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Abstract 
Real-time hybrid simulation (RTHS) provides a cost-effective and efficient technique to enable seismic performance 
evaluation of large- and full-scale civil engineering structures. Servo-hydraulic actuators are often used in RTHS to 
impose desired displacements to specimens in laboratories and to maintain the boundary compatibility between 
substructures. Servo-hydraulic dynamics however introduces amplitude and phase errors in actuator response therefore 
presents a great challenge for RTHS. Various control strategies have been proposed and implemented to improve actuator 
tracking. Previous studies however often consider the servo-hydraulic system as deterministic while experimental results 
indicate otherwise due to different sources of uncertainties. This study utilizes the generalized likelihood uncertainty 
estimation (GLUE) method to estimate the uncertainties in servo-hydraulic dynamics. Probabilistic distribution and 
statistical moments are derived for parameters of a commonly used linearized servo-hydraulic model based on 
experimental results. The probabilistic model predictions are compared with those of the deterministic model as well as 
the experimental results. The GLUE method is shown to enable better prediction of actuator response through accounting 
for inherent uncertainties in servo-hydraulic system. The presented probabilistic analysis results can be further applied 
toward uncertainty analysis of RTHS for engineering research. 

Keywords: Real-Time Hybrid Simulation, Uncertainty, Generalized Likelihood Uncertainty Estimation  
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1. Introduction 
Hybrid simulation (HS) method provides an efficient integration between physical experiments and 
computational modeling. The critical and complex components of a structural system that may be difficult to 
model numerically are built in laboratories and tested as the experimental substructures while the rest of the 
structural system, generally simple to model and analyze, is numerically modeled as the analytical 
substructures. HS method therefore has attracted considerable interests in the past few decades [1-3] and has 
been extended to geographically distributed experimental substructures [4-5], and to real-time hybrid 
simulation (RTHS) [6-8] to account for rate-dependent behavior within experimental substructures. Through 
the integration of numerical modelling of analytical substructures and physical testing of experimental 
substructures, RTHS enables large- or full-scale tests in size limited structural laboratories to evaluate seismic 
performance of engineering structures with rate dependent devices [9]. During the developments for RTHS, 
servo-hydraulic dynamics have attracted significant attention from the hybrid simulation community [10-13]. 
A phenomenon often referred to as actuator is equivalent to negative damping and could deviate experimental 
results from actual structural responses, or even destabilize the entire test if not compensated properly. 
Different delay compensation methods therefore have been proposed and implemented for RTHS, such as the 
polynomial extrapolation method [14], the inverse compensation [8], the adaptive inverse control [15], and the 
adaptive model reference control [16]. 
 

Traditional HS and RTHS often assume that properties of the numerical substructures are deterministic. 
To account for inherent uncertainties within engineering structures, analytical substructures in HS and RTHS 
should be characterized as stochastic instead of deterministic [17-19]. To focus on uncertainties from structures 
and ground motions, these studies often ignored the servo-hydraulic system which however also presents 
additional source of uncertainty in RTHS. More recently, a RTHS benchmark problem [20] was presented to 
the community with the focus on the design of an effective displacement tracking controller. Uncertainties 
were introduced into the transfer function parameters of main components of the servo-hydraulic system to 
ensure robust stability and performance of the controller. Generally, two different approaches are often used 
for servo-hydraulic modeling, i.e., the first-principle modeling and the data-driven modelling. The first-
principle modelling approach utilizes the understanding of servo-hydraulic system’s physics to derive a 
mathematical representation. For example, Zhao et al. [21] studies the difference of using a first order and 
second order transfer function for the servo-valve used in the effective force testing studies at the University 
of Minnesota. An alternative for the first principle modeling is the data driven modeling approach, which 
builds relationships between input and output data without paying too much attention to the underlying 
processes. For example, Reinhorn et al. [22] used a pure delay to model the servo-hydraulic dynamics under 
the displacement control. In this study, the first-principle modeling of servo-hydraulic system is explored for 
its parameter uncertainties in real-time testing. 

