Make it sufer

17 WCEE
Scendal, Japan
2020

17th World Conference on Earthquake Engineering, 17WCEE

Sendai, Japan - September 13th to 18th 2020

## NUMERICAL MODELLING OF CAVITY WALL METAL TIES

O. Arslan<sup>(1,2)</sup>, F. Messali<sup>(3)</sup>, E. Smyrou<sup>(4)</sup>, I. E. Bal<sup>(5)</sup>, J. G. Rots<sup>(6)</sup>

- (1) Ph.D. Candidate, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, o.arslan@tudelft.nl
- (2) Researcher, Research Centre for Built Environment NoorderRuimte, Hanze University of Applied Sciences, Groningen, the Netherlands o.arslan@pl.hanze.nl
- (3) Researcher/Lecturer, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, F.Messali@tudelft.nl
- (4) Associate Professor, Research Centre for Built Environment NoorderRuimte, Hanze University of Applied Sciences, Groningen, the Netherlands, e.smyrou@pl.hanze.nl
- (5) Professor, Research Centre for Built Environment NoorderRuimte, Hanze University of Applied Sciences, Groningen, the Netherlands, i.e.bal@pl.hanze.nl
- (6) Professor, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, J.G.Rots@tudelft.nl

...

### Abstract

The assessment of the out-of-plane response of unreinforced masonry (URM) buildings with cavity walls has been a popular topic in regions such as Central and Northern Europe, Australia, New Zealand, China and several other countries. Cavity walls are particularly vulnerable as the out-of-plane capacity of each individual leaf is significantly smaller than the one of a solid wall. In the Netherlands, cavity walls are characterized by an inner load-bearing leaf of calcium silicate bricks, and by an outer veneer of clay bricks that has only aesthetic and insulation functions. The two leaves are typically connected by means of metallic ties. This paper utilizes the results of an experimental campaign conducted by the authors to calibrate a hysteretic model that represents the axial cyclic response of cavity wall tie connections. The proposed numerical model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response such as the strength degradation, the unloading stiffness degradation and the pinching behaviour. The numerical modelling approach in this paper can be easily adopted by practitioner engineers who aim to model the wall ties more accurately when assessing the structures against earthquakes.

Keywords: Unreinforced masonry; Cavity walls; Numerical model; Wall ties



### 1. Introduction

In recent years human induced earthquakes in the province of Groningen, located in the northern part of the Netherlands, have considerably increased, rendering critical the seismic response of unreinforced masonry (URM) structures. The majority of the existing buildings in that area is composed of URM and is not designed to withstand earthquakes. An extensive testing campaign was performed at TU Delft in 2015 to provide benchmarks for the Dutch situation [1]. The campaign aimed to investigate the behaviour of terraced houses built in the Netherlands during the period 1960-1980 [2,3,4] and characterized by the use of cavity walls. A cavity wall consists of two separate parallel walls, with an inner load-bearing masonry wall and an outer veneer mostly with aesthetic and insulating function (Fig. 1). The inner and outer walls are connected by metal ties, as prescribed in NEN-EN 845-1 [5].

The out-of-plane failure of URM walls is a common mechanism during an earthquake that often stems from poor wall-to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and boundary conditions. Cavity walls are particularly vulnerable to the out-of-plane mechanism because of the capacity of the wall ties as well as the slender geometry of the two parallel leaves.

