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Abstract 

Real-time hybrid simulation (RTHS) is an experimental technique for structural testing, where a critical 

element is studied in the laboratory, and the rest of the structure is represented through numerical simulations. 

The boundary conditions on the physical specimen are imposed by a transfer system (i.e., actuators), and it is 

essential to minimize synchronization errors between numerical and experimental subdomains to ensure not 

only accurate but stable results during the experiment. Many control methods have been proposed to 

compensate actuator dynamics and minimize synchronization errors. However, current methods require either 

manual tuning of controller parameters, which is a time-consuming and challenging process. Alternatively, 

model-based approaches require good knowledge of the transfer system (i.e., a calibrated model through 

system identification), including any dynamic interactions with the physical specimen and surrounding loading 

equipment. Thus, additional costs and sometimes premature damage to the physical specimen are expected 

during the controller calibrations. 

This paper conducts a detailed study on adaptive compensation for RTHS, with a focus on robustness against 

the choice of adaptive gains. The main goal is to design a dynamic compensator that does not require previous 

knowledge of the specimen interaction with the transfer system. Hence, an adaptive gain optimization 

procedure is proposed to improve the robustness of this technique. Optimal adaptive gains are obtained through 

a particle swarm optimization approach, where the evaluation of the objective function is carried out by a series 

of numerical simulations of the interactions between specimen-transfer systems. As a proof-of-concept, this 

method is evaluated using virtual RTHS simulations, including the controller design and calibration processes. 

The method achieves excellent compensation using the same controller for various experimental scenarios, 

including different partitioning cases, uncertainties in the actuator and experimental substructure parameters, 

and noise in measured signals. Through this development, structural laboratories will be capable of testing 

different substructures while avoiding unnecessary system identification to capture specimen interaction, and 

without a significant compromise in accuracy or laboratory safety. 

Keywords: Real-time hybrid simulation; dynamic compensation; adaptive control; adaptive gain calibration; 

particle swarm optimization. 
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1. Introduction

Laboratory tests are essential to study the behavior of structural systems and materials subjected to dynamic 

loadings, such as those produced by earthquakes. Experimental techniques such as cyclic tests and shake table 

tests are quite ubiquitous in structural engineering. Another technique called real-time hybrid simulation 

(RTHS) has proven as a cost-effective and realistic approach to conducting seismic performance assessment, 

taking full advantage of available equipment installed in laboratories (e.g., dynamic actuators or shake tables). 

Real-time hybrid simulation (RTHS) is an experimental technique for structural testing. A critical 

element is studied in the laboratory, while the rest of the structure is represented through numerical simulations 

[1,2]. At each time step, the calculated displacements are imposed on the experimental substructure by a 

transfer system (i.e., actuators). Then, the restitutive forces are measured and incorporated into the equations 

of motion to calculate the displacement at the following time step. Representing numerically part of the 

structure reduces the costs and requirements of the laboratory, while the experimental part results in a realistic 

analysis of the physical specimen. 

A crucial aspect of RTHS tests is the correct application of the boundary conditions on the experimental 

substructure. The dynamic properties of the transfer system and their interaction with the experimental 

substructure produces synchronization errors (amplitude or delay errors) between commanded and measured 

displacements [3]. The most harmful error is the delay between the physical and numerical domain. When this 

is introduced in the equation of motion, it can cause not only precision problems but also instability [4]. Thus, 

different methods have been proposed to compensate for the dynamic of the transfer system and thus minimize 

synchronization errors. Early methods reported in the literature are based on polynomial extrapolation, 

assuming a constant delay [5]. Other methods are based on representing the system to be controlled with a 

first-order transfer function and applying the inverse of this function to compensate for the dynamic of the 

actuator [6]. More sophisticated methods are known as model-based compensation, where the controller is 

designed based on a higher-order estimate of the transfer function of the plant [7]. Model-based compensation 

has excellent results if a good plant model is available to design the controller. However, there are no 

guarantees of accuracy or stability when there is significant uncertainty on the model. 

