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Abstract 

The healthcare system is the organization of people, institutions and resources that deliver healthcare services to a target 
community. In this system, hospitals are the pillars and main providers of acute care, and their emergency departments 
(EDs) are the points of entry for all patients with emergencies. Over the past decades, EDs have been suffering from a 
frequent crowding crisis under normal conditions whereby the Institute of Medicine has described the problem as being 
“at the breaking point.” More critically, extreme natural and anthropogenic events (like earthquakes, hurricanes, 
tornadoes, fires and explosions) can significantly exacerbate the situation through an extraordinary surge in casualties. 
While ED performance has been studied in normal conditions, there is limited research on ED performance following 
extreme events. Particularly, there has been limited research on ED arrival rates following such events. Current arrival 
rate models have four main limitations. Firstly, they do not accurately capture the time dimension of arrivals at EDs which 
is essential in determining arrival rates. Secondly, they do not capture the inherent aleatory variability and epistemic 
uncertainty since they determine a single estimate of arrivals. Thirdly, they do not capture the physical damage to 
infrastructure. Fourthly, the current approaches are limited to earthquakes and are not easily transportable to other natural 
and anthropogenic hazards. To address these limitations, we develop a general mathematical formulation that transforms 
spatially distributed random quantities known as random fields into temporally distributed random quantities known as 
stochastic processes at destinations. We then use this mathematical formulation for earthquake casualties, transforming 
the random field of the earthquake intensity measure into a stochastic process of casualty arrivals at the ED. Lastly, we 
apply the proposed formulation on an example community. The resulting stochastic casualty arrival rate (i.e., demand) 
can considerably assist hospitals in their disaster planning and preparedness and can be coupled with ED service rate (i.e., 
capacity) models to predict ED reliability (i.e., their ability to avoid excessive wait time). 
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1 Introduction 

The healthcare system is the organization of people, institutions and resources that deliver healthcare services 
to a target community. In this system, hospitals (permanent or temporary) are the pillars and main providers 
of acute care, and their Emergency Departments (EDs) are the points of entry for all patients with emergencies. 
Over the past decades, EDs have been suffering from a frequent crowding crisis under normal conditions, with 
the term crowding referring to the state where there are insufficient resources to meet patient demands on a 
timely basis. The problem has been so pronounced that the Institute of Medicine has described the problem as 
being “at the breaking point” [1].  

Consequently, there has been an extensive amount of research on ED crowding under normal conditions 
[2]. Many studies have focused on predicting patient arrival rates over time (i.e., ED demand), especially since 
arrival rates have proven to be a controlling factor in ED crowding [3]. Several researchers have applied time-
series based approaches to predict hourly, daily and monthly arrival rates at EDs [4], while other researchers 
have used linear and Poisson regression [5]. More recently, researchers have also leveraged artificial neural 
networks to predict arrival rates [6]. 

However, extreme natural and anthropogenic events (like earthquakes, hurricanes, tornadoes, fires and 
explosions) can exacerbate ED crowding through a significant surge in ED demand. The increase in the ED 
demand might also be coupled with a drop in the ED patient service rate (i.e., ED capacity) due to direct and/or 
indirect damage to facilities and supporting infrastructures, and due to the shortage of ED staff and medical 
supplies. Consequently, the healthcare system risks catastrophic failure when it is most needed.  

Joshi and Rys [12] show that ED performance is strongly affected by the arrival pattern as well as the 
time duration over which victims arrive at the ED, emphasizing the need for accurate arrival rates over time. 
However, so far, there has been limited research on ED performance under disaster conditions, with 
particularly limited research on ED demand following disasters due to the complexity of the problem and the 
scarcity of data [7]. Therefore, when studying ED performance under disaster conditions, most papers currently 
use arbitrary arrival rate models; like step functions of arbitrary values for earthquake scenarios [8], or a simple 
Poisson process to model arrivals for a terrorist attack scenario [9]. Other studies use an empirical arrival rate 
curve that they transport from an entirely different community/disaster and scale it linearly [10, 11].  

