a 

diagonal matrix with the equivalent damping coefficient 
eqi

c  of each damper. Relative velocities are given by 

= 
d s d

xv  xT L , where Ld is the state connectivity matrix that relates these velocities to the state vector, also 

given in the Appendix, and the dependence of K on ceq is explicitly emphasized. We can finally formulate the 

final state-space system representation: 

 
where (5) 

 

2.2 Response statistics estimation 

Under the modelling assumptions discussed above, the output of the system, z(t), has a Gaussian distribution 

with zero mean and covariance matrix in stationary response given as 

 Τ( ) ( ) ( ) ;  ( ) ( ) ( ) ( ) 0T T

a eq eq a eq a eq eq eq a eq
   

zz
K C c P c C c A c P c P c A c EE  (6) 

where P(ceq) corresponds to the state covariance matrix, obtained, as shown above, by the solution of an 

algebraic Lyapunov equation [14]. The variance of each of the nz system output variables is given by the 

corresponding element of the diagonal of Kzz. The variances of the damper relative velocities are also needed 

in the problem formulation and are related to the state covariance matrix by: 

 2 ( )
deq

T

d


v
P cσ L L  (7) 

Using these variances, the RMS damper forces can be obtained as: 

 ( )
d eq


f v
cσ K σ  (8) 

 ( ) ( ) ( ) ( );  ( ) ( ) ( )

where ( ) ( ) ;  ( ) ( ) .

a eq a eq

a eq eq d a eq eq d

t t w t t t  

   

x A c x E z C c x

A c A BK c L C c C DK c L
 ( ) ( ) ( ) ( );  ( ) ( ) ( )

where ( ) ( ) ;  ( ) ( ) .

a eq a eq

a eq eq d a eq eq d

t t w t t t  

   

x A c x E z C c x

A c A BK c L C c C DK c L
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When statistical linearization is employed, variances 2

v
σ  are also used to calculate the equivalent 

damping coefficient given by Eq. (4). In this case a cyclic dependence exists: ceqi depends on  based on Eq. 
(4), but based on Eq. (7) and the dependence on ( )

eq
P c , the latter also depends (implicitly) on ceqi. An iterative 

process is therefore needed to solve for the equivalent damper coefficients and the state covariance matrix. In 

the context of the optimization established later in this study this is avoided by adopting the equivalent damping 
coefficients as the primary design variables, and then back-deriving the actual damping coefficients. In this 
case there is no iterative process required. Once ceqi is known,  can be solved for by calculating the second 
order statistics, and finally cdi can be computed using Eq. (4). 

3. Cost-based optimal damper distribution 

The design objective is to identify the optimal damping coefficient vector cd made up of the damper coefficients 

of all supplemental dampers. To simplify the optimization, the equivalent damping coefficient is posed as the 

design optimization vector as discussed earlier, and then Eq. (4) is applied to determine cd (note that if dampers 

are linear, cd = ceq). Design objectives are related to the cost of implementation of the supplemental damping 

system whereas considerations about the established vibration suppression level are incorporated through 

performance constraints.  

3.1 Cost-based objective functions 

Three different cost functions are considered. The first and simplest one is the sum of RMS damper forces, 

i.e.: 

 1 1
( )

d

d

n

eq f ii
J σ


c  (9) 

where 
df i

σ  is the RMS force demand on the i-th damper, given by components of vector in Eq. (8), and J1 has 

units of force. This measure facilitates a closer connection to the damper cost [10] than the commonly adopted 

[2] total damping coefficient Co (sum of each damping coefficient cdi). However, damper cost is actually related 

to damper force capacity, which is a function of the peak damper force rather than of the RMS response. 