Adaptive compensation has been proposed in RTHS testing to provide excellent controller performance 

when there is uncertainty or significant non-linearity in the control plant. Some adaptive methods consist of 

compensation through a first-order transfer function, where parameters of the function are adjusted during the 

test based on a frequency domain analysis of commanded and measured signals, such as Adaptive Phase-lead 

Compensator [8] or Windowed FEI Compensation [9]. Other methods like Adaptive Time Series [10] and 

Conditional Adaptive Time Series [11] estimate the plant through Taylor series expansion and adjust the 

parameters in the time domain. Adaptive model-based compensation [12] consists of an estimate of the plant 

in frequency-domain; then, compensation is implemented in time-domain using numeric derivatives of the 

commanded signal and adaptation based on gradient. Some methods use polynomial extrapolation, such as the 

Adaptive Two-Stage Compensation [13] or the Improved Adaptive Forward Prediction [14]. Usually, adaptive 

methods have proved to be very efficient when there is uncertainty or non-linearity in the control plant; 

however, they are highly dependent on prior knowledge of the system to establish initial conditions and 

constraints for the adaptive parameters. Therefore, it is generally required to test the control plant with the 

experimental substructure included in order to perform the design and calibration of the controller. This 

methodology can cause premature damage to the physical specimen to be tested. 

The objective of this study is to develop an adaptive compensator which is independent of the 

experimental substructure to be tested, avoiding the premature testing of the physical specimen. The Adaptive 

Model-based Compensation [12] method is used with the following modifications: (i) first-order controller; 

(ii) modified filter for the adaptation process; (iii) initial parameters based on a model of the transfer system

without interaction with the experimental substructure; (iv) adaptive gains calibration through off-line

numerical simulations using particle swarm optimization. The method is implemented in a virtual RTHS

benchmark problem developed by Silva et al. [15]. This paper has the following organization. Section 2

describes the RTHS benchmark problem, the simulation cases, and the evaluation criteria to assess its
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performance. Section 3 presents the proposed compensation method, with the formulation of the optimal 

adaptive gain calibration process. Section 4 presents the main results of the simulations for different 

partitioning cases in order to study the robustness of the proposed compensator. Lastly, Section 5 presents the 

conclusions and final remarks. 

2. Problem formulation

2.1 RTHS benchmark problem 

The RTHS benchmark problem [15] consists of a three-story moment frame with three lateral degrees of 

freedom, as shown on the left side of Fig. 1. The reference structure is divided into a numerical substructure 

(NS) and an experimental substructure (ES), as shown on the right side of Fig. 1. 

Fig. 1 – Reference structure and partitioning. Adapted from [15]. (Note: NS = dashed line; ES = red line.) 

The equation of motion of the linear reference structure is presented in Eq (1). 

𝑀𝑟�̈� + 𝐶𝑟�̇� + 𝐾𝑟𝑥 = −𝑀𝑟 𝑟 �̈�𝑔 (1) 

where 𝑀𝑟 , 𝐾𝑟 , and 𝐶𝑟  are the mass, stiffness and damping matrices, respectively. 𝑥 , �̇� , and �̈�  are the

displacement, velocity, and accelerations vectors, respectively, all measured relative to the ground motion. �̈�𝑔

is the ground acceleration, and 𝑟 is the seismic influence vector, taken as 𝑟 = [1 1 1]T for this problem.

The equation of motion of the numerical substructure (NS) is presented in Eq (2). 

𝑀𝑛�̈�𝑛 + 𝐶𝑛�̇�𝑛 + 𝐾𝑛𝑥𝑛 = −𝑀𝑟 𝑟 �̈�𝑔 − [1 0 0]𝑇𝑓𝑒 (2) 

where subscript 𝑛 refers to numerical substructure (NS). Subsequently, 𝑓𝑒 is the measured restoring force from

the experimental substructure (ES) described in Eq (3). 

