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Abstract 
Hybrid simulation combines physical and numerical substructures interacting with each other in a real-

time control loop to simulate the time history response of a prototype structure subjected to a realistic 
excitation. Research on hybrid simulation is limited to the coupling of physical experiments and numerical 
simulations, that is, ensuring compatibility and balance of interface quantities involved by the physics of the 
prototype structure. No effort has been made yet to link experimental design and hybrid simulation.  
experimental design can be broadly defined as the process of selecting a particular setup for an experiment, 
from the parameter space of all the admissible setups, so as to maximize the information obtained from a future 
experiment prior to data collection. From a hybrid simulation perspective, the experimental design includes 
the definition of numerical substructures and loading excitations. From this standpoint, this paper presents an 
experimental design procedure that aims at maximizing the convergence rate of the Bayesian calibration of a 
computational simulation against hybrid simulation experiments. 
Keywords: Hybrid simulation,  experimental design, model calibration, Kriging surrogate modeling. 

1 Introduction 
An intrinsic component for achieving predictive maturity is model calibration, a methodology used to 

infer both the uncertain input parameters and the discrepancy bias of a computational simulation (CS), 
normally achieved through a systematic comparison of model predictions against experiments [1]. The shift 
from prescriptive to performance-based earthquake engineering motivated the development of hybrid 
simulation (HS) from the early 70s to reduce the cost of experimental testing for model calibration. HS 
combines physical and numerical substructures (PS and NS, respectively) interacting with each other in a real-
time control loop to simulate the time history response of a prototype structure subjected to a realistic excitation 
[2]. Note that CSs are not expected to reproduce the entire range of possible behaviors of the corresponding 
real system, as the physics of a given structure is unlikely to be known at all scales and in all contexts. One 
only needs CSs that are accurate in a context of interest (e.g., range of boundary conditions) [3]. From this 
perspective, HS allows for covering such a context of interest by adjusting the parameters of the NS and the 
loading excitation, without additional implementation effort compared to the realization of a single experiment. 

It is convenient to introduce here the concept of experimental design [4]. Experimental design can be 
defined as the process of optimizing the setting of an experiment to maximize an appropriate measure of 
information gain prior to data collection. Sequential experimental design (SED) indicates that such an 
optimization is repeated for each experiment of a batch based on previously collected data. From a HS 
perspective, SED can rely on a parametrization of NS and loading excitation. This is the basic assumption 
behind the HS-SED procedure presented in this paper. In principle, the proposed HS-SED procedure is driven 
by the Bayesian calibration of a CS against HS experiments. After every HS experiment, a Kriging surrogate 
model of a discrepancy norm between CS and HS response quantities of interest is trained [5]. The key for 
using a Kriging surrogate model is that it provides predictions of both average value and standard deviation of 
the discrepancy norm within the entire domain of variable input parameters defining the setting of the HS. The 
next sample of variable input parameters is selected such that the expected improvement of the discrepancy 
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norm is maximized [6]. This strategy ensures the exploration of subdomains where the uncertainty of the 
discrepancy norm is large, as well as the exploitation of subdomain where the expected value of the discrepancy 
norm predicted by the Kriging surrogate is large. 

Surrogate modeling already showed promising results in enabling uncertainty propagation analysis, 
global sensitivity analysis [7] and reliability analysis [8] in HS applications, correcting the bias of ab initio 
CSs [9] and optimization of experimental setups [10]. The proposed methodology aims at contributing to make 
a leap in the current practice of quantification of structural response uncertainty advocated, e.g. by the opinion 
paper of Bradley [11]. 

2 Description of the sequential experimental design procedure 
In the following, Section 2.1 provides the mathematical setting of Bayesian calibration. Basics of 

Kriging surrogate modeling are given in Section 2.2. Finally, Section 2.3 describes the proposed HS-SED 
procedure. 