Moreover, this cost is not linearly related to damper force capacity [10]. The second cost function incorporates 

these considerations, and is given by: 

 
0.607

2 1
( ) 96.88

dn

eq doii
J f


 c  (10) 

where
doi

f is the peak force demand on the i-th damper (in units of kN) and J2 is expressed in United States 

Dollars (USD). For linear dampers peak force quantities can be approximately related to RMS values as 

ddoi f f i
f p σ , where pf is the peak factor, relating the mean of the peak damper force (or peak of any stochastic 

variable) to its standard deviation. In this study this factor is taken as 2, corresponding to a single degree of 

freedom oscillator with 5% damping vibrating for 20 cycles based on up-crossing rate [15], the latter 

representing the period of vibration for stochastic variables. The 20 cycles were chosen to accommodate the 

case study considered later, based on strong ground motion duration characteristics for the region and the 

fundamental period of the building structure. For nonlinear dampers a modification is warranted since accuracy 

of statistical linearization typically reduces for peak response quantities, compared to the accuracy of 

average/RMS response quantities [16]. Since intent of developed framework is to have practical utility, a 

simplified approximation is adopted to estimate peak damper forces. These are assumed equal to the forces 

developed for a specific peak velocity, and therefore are given by: 

 ( )α
doi di f vi

f c p σ  (11) 

 A final, new cost function J3 is introduced in this study to account for the cost of column strengthening 

due to the additional forces imposed by the damping system. This cost is assessed as a function of the ratio of 

vi
σ

vi
σ
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the additional axial load due to damper forces to the initial axial load capacity (i.e. the axial load capacity of 

the structure without dampers). This ratio indicates the relative degree of strengthening required. In turn, the 

additional axial load on columns due to damper forces is a function of the cumulative damper force (i.e., the 

sum of forces in dampers located above a given story). This cost function is then given by: 

 J3(ceq) = 96.88 ∑ f
doi

  0.607
+

nd

i = 1 ωN ∑
γFDoj

Noj
 

ns

j = 1 = J2(ceq) + ωN ∑
γFDoj

Noj
 

ns

j = 1  (12) 

where FDoj is the peak cumulative damper force at the j-th story, Noj is the initial (i.e., of the structure without 

dampers) axial load capacity of the columns at the j-th story and J3 is expressed in USD. The parameter ωN 

(also expressed in USD) is a constant introduced to: (i) convert damper forces to axial forces at each story (i.e., 

it considers the geometric variability of different damper bracing alternatives as discussed next); and (ii) 

quantify the cost of the strengthening required relative to the initial axial load capacity. Weight γ is a constant 

modification factor introduced for nonlinear dampers to approximate peak response statistics. The RMS axial 

force on the columns at a given story, Nfj, is proportional to the RMS cumulative damper force at the same 

story, FDj. Hence, for the sake of conceptual clarity, from now on the quantity FD will be referred to as “axial 

load”, with FDj representing the axial load on the columns on the (j1)-th story (for instance, FD1 is the axial 

load over the foundation and FD2 the axial load over the first story columns). Peak axial forces are calculated 

through use of the peak factor as FDoj = p
f
 FDj, whereas for nonlinear dampers a modification is established 

through γ to consider that statistics for FDoj are based on linearization for the damper forces (peak forces 

approximated f
doi

 = p
f
 σfdi), whereas peak damper forces are better approximated by Eq. (11). Modification 

factor for the axial load at each story γ is obtained by calculating the ratio of peak force under these two 

assumptions and is given by (dependence on i removed in this equation since final expression is independent 

of specific damper): 

 )(

2
12

2)(

2
1

1
































i

d

f

ff

vfd p

p

pc 
 (13) 

which is a function only of the viscous exponent α. Since this weight is same for all dampers at all stories, this 

modification accurately adjusts for the cumulative effect of the peak damper force at each story. For linear 

dampers γ = 1 whereas for nonlinear dampers γ < 1,and therefore axial load is reduced.  

 To evaluate Noj it is assumed that column cross-sections change every nr stories, hence so does the 

initial axial load capacity. The initial axial load capacity at the foundation level is assumed equal to a typical 

axial load on a column due to gravity loads on a typical story, denoted N̅, multiplied by the number of stories 

ns. Since, to the best of the authors’ knowledge, no reliable information on the value of factor ωN is available, 

a parametric analysis will be performed. For the same reason (i.e., lack of available information) the cost of 

column strengthening is assumed linearly related to the axial force. 

 Cost function J1 relates in a simplified manner (linearly) the cost of the dampers to the damper force, 

and in this study is mainly considered for comparison to the more realistic, and broadly applicable, nonlinear 

cost function J2. Cost function J3 incorporates additional considerations about column strengthening, and is 

particularly relevant for retrofit scenarios, when supplemental damper forces needs to be balanced against the 

column capacities. 