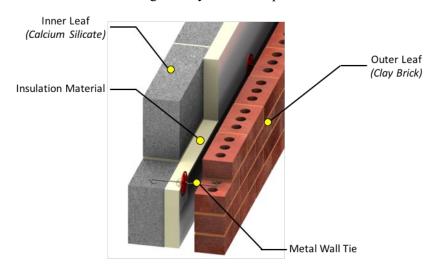



Fig. 1 – Cavity wall

Reneksis and Lafave [6] utilized the test data from Choi and Lafave [7] to develop and calibrate nonlinear finite element models that represented the full-scale experimental brick veneer wall panel specimens. They found that the tie could be modelled by axial links, with nonlinear material properties based on the observations of the test. It was concluded that brick veneer wall damage could be captured at various stages by examining whether the tie connections at key locations in the models exceeded their ultimate load and/or specific displacement capacities. Jo [8] developed a simplified finite element model in OpenSees that was calibrated using the test results conducted by the author to represent the in-plane and out-of-plane wall system behaviour of concrete masonry unit-tie-masonry veneer wall systems. The ties were modelled as truss elements with general hysteretic material behaviour. Okail et al. [9] developed a series of OpenSees models to simulate the seismic behaviour of brick veneers connected to a wood frame by means of metal ties. Beam-column elements with fibre cross section were used to model the masonry veneer, whereas the wood shear walls were simulated through elastic beam elements. The metal tie connections were modelled via nonlinear truss elements. A proper hysteretic model was selected to simulate the cyclic behaviour of the metal ties. The numerical model showed a good match with the experimental data. Based on the results, it was found that the connection force distribution was dependant on the cracking of the veneer.

The current study aims at a computationally efficient approach to simulate the experimental results of wall connections in cavity walls under cyclic loading representative of earthquake motions. The study is supported by the experimental work conducted by Arslan et al. [10] and by the mechanical model proposed by



Arslan et al. [11]. The open code OpenSees software [12] has been used in this study, but the proposed backbone curve can be easily adopted in most of the structural analysis software used in earthquake engineering. The backbone curve provides engineers and researchers with the mechanical model that can predict the force-displacement response for different typologies in terms of characteristic parameters, such as stiffness, strength and displacement.

### 2. Mechanical Model

A mechanical model for the cavity wall tie connections was proposed by the authors [11] in order to determine the load—displacement curve of the connection under axial load. The mechanical model describes the structural behaviour of the wall connections with calcium silicate bricks (CS) and solid clay bricks (CB) in terms of force-displacement behaviour and failure mechanism. The model has been calibrated and validated against the experiments conducted by the authors on the cavity wall tie at TU Delft [10].

Considering all the failure mechanisms and the experimental results, a simplified envelope curve was proposed for each typology to better fit the results obtained from the experimental campaign. The proposed curve was obtained by averaging the data from the experimental results. The force-displacement curve is idealized into trilinear branches in tension (elastic, hardening and post-peak phase) and by bilinear branches in compression (elastic and post-peak phase). For defining the curve shown in Fig. 2, ten material parameters are required. These are:

- (i) elastic force in tension,  $F_{Te}$
- (ii) peak force in tension, F<sub>T</sub>
- (iii) ultimate failure force in tension,  $F_{Tu}$
- (iv) displacement at elastic force in tension,  $\Delta_{Te}$
- (v) displacement at peak force in tension,  $\Delta_T$
- (vi) displacement at ultimate failure force in tension,  $\Delta_{Tu}$
- (vii) peak force in compression, F<sub>C</sub>
- (viii) residual force in compression, F<sub>Cu</sub>
- (ix) displacement at peak force in compression,  $\Delta_C$
- (x) displacement at residual force in compression,  $\Delta_{Cu}$

The proposed curve is valid for CS and CB for all failure modes. However, the calibration of these parameters for the envelope curve are different for CS and CB walls.

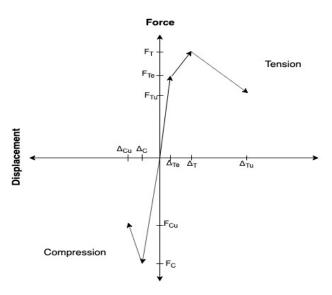



Fig. 2 – Simplified envelope curve



The equations for computing the parameters of the simplified envelope curve are provided in a tabular form (Table 1). The proposed mechanical model can adequately predict the force-displacement behaviour obtained from the tests.