𝑓𝑒 = 𝑚𝑒�̈�𝑚 + 𝑐𝑒�̇�𝑚 + 𝑘𝑒𝑥𝑚 (3)

where 𝑚𝑒, 𝑘𝑒, and 𝑐𝑒 the mass, stiffness, and damping parameters of the experimental substructure. In RTHS,

the displacement of the first DOF from NS, 𝑥𝑛,1, is considered the target displacement 𝑥𝑡. Meanwhile, 𝑥𝑚

corresponds to the measured displacement of ES and in the ideal case 𝑥𝑚 = 𝑥𝑛,1, which satisfies compatibility

in the boundary between substructures. 

The block diagram utilized to solve this problem is presented in Fig. 2, which was implemented in 

Matlab and Simulink. For direct numerical integration, a 4th Order Runge-Kutta solver with a fixed time step 
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∆𝑡 = 1/4096 [sec] was considered. The output signal from the dynamic compensator is called command 

displacement and is denoted with the variable 𝑥𝑐 . Noise has been added to measured signals to simulate 

physical sensors. Also, the output of the reference structure is the displacement of the first floor and is denoted 

as 𝑥𝑟. This signal is utilized to compare with the results of the RTHS to assess its accuracy. 

 
Fig. 2 – Simulink model for reference structure and RTHS closed-loop model. 

The control plant (i.e., the actuator connected to ES) is modeled as shown in Fig. 3, where 𝑠 corresponds 

to the Laplace variable, 𝑠 = 𝑗𝜔; 𝑗 is the complex number, and 𝜔 is the circular frequency in [rad/s]. The 

parameters of the transfer system model are listed in Table 1, including uncertainties in three parameters 

represented by normally distributed and mutually independent random variables. 

 
Fig. 3 – Control plant model. Adapted from [15]. 

Table 1 – Transfer system parameters. 

Parameter Nominal Value Standard Deviation Units 

𝛼1𝛽0 2.13 × 1013 − m-Pa/sec 

𝛼2 4.23 × 106 − m-Pa 

𝛼3 3.3 1.3 1/sec 

𝛽1 425 3.3 Nondimensional 

𝛽2 1 × 105 3.31 × 103 1/sec 
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2.2 Simulation cases 

The benchmark problem proposes different partitioning cases consisting of different mass and damping for the 

reference structure, resulting in different numerical substructure but the same experimental substructure for 

each case. In this paper, four cases are presented to evaluate the performance of the proposed control method, 

including uncertainties in the stiffness represented by a normally distributed random variable. The values for 

each case are listed in Table 2. Case I correspond to the most sensitive case from the benchmark problem, 

while Case II corresponds to the less sensitive. Case III and IV include different experimental substructures. 

For each case, the reference structure has the same mass per floor and the same damping for all modes. 

Table 2 – Properties of simulation cases. 
  Reference Structure  Numerical Substructure 

Case Earthquake Mass 

[kg] 

Frequencies 

[Hz] 

Damping 

[%] 

 𝒎𝒆 

[kg] 

𝒄𝒆 

[kg/sec] 

𝒌𝒆 (mean) 

[× 𝟏𝟎𝟔N/m] 

𝒌𝒆 (std.) 

[× 𝟏𝟎𝟒N/m] 

I El Centro 40% 1000 3.6 ; 16.0 ; 38.1 3  29.1 114.6 1.19 5 

II Kobe 40% 1000 3.6 ; 16.0 ; 38.1 5  29.1 114.6 1.19 5 

III Kobe 40% 1100 3.1 ; 13.5 ; 32.2 3  40 200 1.79 10 

IV El Centro 50% 800 4.0 ; 17.9 ; 42.6 5  20 100 0.82 8 

 

2.3 Evaluation criteria 

The results are evaluated through three performance indicators:  

• 𝐽2: Normalized root-mean-square error between the target displacement 𝑥𝑡 and the measured 

displacement 𝑥𝑚 (Eq (4)). Measure the synchronization error. 