 The relationship in Eq. (10) between the damper force capacity and the damper cost was derived from 

the analysis of available commercial information [10] and indicates that the cost of a marginal increment in 

force capacity is smaller in dampers having a large force capacity than in dampers having a small force 

capacity. This cost function, though, does not incorporate considerations about the maximum feasible damper 

force capacity fmax of commercially available dampers. Of course larger values of fdoi can be accommodated by 

using multiple dampers per story, with the capacities of each damper limited to fmax. In this case, though, the 
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cost per damper is related to each individual force capacity and not the total capacity per story. To address this 

issue, the following modification, is proposed for J2, assuming that if at some story fdoi exceeds fmax then such 

demand will be accommodated using multiple, equal capacity dampers, the number of which is the smallest 

number needed so that the force capacity of each damper is smaller than fmax 

 

0.607

2 1
max max

( ) 96.88 /
dn

doi doi

m eq doii

f f
J f

f f

    
      

    
c  (14) 

where [.] is the ceiling function. Similar considerations for cost function J3 in Eq. (12) lead to J3m. 

3.2 Functions related to structural performance 

The function incorporating structural performance considerations in the design can be described based on 
second order statistics of the output. Since seismic performance is typically expressed in terms of occurrence 
of different failure modes, quantified by engineering demand parameters exceeding certain thresholds, it is 
reasonable to define performance in terms of the maximum normalized variance. The latter is directly related 
to the probability of occurrence of any failure mode in the structure [12]. This approach leads to definition for 

the performance function as ( ) max ( / )
k k zk k

h λ σ β
z
σ , where λk and βk are the relative importance and 

normalization constant of the k-th output of z, respectively. 

3.3 Height-wise optimal distribution design problem 

The optimization problem is formulated as constrained optimization with cost metric Jl (where l refers to 
different alternatives, J1, J2/J2m or J3/J3m) corresponding to the objective function to be minimized and the 
performance function ( )h

z
σ  corresponding to the constraint. At the design stage focus is placed on the 

interstory drift performance, leading to λk = 0 for performance outputs associated with accelerations and λk = 1 
or the outputs associated with the interstory drifts. Threshold βk is chosen same for all drifts and equal to the 

maximum RMS interstory drift response of the structure without dampers. This constraint selection ultimately 
facilitates the identification of the damper distribution providing a target reduction of the interstory drift 
response with respect to that of the uncontrolled structure. The optimization problem is expressed as:  

 
max ( )

* arg min ( ) such that 
nd

eq

δj eq
j

eq l tg

δo

σ
J c

σ

  
 

eq
c

c
c c  (15) 

where 
δj

σ  is the RMS interstory drift response at the j-th story of the structure equipped with dampers, 𝜎𝛿0̅̅ ̅̅  is 
the maximum RMS interstory drift response (over all stories) of the structure without dampers and ctg is the 
target performance, representing the vibration suppression ratio with respect to the uncontrolled structure. This 
optimization problem corresponds to a nonlinear constrained optimization problem with potentially multiple 
local minima (non-convex characteristics). The challenges in this optimization problem stem from multiple 

sources: nonlinearities in the objective functions and constraints (use of max function for the latter creates a 
non-smooth problem), and trade-off in the performance between the capacity of dampers at different floors. 
To address these challenges a global optimization algorithm is adopted and implemented through the 
TOMLAB optimization environment [17]. 

 Should be pointed out that in the case of nonlinear dampers, cost function J1 does not change in the 

sense that linear and nonlinear damper distributions having the same values of ceqi (equal to cdi for linear 

dampers) lead to the same value of J1. Objective functions J2, J2m, J3 and J3m, though, do take different values 

depending on whether dampers are a linear or nonlinear. The difference stems from the modification 

established to calculate the peak damper force given by Eq. (11). If this modification was not established, and 

peak forces were calculated using direct statistical linearization, no differences would exist. 
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4. Case study 

The design framework is illustrated next for the retrofit of an existing 26-story Chilean building [18] with 

viscous dampers. The chosen building, having base dimensions of 18 by 23 meters, total seismic weight of 

11690 tonf and typical story-height of 2.52 meters, is a typical example of Chilean residential high-rise 

building (in terms of structural properties and modal characteristics). Five different design cases are examined 

with respect to the objective function definition, J1, J2, J2m, J3 or J3m, and will be referenced, respectively, as 

D1, D2, D2m, D3 and D3m. The target reduction of interstory drift response is set equal to 40%, i.e., ctg chosen as 

0.60. Based on commercially available data maximum force capacity fmax of a single damper is set equal to 815 

tonf. Note that tonf is used herein to describe forces, as is the standard in the Chilean region. Conversion to 

kN, if desired, can be established by multiplying given force values by g constant. 