The few attempts that specifically focus on modeling post-disaster arrivals at EDs have four main 
limitations. Firstly, they do not accurately capture the time dimension of arrivals at EDs which is essential in 
determining arrival rates. Secondly, they do not capture the inherent aleatory variability and epistemic 
uncertainty since they determine a single estimate of arrivals. Thirdly, they do not capture the physical damage 
to infrastructure. Fourthly, the current approaches are limited to earthquakes and are not easily transportable 
to other natural and anthropogenic hazards [13, 14, 15]. 

Therefore, there is a need for a new formulation that better quantifies the uncertain patient arrival rates 
at EDs under general disaster conditions. We develop a general mathematical formulation that transforms 
spatially distributed random quantities known as random fields into temporally distributed random quantities 
known as stochastic processes at destinations. We then use this mathematical formulation for earthquake 
casualties, transforming the random field of the earthquake intensity measure into a stochastic process of 
casualty arrivals at the ED. The formulation presents many advantages. Firstly, it captures the time dimension 
of arrivals via space-to-time conversion. Secondly, it incorporates aleatory variability and allows uncertainty 
quantification throughout the transformation steps. Thirdly, the formulation captures the damage to 
infrastructure and its effects on patient arrival times. Fourthly, the formulation is general and can be applied 
to a wide range of problems where spatially distributed random quantities are collected at destinations. 

This paper is organized into four sections. After this introduction, Section 2 describes the general 
formulation developed to transform a random field into a stochastic process. Section 3 discusses the problem-
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specific formulation in the case of casualty arrivals after earthquakes. Section 4 illustrates the formulation by 
applying it to the case of the Centreville virtual community. Lastly, Section 5 presents some conclusions. 

2 General Formulation 

To develop a methodology that applies to a wide range of problems and disasters, we develop a novel and 
general formulation that transforms spatially distributed random quantities into temporally distributed random 
quantities at destinations. We seek to achieve this mathematically by transforming random fields that model 
spatial variability into stochastic processes that model temporal variability. This section presents a high-level 
description of the transformation. Table 1 introduces the variables and parameters for the random field and 
stochastic process.  

Table 1: Random Field and Stochastic Process Notations 

 
2.1. Quantity Derivation 

The random field 𝑉𝑉(𝒔𝒔) can be an intensity measure from which we derive the quantity of interest 𝑄𝑄(𝒔𝒔) at 𝒔𝒔 
(e.g., the number of casualties) that will be collected at destination 𝒔𝒔0. This could be expressed as 
        𝑉𝑉(𝒔𝒔) → 𝑄𝑄(𝒔𝒔)      (1) 

          As a special case, 𝑉𝑉(𝒔𝒔) could directly be the quantity that will be collected at destination 𝒔𝒔0, in which 
case 𝑄𝑄(𝒔𝒔) = 𝑉𝑉(𝒔𝒔). 
 
2.2 Space-to-Time Conversion 

We then project the spatial location 𝒔𝒔 of 𝑄𝑄(𝒔𝒔) into an arrival time 𝜏𝜏(𝒔𝒔) at the destination 𝒔𝒔0 per the following 
mapping: 

        𝜏𝜏(𝒔𝒔):𝐷𝐷 ↦ 𝑇𝑇       (2) 

where 𝜏𝜏(𝒔𝒔) is the arrival time of quantity 𝑄𝑄(𝒔𝒔) to its destination 𝒔𝒔0. Specifically, 𝜏𝜏(𝒔𝒔) is a mapping from the 
spatial domain into the temporal domain, and the conversion is done depending on the specific problem (e.g., 
based on travel time in the case of casualties at location 𝒔𝒔 going to an ED at location 𝒔𝒔0). 