Table 1 – Equations for the parameters of the proposed curve for each typology

| Number of equation | Parameter              | Equation                                                                                                                                                                                                                                                                                                               | Validated typology            |  |  |  |
|--------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| 1                  | $F_{Te}$               | $a \times \sqrt{f_c} \times \pi \times \phi \times L_S$                                                                                                                                                                                                                                                                | CS70, CS50, CB50,<br>CS70-15D |  |  |  |
| 2                  | $F_T$                  | $F_{Te} + \frac{4}{L_H} \times (\frac{f_c \times \phi \times L_H^2}{2} + \frac{\sigma_y \times \pi \times \phi^3}{32})$                                                                                                                                                                                                | CS70, CS50                    |  |  |  |
| 3                  | $F_T$                  | $F_{Te} + \frac{4}{L_H} \times \left(\frac{f_c \times \phi \times L_H^2}{2} + \frac{\sigma_y \times \pi \times \phi^3}{32}\right)$ $F_{Te} + \frac{4}{L_H} \times \left(\frac{f_c \times \phi \times L_H^2}{2} + \frac{\sigma_y \times \pi \times \phi^3}{32}\right) + \frac{24 \times E \times I \times \phi}{L_C^2}$ | CS70-15D                      |  |  |  |
| 4                  | $F_T$                  | $F_{Te} + f_c \times \phi \times L_S$                                                                                                                                                                                                                                                                                  | CB50                          |  |  |  |
| 5                  | $F_{Tu}$               | $F_T \times 0.8$                                                                                                                                                                                                                                                                                                       | CS70, CS50, CB50, CS70-15D    |  |  |  |
| 6                  | $\Delta_{\mathrm{Te}}$ | 1                                                                                                                                                                                                                                                                                                                      | CS70, CS50, CB50, CS70-15D    |  |  |  |
| 7                  | $\Delta_{ m T}$        | $1 + \frac{L_H}{4}$ $1 + \frac{L_S}{10}$                                                                                                                                                                                                                                                                               | CS70, CS50, CS70-15D          |  |  |  |
| 8                  | $\Delta_{\mathrm{T}}$  | $1 + \frac{L_s}{10}$                                                                                                                                                                                                                                                                                                   | CB50                          |  |  |  |
| 9                  | $\Delta_{\mathrm{Tu}}$ | $0.8*\Delta_T+10$                                                                                                                                                                                                                                                                                                      | CS70, CS50, CB50,<br>CS70-15D |  |  |  |
| 10                 | $F_{C}$                | $\frac{\pi^2 \times E \times I}{K^2 \times L_C^2}$                                                                                                                                                                                                                                                                     | CS70, CS50, CB50              |  |  |  |
| 11                 | $F_{C}$                | $\frac{\overline{K^2 \times L_C^2}}{\overline{K^2 \times L_C^2}} - \frac{24 \times E \times I \times \phi}{\overline{L_C^2}}$                                                                                                                                                                                          | CS70-15D                      |  |  |  |
| 12                 | $F_{\mathrm{Cu}}$      | $F_C \times 0.8$                                                                                                                                                                                                                                                                                                       | CS70, CS50, CB50,<br>CS70-15D |  |  |  |
| 13                 | $\Delta_{ m C}$        | 1                                                                                                                                                                                                                                                                                                                      | CS70, CS50, CB50,<br>CS70-15D |  |  |  |
| 14                 | $\Delta_{\mathrm{Cu}}$ | $0.8*\Delta_{C}+2$                                                                                                                                                                                                                                                                                                     | CS70, CS50, CB50,<br>CS70-15D |  |  |  |

Note: CS70 = the hooked part of the tie is embedded in CS, with 70mm anchoring length. CS70-15D = the hooked part is embedded in CS, with 70mm, the zig-zag end of the tie is bent 15°. CS50 = the hooked part is embedded in CS, with 50mm. CB-50 = the zig-zag part of the tie is embedded in CB, with 50mm

# 3. Numerical Analyses

The experimental results of tie response in CS and CB units have been simulated in this work within the OpenSees environment [12]. In order to do that, the average experimental curves were fit into zero-length element backbone curves as explained below.

The force-displacement curves defined for monotonic loading differ from the envelope curves for cyclic loading by the cumulative damage in cycling loading. The backbone curves for each tested typology shown in Fig. 3, force-displacement curves of the quasi-static tests are given together with the experimental backbone curves presented previously by the authors [10] and the simplified curve proposed by the authors [11]. The backbone curves for cyclic and monotonic were presented separately for CS and Clay specimens by the author [10]. However, the proposed curve is valid for each typology.