4.1 Structural and excitation models 

Two 2D models are developed for the structure (one along each of the two main orthogonal axes x and y), 

obtained by static condensation of the initial 3D structural model. The degrees of freedom of the resulting 2D 

models are the lateral floor displacements of each of the 26 storys. The 2D models are denoted 26X and 26Y, 

respectively, and their first and second vibration periods are 1.29 sec, 0.30 sec, in the x direction and 1.51 sec, 

0.35 sec, in the y direction. The modal participating mass ratios of the first and second mode are 0.69 and 0.18 

for the 26X model, and 0.66 and 0.18 for the 26Y model. The inherent damping is assumed equal to 5% for all 

modes. 

 The stationary seismic excitation 
g

x  is described by a high-pass filtered Kanai-Tajimi power spectrum 

[19]: 

 

   

4 2 2 2 4

2 2
2 2 2 2 2 2 2 2 2 2

4
( )

4 4

g g g

g o

g g g f f f

ω ζ ω ω ω
S ω s

ω ω ζ ω ω ω ω ζ ω ω




   
. (16) 

In the above equation parameters ωg and ζg represent the stiffness/frequency and damping properties, 

respectively, of the supporting ground modeled by a linear damped SDOF oscillator driven by white noise. 

Further, parameters ωf and ζf control the cut-off frequency and the “steepness” of a high-pass filter used to 

suppress the low frequency content allowed by the Kanai-Tajimi filter. Lastly, so is chosen to achieve a desired 

value for the root mean square acceleration aRMS of the considered seismic input. The parameters of the filter 

are chosen through calibration to a suite of ground motions that are representative of the Chilean seismic 

hazard. Ground motions recorded during the Mw  8.8 2010 Maule (Chile) earthquake are chosen for this 

purpose. From the available ground motions, only the ones recorded on what is defined as Soil Type II (soft 

rock or stiff soil) in the Chilean seismic design code NCh433 are considered. Soil Type II is the soil type at 

the location of the considered building. This calibration leads to values ωg = 16.46 rad/s, ζg = 0.6, 

ωf = 6.845 rad/s and ζf = 0.48. aRMS is calculated based on a target Peak Ground Acceleration (PGA), with the 

latter defined based on NCh433 provisions for Seismic Zone 2 (where Santiago City is located) as 0.30g. 

Assuming a peak factor of 2 (same value adopted earlier), the target aRMS is then 0.15g. Based on results 

obtained from a parametric analysis (not shown here due to space constraints) the value of factor ωN is set 

equal to 1000 USD. 

4.2 Results and discussion 

The height-wise optimization is performed for linear dampers (α = 1) for both Models 26X and 26Y and for 

nonlinear dampers with α = 0.35 for Model 26X. Latter case (i.e., nonlinear dampers) will be referenced to 

with superscript nl herein. To investigate the benefits of the height-wise damper distributions given by the 

proposed explicit optimization approach, two other well-known height-wise distribution schemes are 

considered here. The first approach is the Uniform distribution, i.e., same damper capacity in all stories. The 

second approach is the Sequential Search Algorithm SSA [4], where dampers are placed sequentially at the 

story where the value of a performance index (interstory drift in this study) reaches a maximum. The 
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computation of the performance index is based on the second order statistics of the response. In both schemes 

the same target performance is adopted, i.e. reduction of drift corresponding to ctg. The superscripts U and SSA 

are used, respectively, to describe these two simplified distributions. 