2. Simplified Modeling of Servo-Hydraulic Dynamics 
When the fluid flow rate in an actuator is linearized about the origin, the coupling between the actuator 
dynamics and the physical specimen can be schematically represented in Fig. 1, where s is the Laplace variable. 
The linearized equation of hydraulic flow rate in a servo-hydraulic actuator in Fig. 1 can be mathematically 
expressed as 

 𝑓̇𝑓 = 2𝛽𝛽
𝑉𝑉
�𝐴𝐴𝐾𝐾𝑞𝑞𝑖𝑖 − 𝐾𝐾𝑐𝑐𝑓𝑓 − 𝐴𝐴2𝑥̇𝑥1� (1) 

where f, b, V, A, Kq, i, Kc and x1 are actuator force, bulk modulus of the fluid, volume of the hydraulic actuator, 
piston area, valve flow gain, valve input, leakage coefficient and actuator displacement, respectively. Eq. (1) 
presents the dynamics of the force applied by the actuator to physical specimen. It can be observed from Fig. 
1 and Eq. (1) that the dynamics of physical specimen directly impact the characteristics of the plant. When the 
physical specimen undergoes structural changes (such as stiffness changes due to nonlinear behavior) or is 
replaced by a different specimen, the overall servo-hydraulic dynamics change accordingly through the natural 
velocity feedback [20]. 
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Fig. 1. Block diagram of an open-loop hydraulic actuator coupled with a physical specimen 

Maghareh et al. [23] used a first order model for the servo-valve dynamics, and consolidate the nonlinear 
system of differential equations into a linear system with the following transfer function from external 
command (u) to actuator displacement (x1) 

𝐺𝐺𝑥𝑥1,𝑢𝑢 = 𝑛𝑛0
𝑑𝑑2𝑠𝑠2+𝑑𝑑1𝑠𝑠+𝑑𝑑0

                                                               (2a) 

where the coefficients of the numerator and the denominator are defined as 𝑛𝑛0 = 𝑎𝑎1𝛽𝛽0;  𝑑𝑑2 = 𝑘𝑘 + 𝑎𝑎2;  𝑑𝑑1 =
𝑎𝑎3𝑘𝑘 + 𝛽𝛽1𝑘𝑘 + 𝛽𝛽1𝑎𝑎2; and 𝑑𝑑0 = 𝛽𝛽1𝑎𝑎3𝑘𝑘 + 𝑎𝑎1𝛽𝛽0, respectively; γ and β1 denote a constant gain and servo-valve 
time constant, respectively. It can be observed that when there is no specimen, i.e., k=0, the static gain of Eq. 
(2a) is unity. The parameters associated with the servo-hydraulic transfer system are listed in Table 1. 

Table 1. Hydraulic transfer system parameters 

Parameter Units Component Description 
P mA/m Analog Controller Controller proportional gain 
γ m/mA/sec Servo-valve Servo-valve gain 
1/β1 sec Servo-valve Servo-valve time constant 
Kq m3/sec/m Servo-valve Valve flow gain 
i m Servo-valve Spool displacement 
A m2 Hydraulic actuator Piston area 
Kc m3/sec/Pa Hydraulic actuator Leakage coefficient  
V m3 Hydraulic actuator Half the volume of the actuator 
β Pa Hydraulic actuator Effective bulk modulus of the fluid 
Q m3/sec Hydraulic actuator Fluid flow rate into the actuator 
x1 m Hydraulic actuator Actuator displacement 
f N Hydraulic actuator Actuator force 

 

Eq. (2a) can be revised as  

 𝐺𝐺𝑥𝑥1,𝑢𝑢 =
𝑛𝑛0

𝑑𝑑2�

𝑠𝑠2+𝑑𝑑1𝑠𝑠 𝑑𝑑2� +𝑑𝑑0 𝑑𝑑2�
  (2b) 

To identify the four parameters in Eq. (2b), tests without specimen (k=0) and with simple linear elastic 
spring (k=250 kN/m) are conducted at the structural laboratory of Southeast University. Figure 2 shows the 
schematics and picture of the experimental setup. For both tests only the proportional (P) gain is used for the 
servo hydraulic PID controller. A sine sweep signal is selected as the command displacement with the 
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frequency increasing from 0 to 10 Hz in a duration of 60 seconds. Due to the limitation of hydraulic power 
supply, the amplitude of the sine sweep signal is set to 2 mm. 