2.1 Basics of Bayesian calibration 
According to the framework proposed by [12], in the process of model calibration, one must distinguish 

between two groups of input parameters. One group comprises input parameters that can be arbitrarily adjusted 
during the experiment (e.g., amplitude and frequency of the loading excitation), which are referred to as 
variable inputs and indicated with 𝒙𝒙. The other group comprises the input parameters that we wish to learn 
from experimental data (e.g., material properties of the PS), which are referred to as calibration parameters 
and indicated with 𝜽𝜽. Accordingly, the model calibration problem we wish to solve reads, 

ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖) = ℛ𝐶𝐶𝐻𝐻,𝑗𝑗 (𝒙𝒙𝑖𝑖,𝜽𝜽) + 𝜖𝜖𝑗𝑗 (1) 

where ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖) is the experimental response quantity of index 𝑗𝑗-th measured from the HS of index  𝑖𝑖-
th, ℛ𝐶𝐶𝐻𝐻,𝑗𝑗 (𝒙𝒙𝑖𝑖,𝜽𝜽) denotes the corresponding prediction provided by a CS, 𝜖𝜖𝑗𝑗 is the model discrepancy function, 
which possibly includes experimental errors (e.g., measurement noise). Model discrepancy results from 
missing physics and other inaccuracies of the structural simulator. Identifying the discrepancy function is 
important because it allows one to: i) learn the true value of the calibration parameters; ii) better understand 
deficiencies of the structural simulator. Bayesian inversion is used to compute posterior distributions of 
calibration parameters and model discrepancy given a set of measured experimental response quantities. For 
the sake of simplicity, we consider an additive Gaussian discrepancy with zero mean and given variance 𝛴𝛴𝑗𝑗, 

𝝐𝝐𝑗𝑗~𝒩𝒩(𝜖𝜖𝑗𝑗|0,𝛴𝛴𝑗𝑗). (2) 

In the context of model calibration, the goal is to find the optimal values of the calibration parameters 𝜽𝜽 
that allows one to fit the model predictions to the observations. In this respect, the epistemic uncertainty (lack 
of knowledge) on the calibration parameters is modeled by considering it as a random vector 𝚯𝚯~𝜋𝜋(𝜽𝜽). From 
Eqs. (1-2) a particular measurement ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖) is a realization of a Gaussian distribution of mean value 
ℛ𝐶𝐶𝐻𝐻,𝑗𝑗 (𝒙𝒙𝑖𝑖,𝜽𝜽) and variance 𝛴𝛴𝑗𝑗. Accordingly, the likelihood function, as a function of the calibration parameters 
𝜽𝜽, thus reads, 

ℒ �𝜽𝜽;ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖)� = 1

�2𝜋𝜋𝛴𝛴𝑗𝑗
2

exp �−
�ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖)−ℛ𝐶𝐶𝐻𝐻,𝑗𝑗 (𝒙𝒙𝑖𝑖,𝜽𝜽)�

2

2𝛴𝛴𝑗𝑗
2 �. 

(3) 

 If 𝑁𝑁  independent experiments are performed, each with 𝑀𝑀  response quantities of interest and 
measurements, the likelihood can be written as, 

ℒ�𝜽𝜽;𝓡𝓡𝐻𝐻𝐻𝐻(𝒙𝒙)� = ∏ ∏𝑀𝑀
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 . (4) 

2i-0135 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2i-0135 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

3 

Where 𝓡𝓡𝐻𝐻𝐻𝐻(𝒙𝒙) must be intended as the full set of 𝑁𝑁 × 𝑀𝑀 experimental observations. Combining the 
prior 𝚯𝚯~𝜋𝜋(𝜽𝜽)  and the likelihood ℒ�𝜽𝜽;𝓡𝓡𝐻𝐻𝐻𝐻(𝒙𝒙)�  distributions through Bayes’ theorem, the posterior 
distribution establishes the solution of the inverse problem, 

𝜋𝜋�𝜽𝜽|𝓡𝓡𝐻𝐻𝐻𝐻(𝒙𝒙)� =
1
𝑍𝑍
𝜋𝜋(𝜽𝜽)ℒ�𝜽𝜽;𝓡𝓡𝐻𝐻𝐻𝐻(𝒙𝒙)� (5) 

Where the normalizing factor 𝑍𝑍, known as evidence or marginal likelihood, ensures that this distribution 
integrates to 1. The maximum a posteriori (MAP) estimate of  𝜽𝜽 reads, 

𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀 = arg max𝜽𝜽 𝜋𝜋�𝜽𝜽|𝓡𝓡𝐻𝐻𝐻𝐻(𝒙𝒙)�. (6) 

 In this work Bayesian inversion was performed using the UQLab software framework developed by the 
Chair of Risk, Safety and Uncertainty Quantification in ETH Zurich  [13]. 

