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Abstract 

Structure, equipment or storage cask may experience free-standing rocking on slopes because of the non-uniform 

settlement of the base, construction error or foundation failure. Since the pioneering work by Housner in 1963, the rocking 

response of a free-standing block on the horizontal rigid surface has been researching all over the world. However, little 

research considered the rocking response of a block on a slope. In this paper, based on Housner’s model, the free-standing 

rigid block on a slope subjected to one-sine pulse excitation is examined. 

First, ignoring the vertical and sliding motions, and assuming the block and base are rigid, the equation of motion of a 

block on a slope was built and linearized to an ordinary differential equation. By comparing the impacting time with the 

duration of the excitation, the overturning of the block on a slope under one-sine pulse can be divided into 3 cases.  In 

case 1, the block experiences one impact and the impact happens before the excitation expired. In case 2, the block also 

experiences one impact and the impact happens after the excitation expired. While in mode 2 (case 3), the block 

experiences overturning without any impacts. These three cases were judged and solved separately, and the overturning 

acceleration spectrum was obtained. Then the overturning spectrum under one-sine pulse excitation was verified by the 

numerical solution based on both linear and nonlinear formulations. The minimum overturning acceleration obtained from 

the spectrum is the same as the numerical solution based on the linear formulation. However, it will overestimate the 

minimum overturning acceleration in case 1 and underestimate the minimum acceleration in cases 2 and 3.  

Results show that the angle of the slope has significant influences on the overturning mode and the rocking process. All 

the spectra on different slopes have the same shape but different areas. The angle of the slope will change the safe region 

of the spectrum between the impact cases (cases 1 and 2) and no impact case (mode 2). The existing of a slope will change 

the critical frequency between case 1 and case 2. 

Keywords: slope; free-standing block; one-sine pulse; overturning acceleration spectrum 
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1. Introduction 

Since the pioneer work proposed by Housner in 1963 [1], the rocking response of free-standing blocks on 

horizontal rigid surface has been researching world widely. Among which the minimum acceleration rocking 

spectrum is particularly important. In 1996, Shi et al. [2] rederived and corrected Housner’s model to estimate 

the minimum overturning acceleration of a precarious rocks at different frequencies. Aslam et al. [2] examined 

the rocking problem of free-standing block through experiment and analysis. In 1999, Anooshehpoor et al. [3] 

developed an analytical solution for the rocking and overturning response of a two-dimensional, symmetric 

rigid block subject to a full sine wave of horizontal ground acceleration. Their work was further improved by 

Zhang and Makris [4] in 2001, they found that under cycloidal pulses, a free-standing block can overturn with 

two distinct modes. Lenci and Rega [5] proposed a closed form and manageable criteria for overturning of a 

rocking block resting on a horizontal rigid foundation. Dimitrakopoulos and Fung [6] examined the stability of 

a block subjected to a family of multi-lobe pulse ground motions. Voyagake et al. [7] also obtained a closed 

form expression for the dynamic response of a two-dimensional rectangular block on a rigid base. 

Later, researchers began to consider more complex rocking system. The flexibility, soil-structure interaction, 

isolated rocking structures are studied. Makris and Konstantinidis [8] examined the fundamental differences 

between the oscillatory response of a single-degree-of-freedom oscillator and the rocking response of a slender 

rigid block. Aiming to characterize and predict the maximum rocking response of large and flexible structures 

to earthquakes using an idealized structural model, Acikgoz and DeJoug [9] used different earthquake records 

to evaluate the ground motion intensity measures. Qin and Chouw [10] carried out shake table tests to investigate 

the effect of soil-structure interaction and structural flexibility on the rocking response of structures. Chen et 

al. [11] presented the results of free vibrations and shake table tests on a single degree-of-freedom model of a 

bridge pier with footing uplift on a rigid base. It is revealed that the flexibility of the structure has significant 

effects on footing uplift duration and amplitude. Masaeli et al. [12] investigated the rocking isolation effect on 

seismic demands of shear-building structures rested on shallow foundation. DeJong and Dimitrakopoulos [13] 

presented a methodology to derive equivalence between the single rocking block and various rocking 

mechanisms, yielding a set of fundamental rocking parameters. Voyagaki et al. [14] revisited the free-standing 

block to earthquake ground shaking without considering the effect of slipping. 