           
Figure 2. Experimental setup for servo-hydraulics identification: (a) schematics, (b) picture 

Figures 3 and 4 show the comparison of measured and command displacements of tests with k=0 (i.e., 
free standing actuator) and k=250 kN/m, respectively. Different actuator tracking performance can be observed 
for the two tests in Figures 3(a) and 4(a). This again verifies that overall servo-hydraulic dynamics change 
accordingly for a different specimen. It can also be observed in Figures 4(b)~(d) that, compared with those of 
the free-standing actuator in Figures 3(b)~(d), the test with linear elastic spring has larger amplitude decay and 
larger phase delay with the increase of input frequency. 

(a) 

 
(b)                                                        (c)                                                    (d) 

 
Figure 3. Comparison between the command and measured displacements for sine-sweep test with k=0: (a) 

time history; and close-up views for (b) 1Hz, (c) 5Hz, (d) 10Hz  

Using the function tfest in Matlab [24], the transfer function in Eq. (2b) can be identified for the two 
tests, respectively, as 

  𝐺𝐺𝑥𝑥1,𝑢𝑢 = 4609
𝑠𝑠2+140𝑠𝑠+4609

  (3a) 

  𝐺𝐺𝑥𝑥1,𝑢𝑢 = 2208
𝑠𝑠2+133𝑠𝑠+2101

  (3b) 
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(a) 

 
         (b)                                                   (c)                                                     (d)

 
Figure 4. Comparison between the command and measured displacements for sine-sweep test with 

k=250kN/mm: (a) time history; and close-up views for (b) 1Hz, (c) 5Hz, (d) 10Hz   

For the case of k=0, Eq. (3a) shows a static gain of 1.0, while Eq. (3b) shows a static gain of 1.05 for 
the case of k=250 kN/m. This larger static gain in Eq. (3b) than 1.0 can be attributed to the fact that only P 
gain is used for the servo-hydraulic controller during the tests. The individual values of the parameters are 
calculated and presented in Table 2. The two transfer functions in Eqs. (3a) and (3b) are referred to hereafter 
as deterministic models for the servo-hydraulic system in this study. 

Table 2. Deterministic values of parameters 

β1 (N/s2) α1β0 (N/ms2) α2 (N/m) α3 (N⋅m) 
128 1.01×109 2.42×105 0.06 

3. Generalized Likelihood Uncertainty Estimation (GLUE) 
The above process of identifying servo-hydraulic system parameters is often defined as inverse problem. In 
traditional inverse problems, researchers aim to obtain a set of optimal parameters to replicate the behavior of 
the engineering system under investigation. Root mean square (RMS) errors and evolutionary algorithms are 
commonly applied such as particle swamp optimization (PSO) [25]. These optimization methods however 
might not provide the best predicted response, and this can be attributed to different sources of uncertainties 
as well as inherent error in the model which could lead to good performance for a set of parameters yet poor 
performance for validation.  

3.1 Generalized Likelihood Uncertainty Estimation (GLUE) 

The GLUE method was initially introduced partly to allow for the possible equifinality of parameter sets during 
the estimation of model parameters in over-parameterized models. Based on the estimation of the weights or 
probabilities associated with different parameter sets using a subjective likelihood measure, the GLUE method 
derives a posterior probability function and subsequently applies it for the prediction of probability of the 
output variables. The popularity of GLUE can be attributed to its conceptual simplicity and relative ease of 
implementation, requiring no modifications to existing source codes of simulation [26]. When applying the 
GLUE method for uncertainty analysis, the Monte Carlo simulation is used to generate multiple sets of model 
parameters. Prior distributions are often assumed since these parameter-specific probability density functions 
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(PDFs) are unknown before the uncertainty analysis. In this study, the prior distributions of the parameters are 
assumed to be uniform and a traditional likelihood measure for model efficiency and coefficient of 
determination is selected, which is defined as  