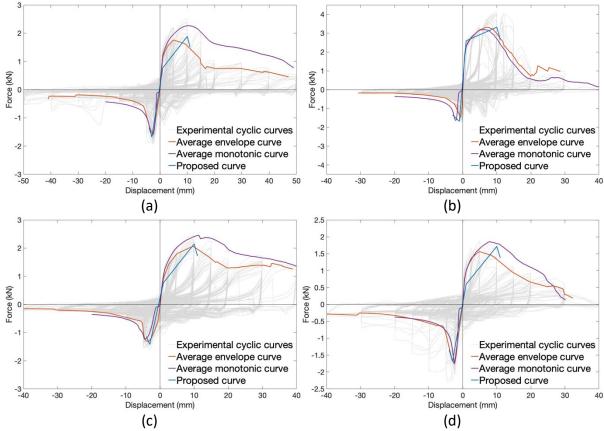



Fig. 3 – Average force-displacement envelope curve for monotonic and cyclic loading with the prosed curve for CS70 (a), CB50 (b), CS70-15D (c) and CS50 (d)

The "Pinching4" model [13] was chosen as material model due to the pinching effect and the degradation in strength and stiffness under cyclic loading. The properties of the Pinching4 material in Opensees are shown in Fig. 4 [12,13] and define a backbone curve, the unloading-reloading path that represents the pinching behaviour, and the parameters for strength and stiffness degradation. The curve proposed in this paper is hence created by inserting appropriate variables into the Pinching4 material in OpenSees.

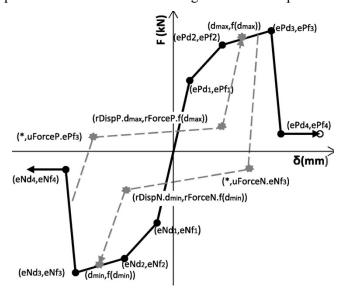



Figure 4. Pinching Material model in OpenSees [12]



The Pinching4 constitutive law described above was used in zero-length element to simulate the wall connection behaviour. The zero-length elements considered for this simulation correspond to springs with only one degree of freedom (DOF), i.e. the axial response, having a hysteretic response that is defined by using the calibrated Pinching4 material. The other DOFs in the model are left constrained.

The tension backbone curves differ from the compression backbone curves for each tested typology due to the different failure mechanisms in tension and compression. Therefore, the backbone curve should be defined separately in tension and compression for each typology in Pinching4 material. However, the strength and stiffness degradation parameters cannot be defined separately in tension and compression due to limitation of the Pinching4 constitutive law. The material parameters were hence calibrated in order to match the overall simulated responses from the experimental results.

Due to its flexible format, the Pinching4 material can actually successfully fit to a wide variety of experiment results. The point of this study is to propose a general model by using an averaging procedure. In order to do this, the backbone shape given in Fig. 2 has been fitted to every tested typology individually and the input parameters have been found for the best fit. As an example, an experimental hysteresis was chosen from one of those typologies to validate the numerical model with the experimental data (Fig. 5).

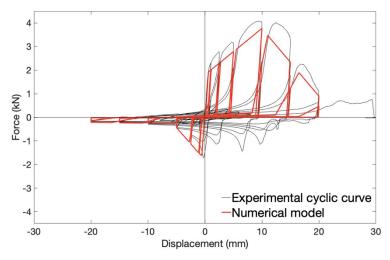



Figure 5. Comparison between experimental and numerical result

Additional parameters of the Pinching4 model define the cyclic response. Two parameters, rDisp and fForce, define the ratio of the deformation/force at which the reloading starts to the maximum deformation/force demand of the previous cycle in the loading direction of interest for positive and negative. The uForce parameter defines the ratio of strength developed after unloading from the negative/positive load to the maximum strength developed under monotonic loading. The cyclic deterioration for unloading, reloading stiffness and strength are controlled with gKLim, gDLim, and gFLim, respectively. The values of cyclic degradation parameters (gKLim, gDLim, and gFLim) and pinching parameters (rDispP, rDispN, rForceP, rForceN, uForceP and uForceN) simulate the force-deformation history for selected specimens. The values suggested for all these parameters are reported in Table 2.