2.3 Domain Collection 

We then collect the isochron set 𝛺𝛺(𝑡𝑡) ⊆ 𝐷𝐷 of locations 𝒔𝒔 at which the derived quantity 𝑄𝑄(𝒔𝒔) has the same 
arrival time 𝜏𝜏(𝒔𝒔) = 𝑡𝑡 for ∀𝑡𝑡 ∈ 𝑇𝑇 

𝛺𝛺(𝑡𝑡) = {𝒔𝒔|𝜏𝜏(𝒔𝒔) = 𝑡𝑡}      (3) 

As long as the space-to-time conversion is deterministic, the isochron set 𝛺𝛺(𝑡𝑡) is deterministic. If 𝜏𝜏(𝒔𝒔) is 
stochastic, 𝛺𝛺(𝑡𝑡) becomes a random set of points. In this case, simulations can be used to generate realizations 
of the random isochron set 𝛺𝛺(𝑡𝑡), and the analyses are repeated for each realization. 
  

Random Field  
𝑉𝑉(𝒔𝒔): Spatial random field at 𝒔𝒔  
𝒔𝒔: Spatial location s.t. 𝒔𝒔 ∈ 𝐷𝐷 

𝒔𝒔0: Location of destination s.t. 𝒔𝒔0 ∈ 𝐷𝐷  
𝐷𝐷: Spatial domain  

Stochastic Process 
{𝑌𝑌(𝑡𝑡)}: Stochastic process at time t, at destination 𝒔𝒔0 

𝑡𝑡: Time s.t. 𝑡𝑡 ∈ 𝑇𝑇  
𝑇𝑇: Temporal domain  
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2.4 Process Assembly 

Subsequently, for ∀𝑡𝑡 ∈ 𝑇𝑇 we sum the 𝑄𝑄(𝒔𝒔) at locations 𝛺𝛺(𝑡𝑡) to assemble the stochastic process 𝑌𝑌(𝑡𝑡). 

If 𝒔𝒔 is continuous, for ∀𝑡𝑡 ∈ 𝑇𝑇 we can write 

𝑌𝑌(𝑡𝑡) = ∫ 𝑄𝑄(𝒔𝒔)𝑑𝑑𝒔𝒔𝛺𝛺(𝑡𝑡)             (4) 

If 𝒔𝒔 is discrete (i.e. lattice), for ∀𝑡𝑡 ∈ 𝑇𝑇 we can write 

𝑌𝑌(𝑡𝑡) = ∑ 𝑄𝑄(𝒔𝒔)𝒔𝒔∈𝛺𝛺(𝑡𝑡)             (5) 
 

2.5 Process Probability Distribution 𝑓𝑓𝑌𝑌(𝑡𝑡) 

Lastly, we derive the probability distribution 𝑓𝑓𝑌𝑌(𝑡𝑡) for process 𝑌𝑌(𝑡𝑡). When  𝛺𝛺(𝑡𝑡) is deterministic, we use 
convolution operations at each 𝑡𝑡 ∈ 𝑇𝑇  to derive 𝑓𝑓𝑌𝑌(𝑡𝑡) . If 𝛺𝛺(𝑡𝑡)  is probabilistic, we can use repeated 
realizations of the random sets of points 𝛺𝛺(𝑡𝑡) and analyze them to find the probability distribution 
𝑓𝑓𝑌𝑌(𝑡𝑡) of 𝑌𝑌(𝑡𝑡). 

This formulation focuses on a single destination point but could easily be extended to consider multiple 
destinations {𝒔𝒔0𝑘𝑘: 𝑘𝑘 = 1,⋯ ,𝐾𝐾} and multiple batches �𝑄𝑄𝑗𝑗(𝒔𝒔): 𝑗𝑗 = 1,⋯ , 𝐽𝐽� from each origin point. 

3 Problem-specific Formulation 

The formulation presented in Section 2 is general and can be used in a wide range of problems. Yet, it also has 
the flexibility needed to be tailored to specific applications.  

Considering a region and a scenario earthquake, this section uses the proposed formulation to transform 
the random field of the earthquake intensity measure into a stochastic process of casualty arrivals at the ED. 