Due to nonuniform settlement of the base, failure of the foundation, the structures, equipment or storage casks 

may experience free-standing rocking on slopes under vibration. However, none of the above research 

considered the free-standing rocking on slopes. Plaut et al. [15] systematically examined the free-standing blocks 

with a flat or concave base resting on a rigid and flat foundation, they carried out a series of numerical 

calculations, symmetric or asymmetric block, horizontal or tilted foundation, to find out the acceleration that 

overturns the block. Virgin et al. [16] assumed the block does not slide or bounce off on the foundation, they 

examined the transient response of the block subjected to a seesawing excitation. However, they didn’t get the 

analytical solution of overturning acceleration spectrum. 

This paper examined the free-standing rigid block on slopes subjected to one-sine pulse excitation. First, 

considering a slope with an angle, the overturning acceleration spectrum under one-sine pulse are built. Then 

the influences of the slope on the overturning acceleration spectrum are discussed. The analytical solution is 

compared with the numerical solution based on both linear and nonlinear formulations. 

2. Free-standing rigid block on slopes 

2.1 Rigid block on slopes 

Because of the nonuniform settlement of the base, imprecise construction of the structures, failure of the 

foundation and etc., the structures may experience free-standing on slopes. The parameters of a free-standing 

rigid block on a slope are the same as that on a horizontal surface, except for an angle of slope β (see Fig. 1). 

It is assumed that the angle is positive if the foundation rotates in clockwise. 

For a block rotating with respect to its corner points B and A, the equations of motion are 
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where m is the mass and I0 is inertia of the block with respect to points B and A, respectively. r is the distance 

of the mass center to the corner point. α is slenderness of the block. 
..

gu is the horizontal ground acceleration. 

β is the angle of the slope. Positive or negative of θ(t) depends on the rotation about A or B. In the following 

sections, θ(t) is written in a simplified version θ. Adopting the same method as the rigid blocks on horizontal 

surface [1] and considering the block under dynamic base excitation, Equation (1) can be expressed in a compact 

form 

..
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g
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where 0/p mgr I=  is a characteristic frequency parameter of the block. 

 

Fig.1 - Schematic of free-standing rigid block on slope 

2.2 Rocking response under one-sine pulse 

Under dynamic base excitation, the rigid block may initiate rocking or overturn when the acceleration exceeds 

the corresponding critical acceleration. The critical acceleration is largely dependent on the size and 

slenderness of the block and the ground motion. Previous research revealed that the required peak ground 

acceleration for initiating rocking and overturning is a sensitive function of both the block size and the 

excitation frequency. For the rigid block rocking respect to corner B and A, the free-body diagram is shown in 

Fig. 2. Based on the equilibrium equations in x, z and rotation θ directions, the angular acceleration at the 

instant when rocking initiates at corner B and A are expressed as 
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where λB and λA are the ratio of the acceleration rocking initiating arock to the peak acceleration of the excitation 

ap respect to B and A, respectively. The ground acceleration of one-sine pulse can be expressed as Equation 

(5) and shown in Fig.3. 
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where ψ is the phase angle when rocking initiates. For rocking respect at B and A, the phase angles are ψB=sin-

1[(α+β)g/ap] and ψA=sin-1[(α-β)g/ap], respectively. ap is the acceleration amplitude of the one-sine pulse 

excitation. 