Table 2 – Suggested values of the modelling parameters for OpenSees Pinching4 material based on experiments and mechanical model (number of the equation from the mechanical model between brackets)

| Suggested Values |                                                                                                                                                                                                                        | Suggested Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Suggested Values |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | ed Values  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|
| CS70             |                                                                                                                                                                                                                        | CB50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | CS70-1:          | 5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CS50   |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| 0.77             | [1]                                                                                                                                                                                                                    | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [1]  | 0.77             | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60   | [1]        |
| 1.89             | [2]                                                                                                                                                                                                                    | 3.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [4]  | 2.15             | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.72   | [2]        |
| 1.51             | [5]                                                                                                                                                                                                                    | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [5]  | 1.72             | [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.38   | [5]        |
| 0.80             |                                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1.50             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90   |            |
| 0.001            | [6]                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [6]  | 0.001            | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001  | [6]        |
| 0.01             | [7]                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [8]  | 0.01             | [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01   | [7]        |
| 0.011            | [9]                                                                                                                                                                                                                    | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [9]  | 0.011            | [9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.011  | [9]        |
| 0.011            |                                                                                                                                                                                                                        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 0.04             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.011  |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| -1.68            | [10]                                                                                                                                                                                                                   | -1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [10] | -1.42            | [11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.68  | [10]       |
| -1.34            | [12]                                                                                                                                                                                                                   | -1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [12] | -1.10            | [12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.34  | [12]       |
| -0.60            |                                                                                                                                                                                                                        | -0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | -0.60            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.60  |            |
| -0.10            |                                                                                                                                                                                                                        | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | -0.10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.10  |            |
| -0.003           | [13]                                                                                                                                                                                                                   | -0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [13] | -0.003           | [13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.003 | [13]       |
| -0.004           | [14]                                                                                                                                                                                                                   | -0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [14] | -0.004           | [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.004 | [14]       |
| -0.005           |                                                                                                                                                                                                                        | -0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | -0.005           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.005 | <u>. J</u> |
| _                |                                                                                                                                                                                                                        | -0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| 0.95             |                                                                                                                                                                                                                        | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 0.53             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.53   |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| _                |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        | 10.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.20  |            |
|                  |                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0      |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| _                |                                                                                                                                                                                                                        | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _1-    |            |
| 0.1              |                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1    |            |
| 0.2              |                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 0.1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1    |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| 1-1-             |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      |            |
| 0                |                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0      |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *      |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
| -                |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -      |            |
| 10               |                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 10               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10     |            |
|                  |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |
|                  | 0.77 1.89 1.51 0.80 0.001 0.011 0.011 -1.68 -1.34 -0.60 -0.10 -0.003 -0.004 -0.005 -0.04 0.95 0.22 0.04 0.80 0.53 0.04 adation 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.0 0 0 0 0 | O.77   [1]   1.89   [2]   1.51   [5]   0.80   0.001   [6]   0.01   [7]   0.011   9]   0.011     -1.68   [10]   -1.34   [12]   -0.60   -0.10   -0.003   [13]   -0.004   [14]   -0.005   -0.04     -0.005   -0.04     -0.005   -0.04     -0.005   -0.04     -0.005   -0.015     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.15     -0.1 | CS70 | CS70             | CS70         CB50         CS70-1:           0.77         [1]         2.16         [1]         0.77           1.89         [2]         3.32         [4]         2.15           1.51         [5]         2.66         [5]         1.72           0.80         0.50         1.50           0.001         [6]         0.001         [6]         0.001           0.01         [7]         0.01         [8]         0.01           0.011         [9]         0.011         [9]         0.011           0.011         [9]         0.011         [9]         0.011           0.011         [9]         0.011         [9]         0.011           0.011         [9]         0.011         [9]         0.011           0.025         0.04         0.025         0.04           0.10         -1.68         [10]         -1.42           -1.34         [12]         -1.34         [12]         -1.10           -0.60         -0.30         -0.60         -0.10           -0.10         -0.10         -0.10         -0.10           -0.03         [13]         -0.001         [13]         -0.003 <tr< td=""><td>  CS70</td><td>  CS70</td></tr<> | CS70   | CS70       |



