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Abstract 
In the lifetime of an arch dam, it could withstand significant earthquakes, and the vulnerability of the structure has 
attracted much attention in dam engineering. Generally, the seismic vulnerability analysis of concrete dams is based on 
numerical methods, such as the method of finite element analysis.  The vulnerability analysis of arch dams requires a 
large number of calculation cases. Recently, data-driven methods, including machine learning and neural networks, have 
been applied to long-term behavior of concrete dams based on in situ measurements. These data-driven methods show 
great ability in interpretation of long-term behavior and prediction of displacements of concrete dams. The data-driven 
methods could also be a promising procedure for seismic vulnerability assessment of dams, but there is few, if any, study 
investigating the seismic response of arch dams using neural networks. Given the current shortage of related research， 
and the limited previous attempts to address this vulnerability of the structure question, there is a need for a tentative 
interdisciplinary work. In this study, a combination of artificial neural networks and genetic algorithms is presented to 
predict the seismic vulnerability of arch dams. The presented method can significantly reduce the calculation time 
compared with the seismic analysis of arch dams using finite element method. More than five hundred cases of dynamic 
response of arch dams are analyzed with the finite element method and the responses of the structure are used as output 
of the artificial neural networks. The earthquake intensity and material properties of dam concrete are considered as input. 
The results show that the proposed method can predict accurate seismic response of the arch dam in seconds and gives a 
reasonable seismic vulnerability analysis of the arch dam. 
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1. Introduction 
Dams throughout the country currently play an important role in the development of the national economy. 

But the potential threat of the dam is huge, once the accident would be a direct threat to lives and property 
downstream. Among many disasters that threaten the safety of dams, earthquakes are one of the most 
threatening. Therefore, it is extremely important to evaluate the seismic safety of dams [1]. Damage analysis 
of dams under earthquake conditions has also received extensive attention and research in recent years. For 
arch dams, the degree of damage is affected by many factors, such as ground motion and concrete material, 
etc. Through finite element method (FEM), the structural response (such as displacement) under a variety of 
preset earthquake conditions can be obtained [2].  However, the amount of simulation work performed by FEM 
is undoubtedly huge. If the results of the FEM can be compared with the predicted values obtained by the 
statistical mathematical model, it can help to establish a statistical mathematical model to determine if the 
structure's behavior is still reasonable, and if not, appropriate measures should be taken to prevent disaster[3]. 

Unlike deterministic models (such as FEM), statistical mathematical models do not rely on physical 
governing laws to calculate dam responses [4,5]. For the clear question: the response of an arch dam under 
seismic conditions, the coupling effect of ground motion and concrete material changes can be more clearly 
discussed by the finite element method. FEM provides more flexibility in analyzing special or unconventional 
conditions [6].Therefore, in the early stage of the analysis process, FEM can provide sufficient data to help 
establish effective statistical models for prediction, and the assumptions and predictions of arch dam behavior 
based on sufficient analysis data require the participation of statistical mathematical models. The artificial 
intelligence technique is one of the statistical techniques most widely used for estimating the dam response [7]. 
When it comes to dam body vulnerability analysis, if only rely on FEM, the workload will be extremely large, 
and statistical techniques can greatly improve computing efficiency.  

Artificial intelligence techniques such as artificial neural networks and genetic algorithms have been used 
as efficient tools to simulate the response of complex structural engineering systems under external forces. 
Furthermore, they have been successfully applied to model of the dam behavior [7,8]. The development of 
artificial neural networks dates back to the 1940s. S. McCulloch and W. Pitts et al. proposed a formal 
mathematical description of neurons and a method of network structure [9]. At that time, its role was to help 
humans understand the intricacies of the nervous system [3]. By 1982, J. J. Hopfield proposed the Hopfield 
neural grid model, introduced the concept of "computing energy", and gave a judgment of network stability 
[10]. Later, he proposed a continuous-time Hopfield neural network model, which pioneered a new way for 
neural networks to use in associative memory and optimized computing. This pioneering research work has 
strongly promoted the research of neural networks [11]. In 1985, Rumelhart and Hinton et al. Proposed a Back 
Propagation (BP) algorithm, which makes the training of neural networks simple and feasible [12].Because of 
the artificial intelligence neural network's powerful capability such as self-studying, and its ability to handle 
non-linear systems, it is widely used in monitoring and analysis of dam safety [13,7,8]. Many scientists have 
applied artificial neural networks to identifying structural damage sites and input-output problems of multi-
degree-of-freedom systems [14,16]. For example, Pandey and Barai [15] explored how artificial neural 
networks can help identify damage in bridge structures. It turns out that structures using artificial neural 
networks can obtain accurate damage analysis and the structures are correctly simulated under the premise of 
analysis. 