2.2 Basic of Kriging metamodeling 
Kriging is a surrogate modeling technique that considers the computational model to be a realization of 

a Gaussian process [5]: 

ℳ� (𝒙𝒙) = 𝜷𝜷𝑇𝑇𝒇𝒇(𝒙𝒙) + 𝜎𝜎2𝑍𝑍(𝒙𝒙,𝜔𝜔) (7) 

where 𝒇𝒇(𝒙𝒙) = �𝑓𝑓1(𝒙𝒙), … ,𝑓𝑓𝑝𝑝(𝒙𝒙)� is a set of regression functions, 𝜷𝜷 is a vector of coefficients, 𝑍𝑍(𝒙𝒙,𝜔𝜔) is 
a zero-mean, unit-variance, stationary Gaussian process, and, 𝜎𝜎2 is the variance of the process. 𝑍𝑍(𝒙𝒙,𝜔𝜔) is 
characterized by an autocorrelation function 𝑅𝑅(�𝒙𝒙 − 𝒙𝒙′�;𝝆𝝆), where 𝝆𝝆 is the vector of hyper-parameters of the 
autocorrelation function. The Kriging model is trained with a set of realizations 𝓧𝓧 = �𝝌𝝌(𝑖𝑖), 𝑖𝑖 = 1, … , 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� 
and the corresponding responses of the simulator 𝓨𝓨 = �𝒴𝒴(𝑖𝑖) = ℳ�𝝌𝝌(𝑖𝑖)�, 𝑖𝑖 = 1, … , 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�, which together form 
the so-called training set {𝓧𝓧,𝓨𝓨}. Kriging parameters are obtained by generalized least-squared solution: 

𝜷𝜷(𝝆𝝆) = (𝐅𝐅𝑇𝑇𝐑𝐑−1𝐅𝐅)−1𝐅𝐅𝑇𝑇𝐑𝐑−1𝓨𝓨 (8) 

𝜎𝜎𝑦𝑦2(𝝆𝝆) =
1
𝑁𝑁

(𝓨𝓨− 𝐅𝐅𝜷𝜷)𝑇𝑇𝐑𝐑−1(𝓨𝓨− 𝐅𝐅𝜷𝜷) 
(9) 

where 𝐑𝐑𝑖𝑖𝑖𝑖 = 𝑅𝑅(|𝝌𝝌(𝑖𝑖) − 𝝌𝝌(𝑖𝑖)|;𝝆𝝆) is the correlation matrix and 𝐅𝐅𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝝌𝝌(𝑖𝑖)). In order to cope with 
control and measurement errors, which make HS experiments stochastic even when the PS is undamaged, a 
small nugget is added to the diagonal of the correlation matrix and all hyper-parameter values are estimated 
via maximum likelihood. Having determined the Kriging parameters, the prediction value of the simulator at 
a test point 𝒙𝒙 ∈ 𝒟𝒟𝑋𝑋 is a Gaussian variable with the following mean value and variance: 

𝜇𝜇𝑌𝑌�(𝒙𝒙) = 𝒇𝒇(𝒙𝒙)𝑇𝑇𝜷𝜷 + 𝒓𝒓(𝒙𝒙)𝑇𝑇𝐑𝐑−1(𝓨𝓨− 𝐅𝐅𝜷𝜷) (10) 

𝜎𝜎𝑌𝑌�(𝒙𝒙) = 𝜎𝜎𝑦𝑦2(1 − 𝒓𝒓(𝒙𝒙)𝑇𝑇𝐑𝐑−1𝒓𝒓(𝒙𝒙) + 𝒖𝒖(𝒙𝒙)𝑇𝑇(𝐅𝐅𝑇𝑇𝐑𝐑−1𝐅𝐅)−1𝒖𝒖(𝒙𝒙)) (11) 

where 𝑟𝑟𝑖𝑖(𝒙𝒙) = 𝑅𝑅��𝒙𝒙 − 𝝌𝝌(𝑖𝑖)�;𝝆𝝆� and 𝒖𝒖(𝒙𝒙) = 𝐅𝐅𝑇𝑇𝐑𝐑−1𝒓𝒓(𝒙𝒙)− 𝒇𝒇(𝒙𝒙). The trained Kriging model, produced 
by the process above supports the adaptive design of experiments described in the following section. In this 
work, Kriging surrogate models were estimated using the UQLab software framework developed by the Chair 
of Risk, Safety and Uncertainty Quantification in ETH Zurich [13]. 