The average cyclic hysteresis curves, obtained following the procedure and using parameters described above, are presented in Fig. 6 for each tested typology of wall connections. The figure shows that the results obtained with numerical analyses have a fairly good match with the average experimental curves. The calibrated hysteretic models are capable of capturing important aspects of the tie response, such as the initial stiffness, strength, sudden drop of strength and cyclic response in the degradation part of the response. However, the Pinching4 material is not capable of accurately capturing the unloading-reloading paths of the cyclic responses from tension to compression which is governed by the buckling deformation.

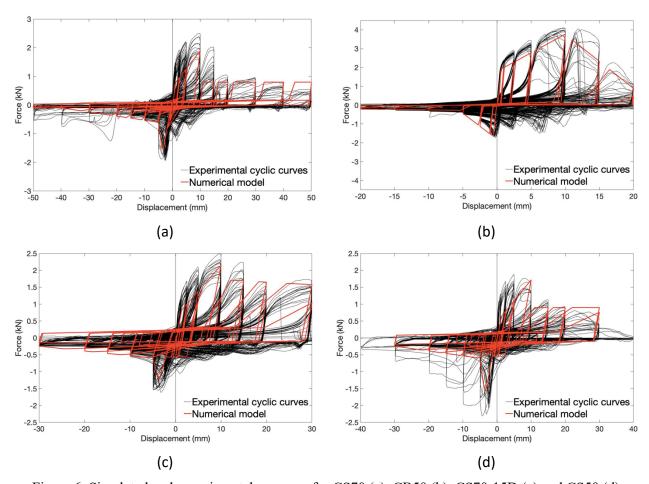



Figure 6. Simulated and experimental response for CS70 (a), CB50 (b), CS70-15D (c) and CS50 (d)

A comparison of the accumulated hysteretic energy (i.e. the area within the hysteresis loop) is given in Fig. 7, where it can be seen that the proposed numerical model performs well in terms of hysteretic energy dissipated by the wall connection. The numerical model dissipates more energy per cycle for smaller displacements whereas smaller energy dissipation is observed for larger displacements compared to the experimental results. This can be attributed to the lack of ability of the model to simulate accurately the unloading-reloading path from tension to compression after the buckling of the tie, as mentioned above, that determines the compressive peaks for positive displacements which are not captured by the Pinching4 constitutive model. At the end of the tests, the total energy dissipation for the numerical model is very close to the average peak energy dissipation for each tested typology.



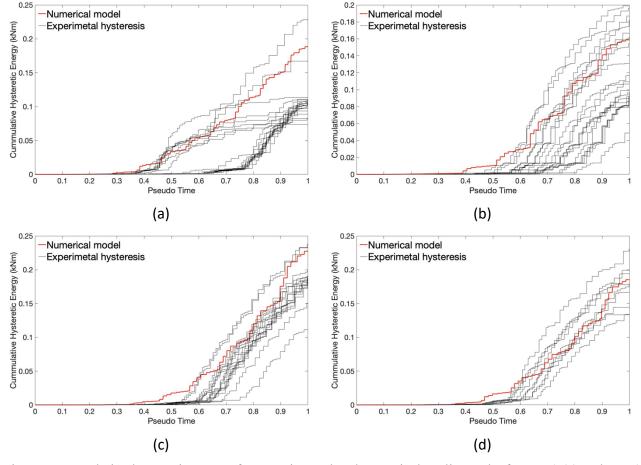



Figure 7. Cumulative hysteretic energy for experimental and numerical cyclic results for CS70 (a) and CB50 (b), CS70-15D (c) and CS50 (d)

#### 4. Conclusions

Double-leaf cavity walls constitute a large portion of the building inventory in the Groningen gas field, an area in the north of the Netherlands subjected to induced earthquakes. The out-of-plane response of the double-leaf cavity walls is one of the most critical failure mechanisms for such buildings. The cavity walls are composed of a loadbearing inner leaf made of calcium silicate brick masonry and an outer leaf made of solid clay brick masonry. Wall-to-wall metallic ties can provide an efficient retain to the out-of-plane collapse of the single leaves, but their strength has not been widely investigated yet.