3.1 Quantity Derivation 

3.1.1 Earthquake Random Field 𝑽𝑽(𝒔𝒔) 

The earthquake intensity measure constitutes the random field 𝑉𝑉(𝒔𝒔). The spatial distribution of casualties 𝑄𝑄(𝒔𝒔) 
is derived from it. Here, we use the peak ground acceleration, 𝑃𝑃𝑃𝑃𝑃𝑃(𝒔𝒔), as the earthquake intensity measure. 
We consider 𝑙𝑙𝑙𝑙[𝑃𝑃𝑃𝑃𝑃𝑃(𝒔𝒔)] as our random field to benefit from the properties of Normally distributed quantities 
[16]. Hence, we model the random field as 

𝑉𝑉(𝒔𝒔) = 𝑙𝑙𝑙𝑙[𝑃𝑃𝑃𝑃𝑃𝑃(𝒔𝒔)]       (6) 

𝑉𝑉(𝒔𝒔) = 𝑙𝑙𝑙𝑙[𝑃𝑃𝑃𝑃𝑃𝑃(𝒔𝒔)] = 𝑀𝑀(𝒔𝒔) + 𝑍𝑍(𝒔𝒔) + 𝜀𝜀(𝒔𝒔)     (7) 

where 𝑀𝑀(𝒔𝒔) is the mean-field at 𝒔𝒔, 𝑍𝑍(𝒔𝒔) is the normal zero-mean spatially correlated intra-event field at 𝒔𝒔, and 
𝜀𝜀(𝒔𝒔) is the normal inter-event residual which is constant for all 𝒔𝒔 for any given realization of the earthquake 
[17,18]. 

2k-0016 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2k-0016 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

5 

3.1.2 Building and Infrastructure Damage 

Having the earthquake random field 𝑉𝑉(𝒔𝒔), and data on the building inventory and transportation infrastructure 
in the affected region, the amount of damage to buildings and infrastructure can be computed using appropriate 
fragility functions and repair rates [19,20,21]. Fragility curves are the conditional probability of attaining or 
exceeding a prescribed performance level for a given 𝑉𝑉(𝒔𝒔) at the site [22]. Repair rate curves provide the 
number of expected repairs per unit length of the linear element as a function of 𝑉𝑉(𝒔𝒔).  

3.1.3 Casualties 𝑸𝑸(𝒔𝒔) 

Given the population’s spatial distribution at the time of the earthquake and the amount of damage to the built 
environment (determined in the previous subsection), statistical/empirical models can be used to predict the 
number and severity of casualties at each location. The approach allows us to determine the number of 
casualties of a single severity level 𝑄𝑄(𝒔𝒔) at 𝒔𝒔, or the number of casualties of any m severity levels 𝑸𝑸(𝒔𝒔) =
[𝑄𝑄1(𝒔𝒔),𝑄𝑄2(𝒔𝒔). . .𝑄𝑄𝑚𝑚(𝒔𝒔)] at 𝒔𝒔. Figure 1 illustrates the derivation of the spatial distribution of multi-severity 
casualties 𝑸𝑸(𝒔𝒔) from random field 𝑙𝑙𝑙𝑙[𝑃𝑃𝑃𝑃𝑃𝑃(𝒔𝒔)]. 

 

 

 

 

 

 

 

 

 

 

 

 

For simplicity in the presentation, in the remainder of this derivation, we focus on a single severity level 
and use notation 𝑄𝑄(𝒔𝒔). 

3.2 Space-to-Time Conversion 

The space-to-time conversion 𝜏𝜏(𝒔𝒔) can include several dimensions aside from direct transport. For the case of 
casualty arrivals to EDs after earthquakes, 𝑄𝑄(𝒔𝒔) is a discrete variable (i.e., the number of casualties) at discrete 
locations 𝒔𝒔 (e.g., buildings, sidewalks, bridges). Before arriving to the ED, casualties 𝑄𝑄(𝒔𝒔) might need time to 
be searched for and rescued. We denote this processing time as 𝜏𝜏𝑃𝑃(𝒔𝒔). Also, they might need to wait before 
they can be transported. We denote this queuing time as 𝜏𝜏𝑞𝑞(𝒔𝒔). Lastly, they need time to travel along the 