2.3 Adaptive design of experiments 
In this study, 𝒙𝒙 represents the vector of the variable input parameters, which can be controlled in the 

HS, whereas ℳ(𝒙𝒙) is a function that measures the discrepancy between HS and CS over a set of response 
quantities of index 𝑗𝑗, 

𝑦𝑦 = ℳ(𝒙𝒙) = ∑
�ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙)−ℛ𝐶𝐶𝐻𝐻,𝑗𝑗(𝒙𝒙,𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀)�

2

𝑉𝑉𝑚𝑚𝑟𝑟𝒙𝒙,𝜽𝜽�ℛ𝐶𝐶𝐻𝐻,𝑗𝑗(𝒙𝒙,𝜽𝜽𝑀𝑀𝑀𝑀𝑀𝑀)�𝑗𝑗   (12) 
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For a given set of samples 𝒙𝒙𝑖𝑖 ∈ 𝓧𝓧 of the input parameter vector 𝑦𝑦𝑖𝑖 ∈ 𝓨𝓨 provide the complete training 
set {𝓧𝓧,𝓨𝓨} for the Kriging metamodel ℳ� (𝒙𝒙). Accordingly, the expected improvement algorithm [6] is used to 
find the regions of the maximum discrepancy between the response of the HS and the CS updated based on all 
previous experiments. 

𝒙𝒙∗ = arg max𝒙𝒙ℳ� (𝒙𝒙). (13) 

In the following, the proposed HS-SED procedure is introduced as a sequence of steps: 

1. Generate a small initial realization 𝓧𝓧 = {𝒙𝒙𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖} of the variable input vector and evaluate 
ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖) via HS.  

2. Compute/update the posterior distribution of the calibration parameters 𝜽𝜽 via Bayesian inversion by 
using ℛ𝐶𝐶𝐻𝐻,𝑗𝑗(𝒙𝒙𝑖𝑖 ,𝜽𝜽), as forward models as explained in Section 2.1. 

3. Compute 𝓨𝓨 = ℳ(𝓧𝓧), which together form the initial training set {𝓧𝓧,𝓨𝓨}.  
4. Train a Kriging surrogate model ℳ� (𝒙𝒙) based on the relevant training set {𝓧𝓧,𝓨𝓨} as explained in 

Section 2.2 
5. Generate a large set 𝒮𝒮 = {𝒙𝒙1, …𝒙𝒙𝑖𝑖} from the space of variable input 𝒙𝒙 and compute the response 

of ℳ� (𝒙𝒙), i.e. 𝜇𝜇𝑌𝑌�(𝒙𝒙) and 𝜎𝜎𝑌𝑌�(𝒙𝒙). 
6. Enrich the training set by selecting the sample 𝒙𝒙∗ ∈ 𝒮𝒮 that, among all metamodels ℳ� (𝒙𝒙), maximize 

the expected value of the so-called “improvement  random variable”, 𝐼𝐼(𝒙𝒙) = max�𝑦𝑦�(𝒙𝒙) − 𝜇𝜇𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚 , 0�, 

{𝒙𝒙∗} = arg max𝒙𝒙 𝐸𝐸[𝐼𝐼(𝒙𝒙)] = 

= arg max𝒙𝒙 �𝜇𝜇𝑦𝑦�(𝒙𝒙) − 𝜇𝜇𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚� �1 −Φ�
𝜇𝜇𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑦𝑦�(𝒙𝒙)

𝜎𝜎𝑦𝑦�(𝒙𝒙) �� + 𝜎𝜎𝑦𝑦�(𝒙𝒙)𝜙𝜙�
𝜇𝜇𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑦𝑦�(𝒙𝒙)

𝜎𝜎𝑦𝑦�(𝒙𝒙) � 
(14) 

where Φ(⋅) and 𝜙𝜙(⋅) are CDF and PDF of a standard Gaussian variable. The expected improvement 
method locates samples by using a tradeoff between the exploration of regions where Kriging variance 
predictors are higher and the exploitation of regions function where Kriging average predictors are 
higher. 