 

Fig.2 - Free-body diagram of rigid block at entering instant of rocking motion respect to B and A 
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Fig. 3 - Acceleration time history of one-sine pulse 

Substituting Equation (5) into Equation (1) and written in piecewise formation gives 
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For a large slenderness structure and within the limit of the linear approximation, Equation (6) becomes 
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The solution of Equation (7) is 
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The time histories of angular velocities obtained from Equation (8) are 
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where the constant parameters A1, A2, A3 and A4 are calculated by the initial conditions at the instant that the 

rigid block enters the rocking motion. For the rigid block under one-sine pulse, we have t = 0, üg(0) = (α+β)g 

when it rocks at corner B and üg(0) = (α-β)g at corner A. The initial angular velocities both at corners B and A 

are zero. Substituting these values into Equations (8) and (9), the constant parameters can be obtained by 
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When the acceleration amplitude approaches the critical overturning acceleration, the block will take a long 

time to re-center. For the exact value of the critical acceleration, the block will theoretically spend an infinitely 

long time to re-center. This condition is the boundary point between rocking and overturning, which can be 

expressed as 
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( ) 0t  =                                                                        (11) 

According to Zhang and Makris [4], under one-sine pulse, a free-standing block has two modes of overturning, 

i.e. mode 1 overturning with one impact either before (case 1) or after (case 2) the expiration of the excitation 

and mode 2 overturning with no impact. In this study, only the rocking respect to point B is considered. 

Denoting tfv as the time when the block enters its free vibration. Tex is the time the excitation expired. ti is the 

time impacting happens. The condition for overturning after the block has experienced one impact is 

.

fv fv( ) [ ( ) ] 0t p t  + − =                                                   (12) 

For different blocks under various one-sine pulses, as mentioned before, the impact may happen either before 

(case 1: ti<Tex) tfv= Tex or after the excitation expires (case 2: ti>Tex) tfv= ti. By solving the above equations, the 

minimum acceleration spectrum can be obtained. 

3. Results and discuss 

Choosing a rigid block with characteristic frequency parameter p = 2.14 rad, γ = 0.9 and α = 0.25 as an example, 

the minimum overturning acceleration spectrum of the free-standing rigid block on slopes under one-sine wave 

is shown in Fig. 4. It shows that when the frequency is extremely small (ωp approaching to 0), the block will 

overturn in mode 2. The minimum overturning acceleration is equal to gtan(α+β) and gtan(α-β) when it is 

rocking respect to corner B and A, respectively. For the blocks on different slopes, the overturning spectrums 

are significantly different. The influence of the slope on the overturning spectrum increases with an increase 

of the frequency of the one-sine wave. In the case ωp/p is smaller than 4.5, the influence is slight; in the case 

ωp/p is larger than 4.5, the minimum overturning acceleration becomes sensitive to the frequency of the one-

sine wave. For the angles of the slopes equal to 0.02 rad, 0.01 rad, 0 rad, -0.01 rad and -0.02 rad, when the 

frequency ratio ωp/p is larger than 7.37, 6.95, 6.61, 6.28 and 6, the block will only overturn in mode 2. 

According to Zhang and Makris [4], a safe area exists between the overturning spectrum in mode 1 and mode 

2. It indicates that overturning with one impact and overturning without impact is not immediate. The 

overturning area become larger with an increase of the angle of the slope. To be exact with ωp/p=4.0, a block 

on a slope with an angle respectively equals to 0.02 rad, 0.01 rad, 0 rad, -0.01 rad and -0.02 rad, the overturning 

amplitude accelerations of one-sine wave in case 1 are 1.7543αg, 1.7743αg, 1.7893αg, 1.8177αg and 1.8412αg; 

in case 2, these are 4.9764αg, 4.9141αg, 4.8358αg, 4.7844αg and 4.7166αg; and in mode 2, these are 5.2923αg, 

5.2656αg, 5.239αg, 5.2124αg and 5.1859αg. For example, fixing the frequency ωp/p=4.0 and β=0.02 rad, with 

the acceleration amplitude increasing from 1.0αg to 1.7543αg, the block rocks without overturning; from 

1.7543αg to 2.765αg, the block overturns in case 1; from 2.765αg to 4.9764αg, the block overturns in case 2; 

from 4.9764αg to 5.2923αg, the block does not overturn; when the amplitude of acceleration is larger than 

5.2923αg, the block overturns in mode 2. For a determined one-sine wave, by setting the impact time ti equal 

to the excitation expiring time Tex, the acceleration amplitude distinguishing the overturning of the block in 

case 1 and case 2 is located inside the circle (see point O1 in Fig. 5). 
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Fig.4 - Overturning acceleration spectrum 
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Fig.5 - Components of the overturning acceleration spectrum 