Genetic algorithm is an evolutionary computing technology based on biological evolution models. As 
human genetic processes, this method is useful in search spaces that not clearly presented, and it can avoid 
local convergence problems by searching in parallel [13]. In 1965, J.H. Holland first proposed the importance 
of artificial intelligence operations. Later, his student J.D. Bagley developed replication, crossover, mutation, 
and dominant and inversion genetic operators based on adaptive genetic algorithms. In the early 1970s, Holland 
put forward the basic theorem of genetic algorithms, and thus laid the theoretical foundation for genetic 
algorithms [17]. The model theorem reveals that the number of samples of good individuals in the population 
will increase exponentially, thus theoretically ensuring that the genetic algorithm is an optimization process. 
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Generally, genetic algorithms obtain global optimality through selection, crossover, and mutation calculations 
[18]. 

In this paper, a model combining BP artificial intelligence neural network and genetic algorithm is 
proposed for dam vulnerability prediction. The arch dam response under earthquake conditions obtained by 
FEM calculation simulation provides input materials for neural network learning. The results obtained through 
artificial intelligence are compared with the results by FEM. The performance of the combination of BP 
artificial intelligence neural network and genetic algorithm in predicting vulnerability analysis has been 
verified by predicting more than 500 cases. Results show that the combined model is practical to consider the 
effects of earthquakes and dam concrete materials on dam response. 

2. Method 
2.1 BP neural networks 

Artificial neural network is an artificial intelligence method widely used in recent years by simulating the 
function of the human brain nervous system. It has strong learning and adaptive capability, and widely used in 
many subjects to investigate influencing factors. Basically, all artificial neural networks have a similar 
structure: input layer, hidden layer, output layer. In the input layer, some neurons interact with the real world 
to receive input. Output may present a visual display. All the remaining neurons are not visible [19]. The BP 
(back propagation) neural network is a kind of typical multilayer feedforward artificial neural network with 
continuous transfer function. 

 Assume that input layer neurons are , hidden layer neurons are , and 

output layer neurons are .  represents the connection weight between the m-th neuron in 

the input layer and the u-th neuron in the hidden layer, and  represents the u-th neuron in the hidden layer 
and the n-th neuron in the output layer. The topology of the multilayer neural network model is shown in 
Figure 1. [20]. 

 
 Fig. 1 – Neural network structure diagram 

 

The excitation function of the hidden layer is , and the excitation function of the output layer is . 
While assuming that  represents the threshold value of each neuron in the hidden layer, and  is the 
threshold value of each neuron in the output layer.  
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The processes of signal forward transmission and back propagation are expressed as follows: 

In the process of positive signal transmission, the first neuron  in the hidden layer generates by adding 
the threshold value k after weighted summation of neurons in the input layer, and then substituting into the 
function as follows: 

                                (1) 

Similarly, the first neuron  in the output layer receives the output value of each neuron in the hidden 
layer, and then weights and sums them to obtain: 

                                    (2) 

In the process of back propagation, the input sample x enters the input layer, and passes through the hidden 
layer according to the above process. The first batch of output values to  are obtained, and then they are 
compared with the expected output Z. If the mean square error between Y and Z does not meet the 
predetermined requirement ε, then the back-propagation process occurs as follows: the mean square error is 
returned in a gradient form and distributed to the neurons in each layer. Repeat this process until the mean 
square error converges to ε [20]. 

2.2 Genetic algorithms 
Genetic algorithms appeared in the 1960s. Genetic algorithms have been applied in many fields, due to 

its convenience and efficiency. As an algorithm that simulates the principle of survival of the fittest in nature, 
genetic algorithm combines the principle of survival of the fittest with the exchange of random information to 
try to achieve the dual effect of eliminating unsuitable factors in the solution and inheriting the existing 
knowledge [22]. 

The flow of genetic algorithm is shown in the figure 2. 