7. Evaluate ℛ𝐻𝐻𝐻𝐻,𝑗𝑗(𝒙𝒙∗) via HS. 
8. Loop between Step #2 and #7 until the maximum number of iterations is reached. 

If 𝜇𝜇𝑦𝑦�𝑚𝑚𝑚𝑚𝑚𝑚 converge rapidity to true global maximum values, then the proposed procedure represents a 
compelling and attractive method to minimize the number of HSs while increasing the relevance of 
benchmarks for calibration of CSs. 

3 Verification of the experimental design procedure 

3.1 The benchmark case study 
The 2-Degrees-of-Freedom (DoFs) system depicted in Fig. 2 was selected for benchmarking the 

proposed experimental design procedure.  

 
Fig. 1 – Hybrid simulator (HS). 
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As shown in Fig. 2, a nonlinear spring connecting the two masses represents the PS. Linear elastic 
springs 𝑘𝑘1  and 𝑘𝑘3  are constrained to the ground and belong to the NS while masses 𝑚𝑚1  and 𝑚𝑚2  are split 
between the two subdomains. In the real case, the PS spring would be tested in a laboratory, but in this study, 
its force-deformation response is modeled numerically using a Bouc-Wen model with stiffness deterioration  
[14]. The following ODE set describes the nonlinear restoring force of the middle spring, 

��̇�𝑟 =
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 − �𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟sign(Δ�̇�𝑢 ∙ 𝑟𝑟) + 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟�|𝑟𝑟|𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟

1 + 𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒
Δ�̇�𝑢

�̇�𝑒 = 𝑟𝑟 ∙ Δ�̇�𝑢
 (15) 

Where 𝑟𝑟  and ∆𝑢𝑢 = 𝑢𝑢2 − 𝑢𝑢1  indicate spring restoring force and elongation, respectively. Reference 
parameters  𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 ,𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 , 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 refers to the Bouc-Wen model whereas the parameter 𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟 modulates 
stiffness deterioration, which is assumed to be proportional to the hysteretic energy 𝑒𝑒  dissipated by the 
nonlinear spring. The values of the parameters of the 2-DoFs nonlinear HS read, 

𝑚𝑚1 = 8𝑒𝑒3 𝑘𝑘𝑘𝑘,𝑚𝑚2 = 9𝑒𝑒3 𝑘𝑘𝑘𝑘,𝑘𝑘1 = 4𝑒𝑒5
𝑁𝑁
𝑚𝑚

,𝑘𝑘3 = 1𝑒𝑒6
𝑁𝑁
𝑚𝑚

, 𝜁𝜁 = 0.05 

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 = 5𝑒𝑒5
𝑁𝑁
𝑚𝑚

,𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 = 1, 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟 = 0, 𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟 = 2𝑒𝑒 − 5,𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 = 1 

The undamped eigenfrequencies of the 2-DoFs system linearized about the initial (unreformed) 
configuration are 1.38 Hz and 2.34 Hz. A uniform modal damping 𝜁𝜁 = 0.05 is assumed for the calculation of 
the damping matrix. A simpler variant of Eq. (15), which corresponds to a classical Bouc-Wen spring without 
stiffness degradation, describes the PS restoring force of the CS, which is reported in Fig. 2. This choice reflects 
the fact that a computational model is a simplified representation of a real system, and therefore it does not 
completely capture its behavior. 

 
Fig. 2 – Computational simulator (CS). 

In earthquake engineering, it is common practice to consider the variability of the ground motion 
predominant with respect to all other sources of uncertainty (e.g., material parameters or boundary conditions). 
Accordingly, in this study, the near-fault pulse model of Dabaghi and Der Kiureghian [15] is selected to 
parametrize the seismic excitation, and therefore, the context of interest for model calibration whereas NS 
parameters are assumed as deterministic. The following equations define the shape of the velocity pulse in the 
time domain, 

𝑣𝑣𝑝𝑝𝑝𝑝𝑖𝑖(𝑡𝑡) = �
1
2
𝑉𝑉𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋 �

𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑀𝑀
� + 𝜈𝜈� −

𝐷𝐷𝑟𝑟
𝛾𝛾𝑇𝑇𝑀𝑀

� �1 + 𝑐𝑐𝑐𝑐𝑐𝑐 �
2𝜋𝜋
𝛾𝛾
�
𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑀𝑀
��� (16) 