The overturning acceleration spectrums of the rigid blocks on horizontal surface and slope with an angle 0.02 

rad are further examined. The overturning acceleration spectrum contains three-part, overturning mode in case 

1, case 2 and mode 2 (see Fig.5). The slope significantly affects the critical frequency between case 1 and case 

2. The critical frequencies of the block on horizontal and slope with an angle 0.02 rad are respectively 4.80p 

and 4.91p. In the case the frequency of the one-sine wave is smaller than the critical value, the block will 

overturn in case 1, case 2 and mode 2. However, when the frequency is larger than the critical value, the block 

will overturn in two types of case 2 (two intersections) and mode 2. 

Based on linear and nonlinear formulations, the minimum overturning acceleration to overturn the block is 

determined by fixing ωp/p=6 and gradually increasing the acceleration amplitude of the one-sine wave. The 

minimum acceleration (see Fig. 6) indicates that the numerical result with linear formulation is in full 

agreement with the analytical result. However, in the case of considering the nonlinear formulation, the 

numerical result is smaller than the analytical results for case 1, and larger in case 2 and mode 2. It is easy to 

indicate that if nonlinear formulation is considered, the area surrounded by the minimum acceleration spectrum 

is larger than that obtained from linear formulation. Therefore, the spectrum simplified by linear formulation 

is not conservative, which should be careful in practical use. 
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Fig.6 - Comparison between analytical and numerical results 

Figures 7 and 8 show the rotation time histories of the free-standing rigid block on slopes subjected to one-

sine wave with ωp/p=6. Fig.7 is computed based on linear formulation simplification and Fig. 8 according to 

nonlinear formulation. These two formulations have similar rotation time history except, as mentioned in the 

above, first, the overturning acceleration for the first type of case 2 is smaller and for the second type of case 

2 and mode 2 is larger when the nonlinear formulation is considered; second, the first peak rotation computed 

by the nonlinear formulation is larger in the case of the same slope and overturning mode. Because ωp/p=6 is 

larger than the critical frequency between case 1 and case 2, the first two graphs in Fig.7 and Fig.8 are 

overturned in case 2, i.e. the impact happens after the excitation expires. The duration of the one-sine pulse is 

0.4909 s, the earliest impact time is 0.6341 s for the block on the slope with an angle of 0.02 rad. Figs 7 and 8 

also indicate that the rotation of the block is very sensitive to the amplitude of the one-sine wave. Another 

interesting phenomenon is that the first maximum negative rotation in the last two graphs in both Figs 7 and 8 

exceeds the slenderness α of the block, however, the block successfully recenters in the deaccelerating motion 

of the one-sine wave. The maximum negative rotation reaches -0.2962 rad for case 2 and -0.3475 rad for mode 

2 in the case the slope is 0.02 rad. 
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Fig.7 - Rotation time history of rigid block on slopes subjected to one-sine pulse with ωp/p = 6 based on 

linear formulation: overturning in (a) case 1, (b) case 2 and (c) mode 2 
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Fig.8 - Rotation time history of rigid block on slopes subjected to one-sine pulse with ωp/p = 6 based on 

nonlinear formulation: overturning in (a) case 1, (b) case 2 and (c) mode 2 

4. Conclusions 

The structures, equipment or storage casks may experience free-standing rocking on a slope because of the 

nonuniformed settlement of the base, imprecise construction of the structures, failure of the foundation and 

etc. After examining the free-standing rigid block on slopes subjected to one-sine pulse excitation, the 

following conclusions can be obtained: 

(1) The slope has significant influences on the minimum acceleration spectrum, the overturning mode and the 

rocking process. 

(2) The safe region between the acceleration-frequency plane above the minimum overturning acceleration 

spectrum and the overturning boundary of mode 2 depends on the angle of the slope. 

(3) The minimum acceleration spectrum is built based on the linear formulation simplification; however, it is 

not conservative. Considering the nonlinear formulation, smaller acceleration amplitude of one-sine wave can 

overturn the block in case 1, and larger acceleration is required to overturn the block in case 2 and mode 2. 
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