In this study, the mechanical model derived according to the experimental results of a previous testing campaign carried out by the authors are used to develop a general load-deformation hysteretic numerical model for different typologies of cavity wall connections. The numerical simulations make use of nonlinear zero-length spring elements, whose axial response is defined by a constitutive law (Pinching4) already implemented in the open code OpenSees. Alternatively, similar procedures can be adopted in other structural analysis software used in earthquake engineering. The material parameters of the Pinching4 law are derived from the experimental tests. The strength degradation, stiffness degradation and pinching behaviour of the load-deformation response are modelled differently for each typology and are able to reproduce adequately the observed experimental force displacement curves. However, the description of the unloading-reloading path from tension to compression may be modified to better capture the buckling response of the ties.

The authors believe that the hysteretic model can be used by structural engineers for an accurate modelling of the response of wall-to-wall connections under dynamic earthquake loading.

Make it safer

17WCEE
Sendal, Japan

2020

17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan - September 13th to 18th 2020

### 5. References

- [1] Messali F, Esposito R, Jafari S, Ravenshorst GJP, Korswagen P, Rots JG (2018): A multiscale experimental characterisation of Dutch unreinforced masonry buildings. *Proc.*, 16th European Conference on Earthquake Engineering (ECEE), Thessaloniki, Greece.
- [2] Rots JG, Messali F, Esposito R, Mariani V, Jafari S (2017): Multi-Scale Approach towards Groningen Masonry and Induced Seismicity. *Key Engineering Materials*, **747**, 653-661.
- [3] Esposito R, Terwel KC, Ravenshorst GJP, Schipper HR, Messali F, Rots JG (2017): Cyclic pushover test on an unreinforced masonry structure resembling a typical Dutch terraced house. *Proc.*, 16<sup>th</sup> World Conference on Earthquake, Santiago, Chile.
- [4] Messali F, Ravenshorst GJP, Esposito R, Rots JG (2017): Large-scale testing program for the seismic characterization of Dutch masonry walls. *Proc.*, 16th World Conference on Earthquake (WCEE), Santiago, Chile.
- [5] NEN-EN 845-1 (2016), Specification for ancillary components for masonry Part 1: Wall ties, tension straps, hangers and brackets, Nederlands Normalisatie-instituit (NEN).
- [6] Reneckis D, LaFave JM (2005): Analysis of brick veneer walls on wood frame construction subjected to out-of-plane loads. *Construction and Building Materials*, **19**, 430-447.
- [7] Choi YH, LaFave JM (2004): Performance of corrugated metal ties for brick veneer wall systems. Journal of Materials in Civil Engineering, 16 (3): 202.
- [8] Jo S (2010): Seismic behavior and design of low-rise reinforced concrete masonry with clay masonry veneer. *Ph.D Dissertation*. University of Texas, Austin.
- [9] Okail H (2010): Experimental and analytical investigation of the seismic performance of low-rise masonry veneer buildings. *Ph.D Dissertation*, University of California, San Diego, USA.
- [10] Arslan O, Messali F, Smyrou E, Bal IE, Rots JG (2020): Experimental Characterization of Masonry Wall Metal Tie Connections in Double-Leaf Cavity Walls. Manuscript submitted for publication.
- [11] Arslan O, Messali F, Smyrou E, Bal IE, Rots JG (2020): Mechanical modelling of cavity wall metal ties. *Submitted to the 17th International Brick and Block Masonry Conference, 17IB2MaC,* Krakow, Poland.
- [12] Mazzoni S, McKenna F, Scott MH, Fenves GL (2009): Open System for Earthquake Engineering Simulation User Command-Language Manual, OpenSees Version 2.0, Berkeley, California.
- [13] Lowes L, Mitra N, Altoontash A (2004): A Beam-Column Joint Model for Simulating the Earthquake Response of Reinforced Concrete Frames, *PEER Report 2003/10*, Pacific Earthquake Engineering Research Center, Berkeley, USA.