 

𝐽2 = √
∑ (𝑥𝑚[𝑙] − 𝑥𝑡[𝑙])2𝐿

𝑙=1

∑ (𝑥𝑡[𝑙])2𝐿
𝑙=1

× 100% (4) 

• 𝜏: Corresponds to the delay indicator obtained with the frequency evaluation index [16]. 

Measure the synchronization delay (in milliseconds) between 𝑥𝑡 and 𝑥𝑚. 

• 𝐽4:  Normalized root-mean-square error between the reference displacement 𝑥𝑟  and the 

measured displacement 𝑥𝑚  (Eq (5)). Measure the error between the simulation and the 

reference structure.  

 

𝐽4 = √
∑ (𝑥𝑚[𝑙] − 𝑥𝑟[𝑙])2𝐿

𝑙=1

∑ (𝑥𝑟[𝑙])2𝐿
𝑙=1

× 100% (5) 

3. Methodology 

3.1 Adaptive model-based compensation 

The control method presented in this paper is based on the Adaptive Model-based Compensation (AMBC) [12]. 

The original method consists of a third-order adaptive feedforward combined with an LQG feedback regulator. 

In this study, a first-order adaptive controller is presented to show the calibration process in detail. The LQG 

is not considered for two reasons: (i) to demonstrate the compensation capacity of the adaptive feedforward; 

and (ii) the LQG method requires good knowledge to design the controller. 

The formulation consists of estimating the plant by a first-order transfer function without zeros, as shown 

in Eq (6). 
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𝑥𝑚 ≈ 𝐺𝑝(𝑠) 𝑥𝑐 =

1

𝑎1𝑠 + 𝑎0
𝑥𝑐 (6) 

Then, the inverse of this transfer function is used to generate the command signal using the target 

displacement as input, as shown in Eq (7). 

 𝑥𝑐 = 𝐺𝑝
−1𝑥𝑡 = (𝑎1𝑠 + 𝑎0)𝑥𝑡 = 𝑎1�̇�𝑡 + 𝑎0𝑥𝑡 (7) 

The parameters 𝑎0 and 𝑎1 must be adjusted during the test to achieve good compensation. Therefore, 

Eq (6) is reordered to obtain a relation between the commanded and measured displacements, as shown in Eq 

(8). 

 𝑥𝑐 = [ 𝑎1 𝑎0][ 𝑠 𝑥𝑚    𝑥𝑚]𝑇 = 𝑎1�̇�𝑚 + 𝑎0𝑥𝑚 (8) 

In the original AMBC method, a low-pass filter 1/(1 + 𝑠)3 is used to make proper transfer functions to 

obtain the derivatives of 𝑥𝑚 . This filter affects the amplitude of the measured signal deteriorating the 

adaptation process. In this paper, a Butterworth filter is utilized to remove high-frequency noise and then 

calculate a numeric derivative to obtain �̇�𝑚, just like in other methods such as Adaptive Time Series [10] and 

Conditional Adaptive Time Series [11]. The filter is applied to the commanded signal to synchronize with the 

filtered measured signal. Once obtained the derivatives of 𝑥𝑚, an estimation error 𝜀 could be obtained, as 

shown in Eq (9).  

 
𝜀 =

𝑧 − �̂�

𝑚𝑠
2  =

𝑧 − 𝜃𝑇𝑤

𝑚𝑠
2  (9) 

where 𝑧 is the filtered commanded signal 𝑥𝑐, �̂� is the estimate of 𝑧, 𝜃 is a vector that contains 𝜃 = [𝑎0 𝑎1]𝑇, 

and 𝑤 is the filtered measured signal 𝑤 = [𝑥𝑚 �̇�𝑚]𝑇. 𝑚𝑠
2 is the normalizing signal 𝑚𝑠

2 = 1 + 𝛼𝑤𝑇𝑤; with 

𝛼 = 1 in this paper. Once the estimated error is formulated, a cost function is defined in Eq (10). 