Figure 1: Illustration of the Derivation of Casualty Estimates Q(s) from Intensity 
Measure PGA(s) 
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1 
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Severity scale 
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damaged network and reach the ED. We denote this transportation time as 𝜏𝜏𝑇𝑇𝑇𝑇(𝒔𝒔). As a result, the space-to-
time conversion can be written as  

𝜏𝜏(𝒔𝒔) = 𝜏𝜏𝑃𝑃(𝒔𝒔) + 𝜏𝜏𝑞𝑞(𝒔𝒔) + 𝜏𝜏𝑇𝑇𝑇𝑇(𝒔𝒔)     (8) 

Since the quantity of interest is the arrival rate at the ED, and not the rate at which definitive care is 
administered, 𝜏𝜏(𝒔𝒔) is defined as the time at which the casualty physically reaches the ED. Hence, queuing for 
care at the ED at 𝒔𝒔0 is not included in 𝜏𝜏𝑞𝑞(𝒔𝒔), and is subsequently not included in our arrival time 𝜏𝜏(𝒔𝒔).  

Figure 2 illustrates this space-to-time conversion for earthquake casualty arrivals. 

3.3 Domain Collection 

We apply Eq. (3) to collect the domain. As long as the arrival time of casualties 𝜏𝜏(𝒔𝒔) is deterministic, the 
isochron set 𝛺𝛺(𝑡𝑡) is deterministic. If 𝜏𝜏(𝒔𝒔) is stochastic, 𝛺𝛺(𝑡𝑡) becomes a random set of points and needs 
simulations.  

3.4 Process Assembly 

Afterward, since the casualties are distributed at discrete locations 𝒔𝒔, the stochastic process of casualty arrivals 
𝑌𝑌(𝑡𝑡) is assembled per Eq. (5).  

3.5 Process Probability Distribution 𝑓𝑓𝑌𝑌(𝑡𝑡) 

Lastly, we find the probability distribution 𝑓𝑓𝑌𝑌(𝑡𝑡) of casualty arrivals 𝑌𝑌(𝑡𝑡) at time 𝑡𝑡 by either convolutions or 
simulations.  

10 min. 

15 min. 

Casualty Arrivals 
Y(t) 

Predicted casualties 
Q(s) 

Figure 2: Illustration of the Space-to-Time Conversion for Earthquake Casualty 
Arrivals to EDs 
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Having the probability distribution 𝑓𝑓𝑌𝑌(𝑡𝑡) , any property relating to the stochastic process 𝑌𝑌(𝑡𝑡)  can be 
determined via mathematical manipulation. 

Of particular interest to our problem is the rate of casualty arrivals 𝑌𝑌�(𝑡𝑡) that can be expressed as 

𝑌𝑌�(𝑡𝑡) = ℎ[𝑡𝑡,𝑌𝑌(𝑡𝑡)]      (9) 

4 Application 

This section uses the proposed methodology considering the virtual community of Centerville [23] subject to 
an earthquake scenario [24].  

4.1 Community Description 

The Centerville community considered in this application is a virtual yet realistic testbed community. It is a 
small-scale city with a population of 50,000. Its building stock consists of mostly low-rises, with some 
medium-rise structures. It also has one hospital (i.e. ED) as can be seen in Figure 3. The community is 
assumed here to be located on the United States’ west coast. 

 
The transportation infrastructure is modeled as a network of roads and bridges as shown in Figure 4 

[23].  
 

Figure 3: Centerville Plan [23] 
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4.2 Quantity Derivation 

The random field considered 𝑉𝑉(𝒔𝒔) = 𝑙𝑙𝑙𝑙[𝑃𝑃𝑃𝑃𝑃𝑃(𝒔𝒔)] is for a scenario earthquake of magnitude 7 at a distance of 
5 km. The ASK 14 GMPE [16] along with Jayaram and Baker’s correlation model [25] are used to model the 
random field at each node. The building and bridge damage states are modeled using fragilities to capture 
five damage states (DS): none, slight, moderate, extensive, complete; with the complete damage state in turn 
divided into complete with collapse and complete without collapse. For the sake of explaining the proposed 
formulation, the fragilities are taken from FEMA’s Hazus-MH Technical Manual [26].  
 