 Results are presented in Tables 1-3 and Fig. 1. Table 1 presents all cost functions Jl evaluated at optimal 
design vector for each design case; maximum peak force over all dampers max(fdo); damping ratio of the 

retrofitted structure at the fundamental mode ξ; and mean ratio per story of RMS interstory drifts /
δ δο

σ σ and 
floor accelerations /

a aο
σ σ with respect to the RMS values of the structure without dampers. The latter 

quantities are representations of the average response reduction per story. Table 2 presents the cost reductions 

/ U

l l
J J  and / SSA

l l
J J  with respect to the Uniform and SSA distributions offered by the explicit height-wise 

optimization scheme. Table 3 presents the cost reduction /nl

l l
J J  for the nonlinear damper implementation. In 

Tables 2 and 3 performance is reported for each design with respect to the corresponding cost function used in 

the optimization, e.g., when design case D1 is examined the ratio of objective functions / SSA

l l
J J  corresponds 

to cost function J1 (l=1). The height-wise distribution of the peak damper forces is shown in Fig. 1 for Model 
26X. 

Table 1: Response quantities of interest (linear dampers) 

 Model 26X Model26Y 

 D1 D2 D2m D3 D3m D1 D2 D2m D3 D3m 

J1 [tonf] 2553 2829 2601 2828 2716 2126 2447 2195 2505 2376 

J2 [103 USD] 161 90 117 112 121 97 79 84 104 101 

J2m [103 USD] 187 165 150 166 161 142 144 131 154 142 

J3 [103 USD] 229 204 203 160 172 191 185 180 159 159 

J3m [103 USD] 255 279 237 215 213 237 250 226 209 199 

max(f
do

) [tonf] 1382 4775 2256 2823 2446 1706 4458 3262 2180 1890 

ξ [%] 14.3 15.9 14.4 16.4 15.3 14.2 17.0 15 16 15 

/
δ δο

σ σ  [%] 59 60 60 58 58 61 61 61 58 59 

/
a aο

σ σ  [%] 55 62 56 62 57 55 60 57 58 57 

Note: /
δ δο

σ σ  and /
a aο

σ σ  indicate reduction of RMS interstory drift and peak floor acceleration with respect to the RMS response 

of the structure without supplemental dampers 

Table 2: Comparison with the Uniform and SSA damper distributions (linear dampers) 

 Model 26X Model 26Y 

 D1 D2 D2m D3 D3m D1 D2 D2m D3 D3m 

Jl/Jl
U 0.90 0.34 0.40 0.40 0.53 0.88 0.33 0.61 0.49 0.55 

Jl/Jl
SSA 0.93 0.69 0.89 0.63 0.73 0.96 0.73 0.95 0.76 0.77 

Table 3: Comparison between linear and nonlinear dampers (Model 26X) 

 D1 D2 D2m D3 D3m 

Jl
 nl/Jl 1.00 0.84 0.84 0.80 0.76 
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a) Linear dampers 

 

b) Nonlinear dampers 

Figure 1. Peak damper forces (Model 26X)  

 Results show that design case D1 minimizes force demands on dampers but at the expense of relatively 
large values of cost-related objectives J2 and J3. D2 design leads to reductions in J2 equal to 44% in model 26X 
and 18% in model 26Y, although at the expense of large values of maximum peak damper force that might not 
be feasible. Optimal design D3 leads to higher values of upfront cost J2 than D2 but smaller values of total cost 
(i.e., including column strengthening) J3. Considering both building models, J3 is reduced on average by 24% 
with respect to D1 and by 18% with respect to D2. In the latter design cases, however, the maximum damper 

force max(fdo) exceeds the feasible limit of 815 tonf for a single damper. This means that design cases D2m and 
D3m are different from their counterpart that do not explicitly incorporate maximum force capacity 
considerations. Results indicate that consideration of fmax leads to designs having not only smaller values of 
J2m and J3m (as expected) but also smaller values of max(fdo). This shows that consideration of the maximum 
force in the damper cost leads to a distribution that avoids excessively large dampers placed at a single story. 
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This is also evident in Fig. 1 results. Moreover, for D2m design mean floor acceleration reduction per story 

seems to be reduced up to 6% more with respect to is counterpart (D2), which is another advantage of the more 
uniform distribution established through considering the maximum force capacity. With respect to the overall 
damper efficiency the results show that similar vibration suppression is established through all design cases, 

with the targeted reduction of 40% for maximum interstory drift established with approximately 10% of 
supplemental damping ratio (as intrinsic damping ratio is 5%). Such a supplemental damping threshold has 
been set as a reasonable objective in many viscous damper applications. With respect to the interstory drift and 
floor acceleration reduction, the mean drift reduction per story /

δ δο
σ σ and mean acceleration reduction per 

story /
a aο

σ σ  take similar values as the target of 40% reduction of the maximum drift. This shows that the 
proposed design scheme establishes a similar vibration suppression across all stories, not only at the stories 

where interstory drifts are maximized. 