 

 

 

 

 

 

Fig. 2 – Genetic Algorithm Flowchart 

At first, a set of first-generation populations as the starting point of evolution are randomly selected in the 
feasible domain, and the individual adaptability value of each individual is calculated. The adaptability reflects 
the optimization information of the objective function. Next, several individuals are randomly selected from 
the population as the sample set before the breeding process. The selection mechanism ensures that individuals 
with higher adaptability can be selected preferentially, while individuals with lower adaptability have fewer 
chance to be selected. In the breeding process, crossover and mutation operators are used to mate the selected 
samples with a certain crossover rate and mutation rate to give a new generation of individuals. Finally, the 
next generation of groups is generated through the replacement between old and new individuals. The 
algorithm repeats until the end conditions are met [23]. 

Then how does crossover and selection work? 
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Just as the reproduction of many organisms is accomplished by the crossover of chromosomes, crossover 
is also an important operator in genetic algorithms. Two individuals and  are selected as parents to cross 

the gene chain code, thereby generating two new individuals . One method is widely used in crossover 
operations: randomly select a truncation point in parents’ gene, cut the gene at the truncation point, and 
exchange the latter half of the gene. 

 
Fig. 3 – Genetic crossover 

Like crossover, mutation occurs when changes occur at one or some locations on the gene chain that make 
the newly created individuals different from other individuals. The implementation method of the operator is 
as follows: for an individual in the population, if the selected certain gene in its gene chain is 0, change it to 1, 
and vice versa. 

1100111001                                       1100110001 

 

Fig. 4 – Genetic mutation 

2.3 Optimize the neural networks’ weights based on GA 
Because the BP neural network is based on the gradient descent method, it has two obvious 

shortcomings at instability in system training process and local convergence problems. One of the most 
effective methods to improve the performance of the BP neural network, is self-modifying parameters in 
training process, that means adjusting weight and threshold values by additive momentum factors [13]. As a 
type of random search algorithm, genetic algorithm draws on natural selection and natural genetic 
mechanisms in the biological world, and it has a good ability of limiting the risk of local optimal solution, 
which is suitable for searching without relying on gradient information. So genetic algorithms can be used to 
optimize neural networks [24].  

The number of hidden layers in the BP neural network structure is usually determined through testing, 
that is, the weights and thresholds corresponding to the hidden layers will also be adjusted accordingly. The 
addition of GA can generate an optimal individual in different network structures.  

At first, to perform crossover and mutation operations easily, normalizing the samples of the BP 
network by using floating point encoding when encoding the initial population. A real number array formed 
by the weight and threshold of the BP network is a chromosome of GA. The second step is to select a fitness 
function such as the mean square error function, and then judge the viability of the chromosome by the 
function. New individuals are generated according to a certain cross probability and mutation probability, 
and the judgment of whether the chromosome reaches the optimal is continued. Repeat the process by 
changing the number of neurons in the hidden layer. If the optimal individual obtained after the loop can 
satisfy the global network error, it means that the optimal weight and threshold have been obtained. Finally, 
a BP neural network is constructed. 
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3. Case Study 
In this section, the performance of the combination of artificial neural networks and genetic algorithms 

was demonstrated to predict the seismic responses of an arch dam. The method is adopted by three layers as 
mentioned above: input layer, hidden layer and output layer. In the input layer, a monotonic scalable ground 
motion intensity measure (or simply intensity measure, IM) of a scaled accelerogram and the parameters of 
concrete materials are variables that affect results. Common examples of scalable IMs are the peak ground 
acceleration (PGA), peak ground velocity (PGV), the =5% damped spectral acceleration at the structure’s 
first-mode period (Sa(T1; 5%)), and  acceleration spectral intensity (ASI)[25].In the output layer, there are 
three outputs that represents the predicted maximum displacements along the dam crest, contraction joint 
opening and damage volume ratio of concrete.  

3.1 Description of the concrete arch dam and data set 

The Dagangshan arch dam with a height of 210 meters and a dam crest arc length of 609.8 meters is 
located on the Dadu River of Southwest China. The thicknesses of the crown cantilever are 52 meters at the 
bottom and 10 meters at the crest. The arc length-height ratio and thickness-height ratio are 2.90 and 0.248 
respectively. The total number of contraction joints in the dam is twenty-eight. The normal depth of reservoir 
water is 205 meters and the lowest reservoir depth in operation is 195 meters, and the depth of silt 
sedimentation during operation is 125 meters [26]. To evaluate the safety of the dam under strong design 
earthquake, three groups of FE models under different ground motions and materials of concrete are 
established. 

