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Abstract 

To estimate the effect of fault displacement underneath reinforce concrete structures, static analysis has mostly been used 
in previous studies. However, when fault displacement occurs, not only the fault displacement itself but also the seismic 
motion related to it simultaneously act on the structures. Although there are previous studies that handle both fault 
displacement and seismic motion in a dynamic analysis, effective and concise methods cannot be found. For example, a 
method requires a complicated procedure of analysis, such as combining static and dynamic analyses in a single step, and 
another method realizes the simultaneous loads by replacing fault displacement with an external force, but it is thought 
to be an expedient method. 

This paper aims at establishing a method to evaluate the effect on the dynamic responses of reinforced-concrete structures 
due to the superimposed load from fault displacement and seismic motion. In our numerical method, it is assumed that 
ground motion, which is the source of the superimposed load, can be clearly separated into fault displacement and seismic 
motion. This assumption yields some modifications of the equation of motion in which fault displacement and seismic 
motion are treated as imposed displacement and inertial force, respectively. 

The proposed method is tested by a multiple degree-of-freedom model with contact nonlinearity and a two-dimensional 
finite element model with material and contact nonlinearity. The former model is used to solve an ordinary earthquake 
response problem, and the numerical results are compared with those obtained by the conventional method. The latter 
model solves a superposed loading problem where the structure is assumed to be affected by fault displacement partially 
beneath the foundation and seismic motion, and the numerical results are compared with those obtained via static analysis. 
In addition, some numerical studies are conducted, where the dominant period of displacement and the location of the 
fault displacement are varied, so that the effects of the superimposed load can be investigated. 
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1. Introduction 

Fault displacement has been observed on surface ground during some earthquakes even though it does not 
appear during most earthquakes. This paper describes the numerical method that is needed for evaluating the 
effect of fault displacement on structures when such fault displacement appears beneath the structures. Note 
that the degree of fault displacement treated in this study is assumed to be at most the degree of fault 
displacement that branches from the main fault displacement. 

Most studies evaluating the effects of fault displacement on structures have focused on the static 
behaviors of the displacement. However, when fault displacement occurs for real, the shaking generated by 
the earthquake and the displacement occurring beneath the structure are superimposed to affect the structures. 
Thus, in order to evaluate the effect of fault displacement on structures, a numerical method that can 
superimpose fault displacement and earthquake motion is required. 

Some previous studies treat both fault displacement and earthquake motion in terms of dynamics, but 
they are neither effective nor concise. For example, there is a method [1] in which fault displacement is treated 
as static behavior, and static analysis and dynamic analysis are combined within a single step. However, the 
required procedure is complicated. Another method [2] interprets fault displacement as an external force, but 
proper mass and stiffness are required for each model; in other words, a parametric study is required to 
determine the mass and stiffness for each model. 

Hence, in this study, a concise numerical method in which fault displacement and earthquake motion 
are superimposed is proposed to establish a method to evaluate the effect of the superposition of fault 
displacement and earthquake motion on the dynamic responses of reinforced-concrete structures. 

2. Formulation 

It is assumed throughout this paper that the ground motion acting on a building can be separated into earthquake 
motion and fault displacement components. With this assumption, earthquake motion and fault displacement 
are treated as an inertial force and imposed displacement, respectively. In the rest of this section, the equation 
of motion is formulated with respect to the system of a single degree of freedom in which the inertial force and 
the imposed displacement are simultaneously considered.  

Let us consider the response of a single degree-of-freedom system as shown in Fig. 1 (a) to ground 
motion. The mass of the node is denoted as ݉, the coefficient of the dashpot as ܿ, and the stiffness of the spring 
as ݇. The acceleration of the node is denoted as ܽଵ	, the velocity of the node as ݒଵ, and the displacement of the 
node as ݀ଵ. In the same manner, the acceleration, velocity, and displacement of the input point, which are 
exactly the input motion of the ground, are ܽଶ, ݒଶ, and ݀ଶ, respectively. The coordinate of the system used to 
express these response quantities is called the absolute system. 