Lastly, given the spatial distribution of the population as well as damage, and using values per FEMA’s 
Hazus-MH Technical Manual [26], multi-severity casualty estimates are derived at each node using 
multinomial distributions. The casualty breakdown is defined by a four-level injury severity scale (shown in 
Table 2), where Severity 1 is the lowest form of injury, and Severity 4 means instantaneous death. 

 
Table 2: Injury Severity Levels 

Injury Severity Level Injury Description 
Severity 1 Injuries requiring basic medical aid that could be administered by paraprofessionals. 

These types of injuries would require bandages or observation.  

Severity 2 Injuries requiring a greater degree of medical care and use of medical technology such 
as x-rays or surgery, but not expected to progress to a life-threatening status.  

Severity 3 Injuries that pose an immediate life-threatening condition if not treated adequately and 
expeditiously. Some examples are uncontrolled bleeding and punctured organ. 

Severity 4 Instantaneously killed or mortally injured 
 

 

Figure 4: Centerville Transportation Network [23] 
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Under crisis conditions, the Emergency Medical Services (EMS) as well as Emergency Departments at 
hospitals focus primarily on patients with immediate life-threatening conditions and either decline or divert 
patients of lesser severity [27]. So, while the approach applies to multi-severity casualties, for the remainder 
of this application we focus only on casualties with immediate life-threatening injuries (i.e. Severity 3) and 
define 𝑄𝑄(𝒔𝒔) as such. 

4.3 Space-to-Time Conversion 

Eq. (8) identifies three components to the space-to-time conversion for earthquake casualty arrivals. For the 
search-and-rescue time 𝜏𝜏𝑃𝑃(𝒔𝒔), studies have shown that a substantial portion, if not most, search-and-rescue is 
carried out by untrained survivors, especially during the first hours of a disaster [28]. In the case of 
Centerville’s micropolitan community, we assume that the search-and-rescue process (done mostly by 
untrained survivors alongside experts) will be underway in parallel across the community, and at a relatively 
quick pace (since the building inventory is largely characterized by low to mid-rise construction). Hence, the 
casualties at each building are assumed to undergo search-and-rescue concurrently. Therefore, we assign to 
𝜏𝜏𝑃𝑃(𝒔𝒔) a uniform distribution with minimum and maximum values of 0 and 120 min, respectively. 

𝜏𝜏𝑃𝑃(𝒔𝒔) ∼ Uniform(0,120) [min.]     (10) 

Nonetheless, if desired, 𝜏𝜏𝑃𝑃(𝒔𝒔) could be site-specific and could be replaced by physical models that are 
dependent on building material, geometry and structural demand as well as survivor and expert labor. 

For the transportation time 𝜏𝜏𝑇𝑇𝑇𝑇(𝒔𝒔), studies have also shown that most casualties are not transported by 
ambulance. Indeed, if ambulances are not promptly available, survivors do not tend to wait for them but will 
use the most expedient means to transport neighboring casualties [28]. Hence, casualty transportation can be 
assumed to be concurrent as well. Furthermore, since Centerville is not densely populated, we assume no 
congestion on the roads. Hence, we calculate 𝜏𝜏𝑇𝑇𝑇𝑇(𝒔𝒔) as follows: 

𝜏𝜏𝑇𝑇𝑇𝑇(𝒔𝒔) = 𝑑𝑑(𝒔𝒔,𝒔𝒔0)
𝑣𝑣

      (11) 

where 𝑣𝑣 is the speed that is assumed to be constant at 50 km/h, and 𝑑𝑑(𝒔𝒔, 𝒔𝒔0) is the shortest distance in the 
damaged network between the casualty at 𝒔𝒔 and the ED at 𝒔𝒔0. 