 
𝐽(𝜃) =

(𝑧 − 𝜃𝑇𝑤)
2

2 𝑚𝑠
2  (10) 

Finally, using the adaptive gradient law, the rate of change is obtained, as shown in Eq (11). 

 �̇� = Γ𝜀𝑤 (11) 

where Γ  is the adaptive gain matrix. In this paper, Γ  is assumed to be a diagonal matrix, where Γ =
diag(Γ0, Γ1). These adaptive gains are related to the rate of adaptation parameters, and its calibration is 

discussed in Section 3.3. 

 Additionally, the original AMBC method considered the Routh’s stability criterion to provide constraints 

for the adaptive parameters 𝑎𝑖. In this study, Routh’s stability criterion is considered insufficient because it is 

based on the stability of the control plant being estimated, which does not guarantee the stability of the RTHS 

close-loop system. Thus, the stability of a compensation method in RTHS still a pending issue. 

3.2 Specimen interaction in RTHS testing 

Due to control-structure interaction [3], the transfer function of the plant will change every time the 

experimental substructure is changed, so in many control methods, the controller must be redesigned for each 

particular case. In this paper, the controller is designed to be used with different experimental substructures, 

avoiding system identification tests for each substructure to be tested. 

 The initial parameters 𝑎0  and 𝑎1  are defined with an estimation of the transfer system without 

interaction with any experimental substructure. In this paper, the parameters 𝑎0 and 𝑎1 are only restricted to 

𝑎0 > 0 and 𝑎1 > 0, allowing free adaptation. The filter utilized in adaptation law is a fourth-order Butterworth 
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filter with a cutoff frequency of 20 [Hz]. In Fig. 4 the transfer function associated with initial parameters 𝑎0

and 𝑎1 are presented.

For the calibration process, a model of the transfer system connected to a calibration structure is utilized. 

This structure must show considerable interaction with the transfer system, and it is used only to obtain a 

calibration plant model from a commanded displacement to a measured displacement. In this paper, a 

calibration structure different to the experimental substructures used in RTHS is utilized, whose properties are 

𝑚𝑒 = 60 [kg], 𝑘𝑒 = 4 × 106 [N/m] and 𝑐𝑒 = 310 [kg/sec]. The transfer functions of the calibration plant and

the plant for each RTHS case with nominal values are presented in Fig. 4. The transfer functions are presented 

from 0 [Hz] to 100 [Hz], but the most significant frequencies in seismic testing are approximately 0-20 [Hz]. 

Cases I and II have the same experimental substructure, so present the same transfer function, while Case III 

and Case IV exhibit different transfer functions due to the different experimental substructures. All the plants 

have different behavior with respect to the initially estimated plant, showing different levels of interaction with 

the transfer system. Thus, the parameters 𝑎0 and 𝑎1 must be adjusted to achieve good compensation.

Fig. 4 – Bode diagrams of transfer function 𝐺𝑃(𝑠)

3.3 Optimal calibration of adaptive gains 

For the calibration, a Simulink model is utilized to evaluate different off-line pairs of Γ0 and Γ1. The Simulink

model is presented in Fig. 5 and consists in: (i) ground acceleration (in this calibration, El Centro earthquake 

scaled to 60%); (ii) a calibration structure to generate a target displacement (in this calibration, a single degree 

of freedom structure with natural frequency of 5 [Hz] and 5% damping ratio); (iii) the adaptive controller with 

initial conditions according to red curve Fig. 4 and predefined adaptive gains Γ0 and Γ1; (iv) calibration plant

model (green curve of Fig. 4); and (v) noise addition to the measured displacement to model the sensor.  