The 3 groups contain a total of 510 cases: 

Group A (195 cases): Random material for concrete (normal random elastic modulus and uniformly 
random damping) and random ground motions (scaled to Sa = 7 to 17, 19, 21, and 15 ground motions for each).  

Group B (195 cases): Uniform material for concrete and random ground motions (scaled to Sa = 7 to 17, 
19 and 21, and 15 ground motions for each).  

Group C (120 cases): Uniform material for concrete and uniform ground motions (scaled to Sa = 7 to 21 
at 2 intervals, and 15 ground motions for each). 

A total of 80 real ground motions from Pacific Earthquake Engineering Research Center provide data for 
simulation of ground motion. The data set was established between 1978 and 2010. Table 1 lists 20 of the 
earthquake records selected to create an ensemble for the seismic simulations. All have epicentral distances of 
6.13 to 57.65 km with magnitudes ranging from 5.42 to 7.62. And the equivalent shear wave velocity Vs (30) 
near the surface is provided in the table. Figure 5 shows 5 of the normalized spectral accelerations of these 
selected records.  

 Table 1 – Part of the earthquake records selected 

 Earthquake Year Mag. Epicentral distance (km) Vs30 (m/s) Station Name 

1  "Chi-Chi_ Taiwan" 1999 7.62 51.8 617.52  "HWA046" 

2  "Chi-Chi_ Taiwan" 1999 7.62 57.65 734.26  "TTN032" 

3  "Basso Tirreno_ 
Italy" 

1978 6 19.59 620.56  "Naso" 

4  "Niigata_ Japan" 2004 6.63 39.37 653.28  "NIGH10" 

5  "Iwate_ Japan" 2008 6.9 25.56 655.45  "Yuzawa" 

6  "Tottori_ Japan" 2000 6.61 9.12 616.55  "SMN015" 

x
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7  "Iwate_ Japan" 2008 6.9 21.25 655.45  "Minase 
Yuzawa" 

8  "Chi-Chi_ Taiwan-
06" 

1999 6.3 25.85 614.98  "TCU076" 

9  "Chi-Chi_ Taiwan" 1999 7.62 54.29 614.05  "HWA029" 

10  "Chi-Chi_ Taiwan-
03" 

1999 6.2 16.46 624.85  "TCU071" 

11  "Duzce_ Turkey" 1999 7.14 8.03 638.39  "Lamont 531" 

12  "Chi-Chi_ Taiwan-
05" 

1999 6.2 67.47 665.2  "CHY086" 

13  "Chi-Chi_ Taiwan" 1999 7.62 28.17 665.2  "CHY042" 

14  "Loma Prieta" 1989 6.93 18.41 713.59  "UCSC Lick 
Observatory" 

15  "Whittier Narrows-
01" 

1987 5.99 18.12 969.07  "Pasadena - 
CIT Kresge 

Lab" 

16  "Loma Prieta" 1989 6.93 18.33 663.31  "Gilroy Array 
#6" 

17  "Loma Prieta" 1989 6.93 71.33 582.9  "SF - 
Diamond 
Heights" 

18  "Iwate_ Japan" 2008 6.9 41.72 552.38  "Misato_ 
Akita City - 
Tsuchizaki" 

19  "Tottori_ Japan" 2000 6.61 15.59 967.27  "SMNH10" 

20  "Chi-Chi_ Taiwan" 1999 7.62 56.14 1525.85  "HWA003" 

 

 

 
Fig. 5 – Normalized spectral accelerations 
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3.2 Prediction of vulnerability of Dagangshan based on AI model 

In this section, the response analysis of the arch dam takes into account maximum displacements along 
the dam crest, contraction joint opening and damage volume ratio of concrete, respectively. A three-layer 
neural network structure with one hidden layer is capable of such response prediction problems. In the input 
layer, the factors are supposed to have a significant impact on the dam's vulnerability and easy to obtain. 
According to engineering experience, the structural parameters of the concrete are selected from the modulus 
of elasticity, tensile strength, damping, PGV, PGA, SA, and ASI as the basic factors. The output layer outputs 
corresponding displacement and damage volume ratio of Dagangshan Dam from the results of FEM, that 
means there are three neurons in the output layer.  Besides, the hidden layer selects 30 neurons after testing. 

A total of 80 earthquakes that obtained from the Pacific Earthquake Center are used as input layer data 
after normalizing operations based the magnitude. A total of 310 sets of data of 500 are used as training samples, 
and the remaining 200 sets of data are testing data.  