𝐷𝐷𝑟𝑟 = 𝑉𝑉𝑀𝑀𝑇𝑇𝑀𝑀
𝑐𝑐𝑖𝑖𝑛𝑛(𝜈𝜈 + 𝛾𝛾𝜋𝜋) − 𝑐𝑐𝑖𝑖𝑛𝑛(𝜈𝜈 − 𝛾𝛾𝜋𝜋)

4𝜋𝜋(1 − 𝛾𝛾2)  (17) 

where 𝑉𝑉𝑀𝑀 and 𝑇𝑇𝑀𝑀 are velocity peak and duration of the pulse, 𝛾𝛾 is the number of oscillations within the 
pulse and  𝜈𝜈  is the phase angle between time modulating function and pulse oscillations. The seismic 
accelerogram 𝑎𝑎𝑔𝑔(𝑡𝑡) is found as the time derivative of the velocity pulse. A preliminary global sensitivity 
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analysis highlighted a negligible sensitivity of the 2-DoFs system response to parameters 𝛾𝛾 and 𝜈𝜈. Therefore, 
𝑉𝑉𝑀𝑀 and 𝑇𝑇𝑀𝑀 are selected as variable inputs. Related PDFs are summarized in Table 1. 

Table 1 - Intervals of variable input 𝐱𝐱 = {𝑉𝑉𝑀𝑀,𝑇𝑇𝑀𝑀}. 

Label PDF Lower bound Upper bound 

𝑉𝑉𝑀𝑀 Uniform 1.5 m/s 3.0 m/s 

𝑇𝑇𝑀𝑀 Uniform 0.5 s 1.5 s 

 

Constant values are assumed for 𝛾𝛾 = 2.00 and 𝜈𝜈 = 0.10 [rad/s]. For the sake of example, Fig. 3 depicts 
1000 ground motion realizations as well as related response spectra assuming the same damping ratio of the 
2-DoFs system, which is equal to 0.05. 

  
a b 

Fig. 3 - Pulse-like ground motion model: a) acceleration histories and b) acceleration response spectra. Grey 
curves correspond to 1000 random realization while red curves refer to average values of ground motion 

parameters (VP = 2.25 m/s; TP = 1.00 s). 

Fig. 4 compares the dynamic responses of HS and CS subjected to the accelerogram highlighted in red 
in Fig. 3, which corresponds to the average values of ground motion parameters. 

  
a b 

Fig. 4 - Comparison between CS and HS responses computed considering average values of ground motion 
parameters (VP = 2.25 m/s; TP = 1.00 s): a) hysteresis loop and b) dissipated energy history of the nonlinear 

spring. 
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As can be appreciated from Fig. 4a, the HS shows stiffness degradation, which does not occur on the 
CS. It is important to stress that the proposed benchmark case study well represents the class of structural 
systems emulated via HS. In fact, two eigenmodes govern the dynamic response produced by the seismic 
loading, nonlinearities are confined to the PS. 

3.2 Numerical simulation of the experimental campaign 
The setting of the Bayesian calibration problem underlying the proposed experimental design procedure 

is determined by the following response quantities of interest, 

ℛ𝐻𝐻𝐻𝐻,𝑟𝑟(𝒙𝒙) = max
𝑡𝑡

|𝑟𝑟| ,ℛ𝐻𝐻𝐻𝐻,∆𝑝𝑝(𝒙𝒙) = max
𝑡𝑡

|∆𝑢𝑢| ,ℛ𝐻𝐻𝐻𝐻,e(𝒙𝒙) = 𝑒𝑒(max (𝑡𝑡)) (18) 

where labels ∆𝑢𝑢, 𝑟𝑟 and 𝑒𝑒 absolute elongation peak, absolute restoring force peak and total dissipated 
energy of the nonlinear spring representing the PS. On the other hand, Table 2 reports the prior distribution of 
the calibration parameters s of the CS. 

Table 2 – Prior distributions of the calibration parameters 𝜽𝜽 = {𝐴𝐴,𝛽𝛽}. 

Label PDF Lower bound Upper bound 

𝐴𝐴 Uniform 2e5 N/m 9e5 N/m 

𝛽𝛽 Uniform 0.5 2.0 

 

As a measure of model inadequacy, contour plots of Fig. 4 shows the MAP estimates of both calibration 
parameters 𝜽𝜽 = {𝐴𝐴,𝛽𝛽} computed via Bayesian inversion and considering a single HS evaluation taken from 
the corresponding pair of variable inputs 𝒙𝒙 = {𝑉𝑉𝑀𝑀,𝑇𝑇𝑀𝑀}. 

  
a b 

Fig. 4 - MAP estimates of calibration parameters of the CS computed considering a single realization of the 
HS over the entire domain of variable input: a) 𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀; b) 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀. 