Lastly, accounting for survivor transport of casualties, we assume casualties are not queued at 𝒔𝒔 . 
Therefore, the time 𝜏𝜏𝑞𝑞(𝒔𝒔) is 0 for ∀𝒔𝒔 ∈ 𝐷𝐷. 

4.4 Domain Collection 

Due to the uncertainties in 𝜏𝜏𝑃𝑃(𝒔𝒔) and 𝜏𝜏𝑇𝑇𝑇𝑇(𝒔𝒔), 𝜏𝜏(𝒔𝒔) is uncertain. As a result, to define the domain 𝛺𝛺(𝑡𝑡) ∀𝑡𝑡 ∈ 𝑇𝑇 
we use simulations.  

4.5 Process Assembly 

Lastly, since the closed-form distribution of the casualties 𝑄𝑄(𝒔𝒔) in this application is analytically intractable, 
we assemble the stochastic process 𝑌𝑌(𝑡𝑡) of casualty arrivals per Eq. (5) and generate its distribution via 
simulations. With the rate of casualty arrivals 𝑌𝑌�(𝑡𝑡) being of particular interest, we estimate its time-varying 
mean 𝜇𝜇(𝑡𝑡) and standard deviation 𝜎𝜎(𝑡𝑡). 
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The arrival rate curves for 2,000 realizations are generated using Monte Carlo simulations and are 
smoothed with a gaussian kernel of bandwidth 15 min [29]. They are shown in Figure 5. The curves 𝜇𝜇(𝑡𝑡), 
𝜇𝜇(𝑡𝑡) + 𝜎𝜎(𝑡𝑡) and 𝜇𝜇(𝑡𝑡) + 2𝜎𝜎(𝑡𝑡) are also plotted for reference. 

The results show a relatively low average arrival rate 𝜇𝜇(𝑡𝑡), which is expected due to the small population 
size of Centerville and a building inventory of mostly low-rises. The mean arrival rate would likely be higher 
in more densely populated urban communities. Also, there is significant variability expressed in relatively high 
values of 𝜎𝜎(𝑡𝑡) and in numerous casualty arrival rate curves with values neighboring two to three immediate 
life-threatening injury arrivals every 15 min.  

Furthermore, the capacity of EDs in many micropolitan hospitals is modest to start with. In fact, in many 
cases providing the necessary resources to stabilize an immediate life-threatening injury might temporarily 
suspend the ED’s ability to care for other casualties. Additionally, in case of an earthquake the ED’s capacity 
is likely to decrease due to either direct damage to the hospital facilities (i.e. structural and non-structural 
damage), reduction or loss of functionality of supporting critical infrastructure (e.g. power and water), or 
reduction of medical resources (e.g. personnel and supplies).  In this context, the above casualty arrival rate 
curves are essential to provide hospital administrators and clinicians a quantitative basis for disaster planning 
and preparedness. If coupled with ED capacity models, the above casualty arrival rates can quantitatively 
predict ED reliability and ability to serve a community. 

5 Conclusion 

To quantify casualty arrival rates after disasters, we developed a general mathematical formulation that 
transforms spatially distributed random quantities known as random fields into temporally distributed random 
quantities known as stochastic processes at destinations. The formulation presents many advantages. It 
captures the time dimension of arrivals via the space-to-time conversion, it incorporates aleatory variability 
and allows uncertainty quantification in every step of the transformation, it captures the damage to 
infrastructure and its effects on patient arrival times, and it is general in that it can be applied to a wide range 
of problems. We used the proposed formulation to quantify earthquake casualty arrivals, transforming the 
random field of the earthquake intensity measure into a stochastic process of casualty arrivals at an emergency 
department. We illustrate the proposed formulation considering an example community. The estimated 

Figure 5: Casualty Arrival Rate Curves 
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stochastic demand at emergency departments can considerably assist hospitals in their disaster planning and 
preparedness and can be coupled with emergency department capacity models to predict emergency 
department reliability. 
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