 

 

  

    

(a) absolute coordinate system (b) relative coordinate system I (c) relative coordinate system II 

Fig. 1 – Single degree-of-freedom models and coordinate systems to describe response quantities 
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2.1 Inertial force only case 

First, the ordinary formulation of the problem is described here. As shown in Fig. 1 (b), the input point where 
the ground motion is prescribed is fixed, and the responses of the node are expressed by the reference 
coordinate system based on the input point. In the rest of this paper, the response quantities described in this 
coordinate system are indicated with a single dash. In this coordinate, the inertial force, which is calculated as 
the product of the mass of the node and the negative of the ground acceleration (െ݉ܽଶ), is thought to act on 
the node. Then, the equation of motion in this coordinate system is written as  

݉ܽଵ
ᇱ ൅ ଵݒܿ

ᇱ ൅ ݇݀ଵ
ᇱ ൌ െ݉ܽଶ. 

 The method to obtain the response based on Eq. (1) is called the Inertial Force Method in this paper.  

 

2.2 Imposed displacement case 

Second, the same system can be seen as the system of two degrees of freedom. In this perspective of the view, 
the equation of motion can be written with the response quantities in the absolute coordinate system in the 
matrix form as 

ቀ݉ 0
0 0

ቁ ቀ
ܽଵ
ܽଶ
ቁ ൅ ቀ

ܿ െܿ
െܿ ܿ ቁ ቀ

ଵݒ
ଶݒ
ቁ ൅ ቀ ݇ െ݇

െ݇ ݇
ቁ ൬
݀ଵ
݀ଶ
൰ ൌ ቀ0

ݎ
ቁ, 

where ݎ	denotes the reaction force of the input point. 

  In Eq. (2), the response quantities of node 1 are unknown, whereas those of input point 2 are given. This 
means the first row of Eq. (2) is essential and equivalent to Eq. (1), while the second row of Eq. (2) is used to 
obtain the reaction force ݎ, which is unknown. 

 

2.3 Superposition of inertial force and imposed displacement case 

Let us separate the ground motion into a pair of earthquake motion and fault displacement as shown below. 

ቐ

ܽଶ ൌ ܽ௚ ൌ ܽ௘ ൅ ܽ௙
ଶݒ ൌ ௚ݒ ൌ ௘ݒ ൅ ௙ݒ
݀ଶ ൌ ݀௚ ൌ ݀௘ ൅ ݀௙

, 

where the subscript ݃ means ground motion, ݁ represents the portion of earthquake motion, and ݂ represents 
the portion of fault displacement. 

 Let us consider the coordinate system that is relative to earthquake motion (ܽ௘, ݒ௘, ݀௘). The response 
quantities described in this coordinate system are written with a double dash. With this notation, the response 
quantities of node 1 are written as 

ቐ
ܽଵ ൌ ܽ௘ ൅ ܽଵ

ᇱᇱ

ଵݒ ൌ ௘ݒ ൅ ଵݒ
ᇱᇱ

݀ଵ ൌ ݀௘ ൅ ݀ଵ
ᇱᇱ
. 

   Substituting Eqs. (3) and (4) into Eq. (2) yields the modified equation of motion as below. 

ቀ݉ 0
0 0

ቁ ൬
ܽଵ
ᇱᇱ

ܽ௙
൰ ൅ ቀ

ܿ െܿ
െܿ ܿ ቁ ൬

ଵݒ
ᇱᇱ

௙ݒ
൰ ൅ ቀ ݇ െ݇

െ݇ ݇
ቁ ൬
݀ଵ
ᇱᇱ

݀௙
൰ ൌ ቀ

െ݉ܽ௘
ݎ ቁ. 

Similar to the case of Eq. (2), the first row of Eq. (5) is used to obtain the response quantities of node 1, 
whereas the second row is used for the reaction force ݎ. Thus, only the first row of Eq. (5) is substantially 
solved. 