 Comparison to simplified distribution schemes clearly indicates that the proposed explicit design 

approach leads to noticeably benefits. Differences are more noticeable when nonlinearities in the target cost 

function are more relevant and no constraints exist for maximum damper forces (so scheme is allowed to 

benefit more from an imbalanced distribution), e.g. bigger differences in the D2 design case rather than D2m. 

While cost is not explicitly considered in its formulation, SSA is generally more cost-effective than the 

Uniform distribution, most likely because, albeit simplified and sequential in nature (rather than targeting total 

optimality), still incorporates an explicit damper distribution based on optimality criteria and structural 

performance. Comparison between linear and nonlinear implementations indicates that, for a given level of 

structural performance, nonlinear dampers are more cost effective. Note that, as mentioned in Section 3 the 

value of the J1 metric is independent of whether the dampers are linear or nonlinear (optimal distribution with 

respect to equivalent viscous damping is the same), which is why 
1 1

/nlJ J  ratio is equal to unity. 

5. Conclusions 

Cost-based optimal height-wise distributions of viscous dampers in multistory structures was investigated in 

this paper. Seismic excitation was modeled as a stochastic process, and response statistics were obtained 

through state-space analysis. Different cost functions that account (with different sophistication levels) for 

different relationships between cost, damper force capacity, and maximum feasible damper force capacity were 

considered. The performance function was defined in terms of the interstory drift response, and was used as a 

constraint function by imposing a target reduction of the response in comparison to the uncontrolled structure. 

As case study, application to a 26-story Chilean high-rise reinforced concrete building was examined. Results 

indicate that the explicit optimization of the damper distribution considering realistic cost metrics leads to 

significant savings with respect to damper distributions optimized for simplified cost metrics. Consideration 

of feasible damper maximum force capacity also has a significant influence on the optimal damper distribution. 

For nonlinear dampers it was shown, in general, that explicit consideration of nonlinearities for peak response 

calculation produces results that can be more cost-effective 
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Appendix 

The state-space representation of the structure in Eq (1) is: 

 ( ) ( ) ( ) ( ),       ( ) ( ) ( )ss s ss s d s g s ss s dt t t x t t t t    x A x B f E z C x D f  (17) 

where xss
2n  is the state vector collecting relative to the ground displacements and velocities of all stories 

[ ]T T T

ss s sx x x , and the matrices in Eq. (17) are defined as: 

 
x x x1 x x

1 1 1 1 1
    s s s s d s s s s dn n n n n n s n n n n

s s s s sT T

s s s s d s s s s s s d

    

         
             

               

0 I 0 0 T 0 0
A B Ε C D

M K M C T R M K M C M T
 (18) 
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In the above expressions, the output matrix sC  accounts for output variables vector z that includes inter-story 

drifts and absolute accelerations for all floors. Further, Ia is the identity matrix of dimension a, 0axb is the zero 

matrix of dimensions axb, Ts is a transformation matrix defining relative responses between consecutive floors 

(i.e., a square matrix with dimension ns with 1 in the diagonal and -1 in the first off-diagonal). Combining Eqs. 

(17) and (2) leads to the representation in Eq. (3) where: 

 
2 x1

x x
x2 x

      
s

z q z q

q s q d

ns s q sss

s n n s n n
n n q n nq q

     
                 

            

0A E C Bx
x A B E C C 0 D D 0

0 A 0x E
 (19) 

Also, the state connectivity matrix corresponds to: 

 
d s d fd n xn d n xn

 
 

L 0 T 0  (20) 

Lastly, the state-space matrices of the excitation model used in the case study is: 

 

2

2 2

2 2

0 1 0 0 0

2 0 0 1
 2 2

0 0 0 1 0

2 2 0

g g g

q q q ο g g g f f f

g g g f f f

ω ζ ω
σ ω ζ ω ω ζ ω

ω ζ ω ω ζ ω

   
    
             
   
       

A E C  (21) 

where σo is chosen such that the excitation has the desired aRMS intensity. 
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