Fig. 5 – Simulink model for calibration. 
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The 𝐽2 indicator is selected to evaluate the controller performance because it represents the tracking 

error, and minimizing this error, stable and accurate results are expected. So, for each simulation, the 𝐽2 

indicator is computed to measure the error between the target and measured displacement. Thus, the calibration 

consists of obtaining the adaptive gains, which minimizes the 𝐽2 performance indicator. This study proposes 

particle swarm optimization to find the optimal adaptive gains, but other optimization methods could be used 

as well. Particle swarm optimization [17] consists of defining several particles (𝑁), where the position of each 

particle represents a possible solution to minimize a fitness function. In this calibration, 𝑥𝑖[𝑘] represents the 

position [𝑎, 𝑏] for the particle 𝑖 ∈ [1, 𝑁] at the iteration 𝑘 ∈ [1, 𝐾], where 𝐾 is the total number of iterations. 

The position is related to the adaptive gains such that Γ = diag(Γ0, Γ1) = diag(10𝑎, 10𝑏). Thus, for each 

position, there is an error indicator 𝐽2(𝑥𝑖[𝑘]) resulting from the simulation with the adaptive gains associated 

with position 𝑥𝑖[𝑘]. Next, a set of 𝑛 particles with random initial positions and velocities are defined in a 

constrained search space. Then, the position and velocity of each particle are updated, according to Eq (12) 

and Eq (13). 

 𝑣𝑖[𝑘 + 1] = 𝜔𝑣𝑖[𝑘] + 𝑟1[𝑘]𝑐1(𝑝i[𝑘] − 𝑥i[𝑘]) + 𝑟2[𝑘]𝑐2(𝑔[𝑘] − xi[𝑘]) (12) 

 𝑥𝑖[𝑘 + 1] = 𝑥𝑖[𝑘] + 𝑣𝑖[𝑘 + 1] (13) 

where 𝑣𝑖[𝑘] is the velocity of particle 𝑖 at iteration 𝑘. The velocity is updated according to a weighted sum of 

three components: (i) inertia with weight 𝜔; (ii) difference between the position with best result of the particle 

𝑝𝑖[𝑘] and the current position 𝑥𝑖[𝑘], with a random component 𝑟1[𝑘] and weight 𝑐1; and (iii) the difference 

between the position with best result of the swarm 𝑔[𝑘]  and the current position 𝑥𝑖[𝑘] , with a random 

component 𝑟2[𝑘] and weight 𝑐2. The best position of a particle 𝑝𝑖[𝑘] corresponds to the position with the 

lowest 𝐽2 value for the particle 𝑖. Whereas, the best position of the swarm 𝑔[𝑘] corresponds to the position 

with the lowest 𝐽2 value for all particles. 

 In this calibration, the lower and upper bounds are set to 𝑥𝑖
lower = [4,3]  and 𝑥𝑖

upper
= [7,6] , 

resulting in Γ0 ∈ [104, 107] and Γ1 ∈ [103, 106]. The results of the optimization method in terms of 𝐽2 value 

for a pair [Γ0, Γ1] are presented in Fig. 6 with a few iterations and particles (𝐾 = 5 and 𝑁 = 5; i.e., 25 

simulations) where each marker represents a particle and each color a different iteration. The contour map was 

obtained from sampling with a uniform grid of 4 00  simulations. The contour levels show that many 

combinations of [Γ0, Γ1] result in good tracking (𝐽2 < 10%), while other combinations with higher values of 

Γ1 results in bad tracking performance (𝐽2 > 80%). Also, after analyzing the optimization process in Fig. 6, it 

can be noticed that the particles move from their initial random position to the global optimal. Finally, the best 

result of the swarm is indicated by the blue circle. 

The adaptive gains obtained with different numbers of particles and iterations are presented in Table 3. 

Finally, the best results are Γ0 = 2.38 × 106 and Γ1 = 1.10 × 105. These adaptive gains are utilized for the 

RTHS simulations, whose results are presented in Section 4. 

Table 3 – Optimization results. 