As can be appreciated from Fig. 4, both calibration parameters  MAP estimates show a large variability 
over the domain of variable input. This is a clear example of how model inadequacy causes overfitting of 
calibration parameters. For this reason, it is of paramount importance to gather experimental observations over 
the entire domain of variable input, which defines a context of engineering interest where a calibrated model 
is sought. 

According to Step #1 of the experimental design procedure, an initial training set of three samples is 
generated by sampling the input parameter space of the ground motion model with a Sobol sequence [16] and 
evaluating the corresponding responses of both HS and CS. Then, the training set is adaptively enriched by 
iterating the HS-SED procedure from Step #2 to #7 for 40 times. Fig. 5 reports the history of max

𝒙𝒙
𝐸𝐸[𝐼𝐼(𝒙𝒙)] at 

each iteration. The contour plot of Fig. 6 ranks the different regions of the domain of variable input based on 
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when they have been explored by the adaptive sampling. Regions characterized by a value close to zero have 
been explored during the first iterations whereas values close to one indicates that the region was explored 
toward the end of the procedure. 

  
Fig. 5 – Maximum value of the expected 

improvement function max
𝒙𝒙

𝐸𝐸[𝐼𝐼(𝒙𝒙)]. 
Fig. 6 – Mapping of sorting order of variable input 

samples:  values close to 0 are explored firstly 
whereas values close to 1 are explored lastly. 

According to Fig. 5, the maximum expected improvement of the discrepancy function stably approached 
zero right before 20 iterations. Fig. 7 shows the MAP estimates of calibration parameters s at each iteration of 
the HS-SED procedure. 

  
a b 

Fig. 7 – MAP estimates of calibration parameters s: a) 𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀; b) 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀. 

As can be appreciated from Fig. 7, both calibration parameters achieved stable values right about 20 
iterations, that is, when max

𝒙𝒙
𝐸𝐸[𝐼𝐼(𝒙𝒙)] already achieved stable convergence. For the sake of comparison, also 

the parameters of the nonlinear PS of the HS and reported in Section 3.1 are also reported and indicated as 
reference. As expected, the calibration parameters identified by using the simplified CS as a forward model 
are biased with respect to reference values. 

In order to verify the effectiveness of the proposed HS-SED procedure, the response of the CS obtained 
considering the final MAP estimate of calibration parameters s (𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀 =   4.24𝑒𝑒5,𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 = 0.826 ) was 
compared to the response of the HS for two different samples of variable input parameters. In this regard, Fig. 
8 gathers the responses obtained from the nonlinear spring, which is assimilated to the PS. 
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a b c 

Fig. 8 – Comparison of calibrated CS (continuous lines) and HS (dashed lines) responses for two samples of 
variable input parameters (𝑉𝑉𝑀𝑀,1 = 2.90,𝑇𝑇𝑀𝑀,1 = 1.09 and 𝑉𝑉𝑀𝑀,1 = 1.68,𝑇𝑇𝑀𝑀,1 = 1.03): a) restoring force; b) 

elongation; c) dissipated energy of the nonlinear spring (PS). 

  As can be appreciated from Fig. 8, the response of the calibrated CS provides a satisfactory agreement 
with the HS response for all quantity of interest.   

4 Conclusions 
This paper presented an experimental design procedure for hybrid simulations that aims at accelerating 

the convergence rate of an underlying model calibration problem. It is noteworthy that a calibrated model is 
not expected to reproduce the response of a corresponding real system within the entire range of possible 
loading scenarios but only for a limited context of interest. In the proposed procedure, the latter is explored by 
parametrizing the loading excitation used for hybrid simulation over a space of -controllable- variable input. 
A Kriging surrogate model of a norm of the model discrepancy between hybrid and computational simulation 
supports the experimental design. In detail, the next candidate sample of a variable input is selected such that 
it maximizes the expected improvement of the model discrepancy. The effectiveness of the proposed procedure 
is demonstrated for a virtual 2-DoFs case study considering a parametrized ground motion excitation.  
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