 𝐿𝐿 = −𝐺𝐺 𝑙𝑙𝑙𝑙𝑙𝑙{Var[𝐸𝐸(𝜃𝜃)]}  (4) 

where L is the likelihood function; θ represents the parameter set; E(θ) is the error between observation and 
model output for the time duration under investigation; G is the shaping factor; Var(E(θ)) is the variance of 
error; and log is the natural logarithmic. For large values of G close to infinite, all weight will be on the single 
best simulation while all simulations will tend to have equal weight for small values of G [26]. In this study, a 
series of candidate values are tested including 213, 212, 211, 210, 29, 28, 27, 26 (which are referred to hereafter as 
G1 to G8, respectively) to identify appropriate value of G for the uncertainty analysis. A recently developed 
Markov Chain Monte Carlo sampler namely DREAM (ZS) (Differential Evolution Adaptive Metropolis 
algorithm) is also used in this study [27]. 

Table 3. Parameter bounds for uncertainty analysis 

parameter β1 (N/s2) α1β0 (N/ms2) α2 (N/m) α3 (N⋅m) 
Upper bound 4×102 2×1010 1×107 1×102 

Lower bound 0 0 0 0 

 
Figure 5. Posterior parameter distributions for (a) β1; (b) α1β0; (c) α2; (d) α3 with G1, G6 and G8 

3.2 Effect of Shaping Factor G on Convergence 

As indicated previously, a series of candidate values of G are evaluated to select appropriate value for 
uncertainty analysis. Figure 5 only presents posterior parameter distributions from uncertainty analysis with 
three selected G values of 213, 28, and 26 (i.e., G1, G6 and G8) for the purpose of illustration. The distributions 
are observed to oscillate between the lower and upper bounds of predefined uniform distributions in Table 3. 
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The value of G is observed to have strong influence on the posterior parameter distributions. For the case of 
G8 of 26, the Markov Chains can be observed to have continuous oscillation implying unconverged results, 
while the Markov Chains converge to deterministic values in Table 2 for each individual parameter for the 
case of G1 equal to 213 indicating not informative uncertainty analysis results.  

 
Figure 6 Evolution of the G-R convergence index: (a) G8; (b) G6; (c) G1 

To select the appropriate posterior parameter distributions for subsequent analysis, the Gelman-Rubin 
(G-R) diagnostic [28] is used for convergence check in this study. Figure 6 presents the G-R plots for the 
Markov Chains from the uncertainty analysis for the case of G1, G6 and G8. The horizontal dashed line 
represents the threshold value of 1.2 for convergence. Comparing the G-R indices for different G values, it can 
be observed that it takes longer to reach convergence for small values of G and the convergence gets faster 
with the increase of G value. 

3.2 Statistics of Probabilistic Model Parameters 

Following the above discussion, the posterior parameters from uncertainty analysis with G6 equal to 28 are 
selected for further analysis. Statistics of the four parameters are summarized in Table 4 including the mean, 
variance, skewness and the coefficient of variance. All four parameters are observed to have non-zero positive 
skewness, indicating that these parameters follow distributions other than Gaussian. The parameter α3 is 
observed to have the largest coefficient of variance, which indicates that this parameter has the largest 
uncertainty. In another word, the largest variation of α3 also implies that the servo-hydraulic model under 
investigation is least sensitive to α3. Comparing with the deterministic values in Table 2, it can be observed 
that there are about 14.3%, 24.8%, 17.4% and 2850% in the mean values in Table 4.  