Optimization No. Particles 

𝑁 

No. Iterations 

𝐾 

𝚪𝟎
∗ 

[× 106]  
𝚪𝟏

∗ 

[× 105]  
𝐉𝟐

∗  
[%]  

1 5 5 2.36 1.29 5.369 

2 10 5 2.87 1.92 5.383 

3 5 10 2.57 1.46 5.370 

4 10 10 2.38 1.10 5.367 
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Fig. 6 – Particle swarm optimization for adaptive gains (Note: color = iteration; marker = particle). 

4. Results

4.1 RTHS Case I 

The results of RTHS Case I with nominal values and using Γ0 = 2.38 × 106and Γ1 = 1.10 × 105 are presented

graphically in this subsection. In Fig. 7, the measured displacement is compared with the target displacement 

for tracking evaluation. With J2 = 2.58 [%] and 𝜏 = 0.033 [msec], good tracking is achieved, allowing a

stable test. Meanwhile, Fig. 8 shows a comparison between the measured displacement and the reference 

displacement. The J4 indicator reaches only 3.21%, which means accurate results were obtained.

Fig. 7 – Target and measured displacements results for Case I. 
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Fig. 8 – Reference and measured displacements results for Case I. 

Parameter adaptation during the test is presented in Fig. 9, where it can be noted that the parameters show 

more adaptation at the beginning of the earthquake (i.e., after 5 [sec]), which demonstrates fast adaptation. The 

parameters show convergence during the earthquake, allowing to estimate the plant and achieving reasonable 

compensation. The adaptation process for Case I is contrasted with adaptation for the other cases. The initial 

parameters are the same for all cases but converge to different values due to the differences in the control plant. 

The parameter 𝑎0 is related to the amplitude errors of the control plant. Since both Cases I and II are subjected

to different excitations, the response of the plant in each case presents different amplitude errors. Thus, 

parameter 𝑎0  converges in each case to slightly different values. Meanwhile, the parameter 𝑎1  is directly

related with the time delay of the control plant and can be observed that this parameter for both Cases I and II 

converge to the same value, while Case III converge to higher value of 𝑎1 and Case IV to a lower 𝑎1, which is

consistent with time delays presented in Fig. 4. Notice that parameters 𝑎0 and 𝑎1 try to identify the control

plant through a first-order transfer function. However, the real system has a more complex behavior, so the 

estimated parameters may vary depending on the commanded displacements. 

Fig. 9 – Parameter adaptation during the test for all cases. 
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4.2 Robustness of the proposed method 

The statistics for 20 simulations for each case are presented in Fig. 10, where the red line corresponds to the 

median, and the bottom and top limits indicate the 25th and 75th percentile, respectively. The whiskers extend 

to the most extreme values. Outliers (if present) are represented by ‘+’ symbol. Notice that the same controller 

allows excellent compensation for all different cases. This adaptation capacity allows not only to control 

different plants, but it also shows excellent robustness against uncertainties and noise. It could also maintain a 

suitable performance if the experimental substructure changes its properties considerably during the test. 

Fig. 10 –RTHS performance with the proposed compensation method. (Note: 20 simulations per case.) 

5. Conclusions

This study presents the design and calibration process of an adaptive controller for real-time hybrid simulation. 

Initial parameters are based only on the transfer system without specimen interaction, and adaptive model-

based compensation is utilized to adjust control parameters during the test to capture the interaction above. 

The adaptive gains of the controller are adjusted through “off-line” numerical simulations using particle swarm 

optimization, which allows finding optimal gains with a reasonable number of iterations. After gain calibration, 

a virtual RTHS experiment with different control plants was conducted, including uncertainties in the transfer 

system and experimental substructure properties. The results demonstrate that a fixed robust controller could 

be used with different experimental substructures, avoiding subsequent system identification tests. Even 

though this study considered only linear systems for the numerical and experimental substructures, it is 

expected that it also works with non-linear systems since the controller can adapt to different control plants. 

The first-order control method presented in this paper could also be extended for a higher-order controller 

using the same optimization process for the calibration, allowing to represent more complex control plants. 

Finally, this adaptive method should be complemented with a stability analysis during the RTHS before its 

application in the laboratory.  
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