The magnitude of each input variable is quite different. In order to obtain better training results, the 
training sample set is normalized during pre-processing. 

Figure 6 shows the comparison of the prediction results of maximum displacements along the dam crest, 
contraction joint opening and damage volume ratio, respectively. 

 

 
(a)                                                                                      (b) 

 
(c)                                                                                      (d) 
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(e)                                                                                   (f) 

Fig. 6 –Performance of the BP-GA model: (a) comparison of test results of displacement of maximum 
displacements along the dam crest; (b) fitting of test results to expected simulation results of displacement of 
maximum displacements along the dam crest; (c) comparison of test results of displacement of contraction 
joint opening; (d) fitting of test results to expected simulation results of displacement of contraction joint 

opening; (e) comparison of test results of damage volume ratio; (f) fitting of test results to expected 
simulation results of damage volume ratio 

 
Fig. 7 –Fragility curves of the maximum displacements along the dam crest of 500 FEM cases results and 

310 FEM results 
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(a) 

 
(b) 

 
(c) 

Fig. 8 –Fragility curves of predictive and simulated results: (a) displacement of maximum displacements 
along the dam crest; (b) displacement of contraction joint opening; (c) damage volume ratio 

From Figure 6, the results of the predictions of 200 testing data are satisfactory, no matter the 
displacement, opening degree, or volume of damage. Although the results of individual predictions are with 
some difference from those obtained by FEM, the overall fit is ideal. Give an example, for the displacement 
of contraction joint opening, the mean and standard deviation of the calculated value by FEM are 29.0 mm and 
28.0 mm, respectively. And these two parameters appear in the prediction results are 28.6 mm and 27.1 mm. 
This shows that the test results of the displacement of contraction joint opening have similar distribution rules 
with the FEM. For the maximum displacements along the dam crest, both the comparison result and the fitted 
curve show similar effects to the contraction joint opening, which also illustrates the credibility of the 
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prediction results of the BP-GA model. As for the damage volume ratio, fig. 6(f) shows the fitted results 
between the predicted results and actual values of damage volume. It can be seen that the degree of fit of the 
damage volume to the actual FEM results is in line with expectations due to the sample data that contains 
enough sample information.  

According to the probability distribution obeyed by the characteristics of ground motion, concrete 
strength, elastic modulus, and damping, a fragility curve between possibility of displacement, opening or 
damage happening and spectral acceleration Sa(T1) is established. Sa(T1) is from 0.2m/s2 to 25 m/s2 with an 
interval of 0.2m/s2. Select 500 finite element calculation results and 300 finite element calculation results to 
draw their vulnerability curves. As shown in Figure 7, it can be found that the curves drawn by the 300 finite 
element results cannot represent 500 at all. In order to describe the agreement between the prediction result of 
BP-GA model and the calculation result of finite element, where the blue dotted line in the Figure 8 represents 
a fragility curve composed of the learned 310 finite element calculation results and 200 predicted results from 
the BP-GA model, and the red line represents 510 finite element calculation results. The three figures presented 
reflect the probability of the displacement of maximum displacements along the dam crest is greater than 7mm, 
the displacement of contraction joint opening is greater than 7mm, and the damage volume ratio is greater than 
0.5, respectively. It can be seen from the three figures that the two fragility curves are very similar, almost 
completely coincide, that is, the prediction result by the neural network trained from 310 finite element results 
can respond well to the remaining 200 finite element results, while in a much shorter period of time than FEM, 
which verifies the validity of the BP-GA model.  

4. Conclusions 
An artificial neural network based on genetic algorithms is proposed for prediction of nonlinear seismic 

response of arch dams. The performance of the proposed model was verified on the calculated data of a real 
concrete arch dam. Considering statistical regularity of data, the accuracy is greatly guaranteed. Therefore, the 
proposed model based on BP-GA can reflect the effect of earthquake on structural behavior. A concrete arch 
dam with a height of 210 meters and a dam crest arc length of 609.8 meters was taken as the example.  

The predicted results of the damage volume，displacement of maximum displacements along the dam 
crest and contraction joint opening have similar distribution to the results from finite element analysis. 
Moreover, for vulnerability analysis of the arch dam, using this proposed model significantly saves time costs 
compared with finite element analysis. The proposed method can provide new ideas for vulnerability analysis 
of dams. 
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