Table 4 Statistics of Servo-hydraulic System Parameters 

Parameter Mean Standard Deviation Skewness Coefficient of Variance  
β1 (N/s2) 146.27 34.74 1.28 0.24 

α1β0 (N/ms2) 1.26×109 3.61×108 1.13 0.29 

α2 (N/m) 2.84×105 6.38×104 0.99 0.23 
α3 (N⋅m) 1.77 1.52 1.52 0.86 

4. Comparison of deterministic and probabilistic models 
To illustrate the effect of uncertainties on the servo-hydraulic model, the probabilistic model prediction is 
compared with that of the corresponding deterministic model. The samples after convergence from uncertainty 
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analysis are applied for prediction and the resulted predictions are analyzed in both the frequency and time 
domain. Figure 7 shows the frequency responses of both probabilistic and deterministic models in comparison 
with the experimental results. Although general good agreement can be observed between the frequency 
response of the experimental results and that of the corresponding deterministic model, noticeable differences 
exist such as the amplitude at high frequencies for the test with k=0 kN/m and the phase difference at low 
frequencies for the test with k=250 kN/m. This can be attributed to the fact that the deterministic model is 
derived from optimization over the entire frequency range. Using the deterministic model to predict servo-
hydraulic actuator response therefore might lead to potential error at some frequencies. On the other hand, the 
frequency response prediction from the probabilistic model is observed to almost cover the experimental 
results over the entire range of frequency between 0 and 10 Hz. This indicates that the posterior parameter 
values can help provide a probabilistic prediction with higher reliability. 

 
Figure 7. Comparison of frequency responses: (a) and (c) amplitude and phase for test with k=0 kN/m; (b) 

and (d) amplitude and phase for test with k=250 kN/m 

 

 
Figure 8.  Comparison of displacement prediction between the deterministic and probabilistic models for test 

with k=0 kN/m: (a) f=1Hz; (b) f=5Hz; (c) f=10Hz; 
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In order to compare the two models more intuitively, the time-domain prediction is presented in the 
Figures 8 and 9 at different frequencies around 1.0, 5.0 and 10.0 Hz. It can be observed that most of the 
experimental observations are within the prediction interval from the probabilistic model. The deterministic 
model is observed to have better accuracy and reliability at medium and high frequencies than at low 
frequencies. For the experimental results at low frequencies, the observed values cannot be completely 
replicated, which indicates that there exists a limit to the model capability, and the uncertainty of the parameters 
alone is not enough to make up for this deficiency.  

 
Figure 9.  Comparison of displacement prediction between the deterministic and probabilistic models for test 

with k=250 kN/m: (a) f=1Hz; (b) f=5Hz; (c) f=10Hz 

Figures 10 and 11 present the histograms of amplitude and phase responses from the probabilistic 
model at the frequencies of 1, 5 and 10 Hz for the two tests, respectively. Also presented at the corresponding 
frequencies in Figures 10 and 11 are the frequency responses from experimental observations and the 
deterministic model for the purpose of comparison. The probabilistic model is observed to provide a range of 
predictions, such as from -0.2 to 0.05 dB for the amplitude at frequency of 1 Hz in Figure 10(a) and -1.9 to -
1.5 degree for the phase at frequency of 10 Hz in Figure 11(f). Consistent with the time domain analysis results, 
the phase and amplitude of the experiments are also very close to the deterministic model, and most are 
enveloped between the upper and lower bounds of the prediction from the probabilistic model. 

 
Figure 10. Amplitude and phase response distribution at a single frequency with k=0 kN/m 
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Figure 11. Amplitude and phase response distribution at a single frequency with k=250 kN/m 

5. Summary and Conclusion 
Uncertainties in servo-hydraulic dynamics not only impacts the stability and performance of controllers 
designed for accurate actuator control in real-time hybrid simulation but also could affect the experimental 
design of real-time hybrid simulation to account for structural uncertainties. Based on a commonly used 
linearized servo-hydraulic system model, this study applies the GLUE method to estimate the probabilistic 
distribution and statistical moments of the model parameters based on the experiments with different 
specimens. The derived probabilistic model is then compared with the experimental results and the 
deterministic model. The probabilistic model is demonstrated to enable better prediction of actuator response 
through accounting for inherent uncertainties in servo-hydraulic system. The presented probabilistic analysis 
results can be further applied toward uncertainty analysis of RTHS for engineering research. 
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