(1)

(2)

(3)

(4)

(5)
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   Note that, in Eq. (5), the inertial force due to ground acceleration ܽ௘ invoked by earthquake motion is 
treated as an external force on the right hand side, whereas ground velocity ݒ௙ and ground displacement ݀௙ 
with regard to fault displacement are treated as the imposed displacement at the input point. The situation 
corresponding to this description is shown in Fig. 1 (c). 

  The method to obtain the response based on Eq. (5) is called the Proposed Method in this paper. Note 
that the equation set with respect to a multiple degree-of-freedom system can also be derived and extended to 
non-linear problems as in the reference [3]. 

3. Fundamental Study 

3.1 MDOF case 

To verify the Proposed Method, let us solve a problem involving a structure-soil system affected by a single 
ground motion using the Inertial Force Method and Proposed Method. 

 The numerical model is shown in Fig. 2. The assumption of the problem is described as follows. The 
upper part of the structure consists of eight nodes as shown in (a), whereas the foundation of the structure is 
assumed to be rigid.  The structure stands on the soil via gap elements. The gross spring stiffness of the soil in 
both the sway and rocking components is calculated based on the admittance theory and is transformed into a 
set of scalar springs in the horizontal and vertical directions, respectively. The soil properties to be used are 
listed in Table 1. To represent the uplift behavior of the bottom of the foundation from the surface of the ground, 
a gap element is placed between a node of the rigid foundation and a node of each soil spring. Each gap element 
can represent contact and separation in the axial direction in accordance with the constitutive model described 
in Fig. 2 (b). The initial state of the gap elements is set by the static analysis to evaluate the self-weight of the 
structure prior to the transient analysis. Note that no friction slip occurs, and the shear force is released at the 
transition from the fixed state to the separated state. The damping model is given by the stiffness proportional 
damping model, in which the damping coefficient is set to 3% with respect to the first natural period of the 
system except for the gap elements. The damping coefficient of the gap elements is set to zero so that no 
damping force is carried during the separated state. 

 

 

 

  

  

(a) eight node-rigid foundation model 
and a gap element 

(b)  gap element model:  
(upper) axial component and (lower) slip component 

Fig. 2 – Multiple degree-of-freedom model for verification of the proposed formulation 
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Table 1 – Soil properties for calculating soil springs 

 
layer thickness 

(m) 
unit volume 

weight (kN/m3) 
shear wave 

velocity (m/s) 
Poisson ratio 

rigid bedrock infinity 23 1,500 0.36 

 

Input acceleration wave is defined by a 5-second long sine curve with a one-second period, which is 
tapered over the first three seconds. The amplitude of the input wave is set as the maximum becomes an 
amplitude of 9 m/s2 so that the minimum ground contact ratio of the rigid foundation slightly undergoes 50%. 
The velocity and displacement waves are obtained by integrating the acceleration wave. These three curves 
are shown in Fig. 3.  Note that the portion of earthquake motion (inertial force) and fault displacement (imposed 
displacement) are 50:50 in the Proposed Method so that the same problem is solved by the Inertial Force 
Method and the Proposed Method, where the results can be compared. 

 

   

(a) acceleration (b) velocity (c) displacement 

Fig. 3 – Tapered sine wave with a one-second period as input motion 

 

The Newmark- method ( = 1/4,  = 1/2) [4] is used as the direct time integration method. The time 
increment is chosen to be 1/4,000 of a second so that the response waves become stable after the re-contact of 
the gap elements. 

The results obtained by the computation are shown in Fig. 4. The response acceleration in the horizontal 
direction at the roof floor (RF) is shown in (a).  The result obtained by the Proposed Method overlaps that 
obtained by the Inertial Force Method. Slightly high frequent waves can be seen in the response, which is 
thought to be caused by separation and re-contact between the foundation and the soil.  The response hysteresis 
of the gap element at the left-most position is shown in (b). It can be observed that separation has occurred; 
meanwhile, large slip displacement and re-contacts occur several times. In these figures, again, the result 
obtained by the Proposed Method overlaps that obtained by the Inertial Force Method. 

 

 

   

(a) response acceleration in horizontal direction 
at roof floor (RF) 

(b) response hysteresis of the gap element  
at the left-most position  

in (left) axial component and (right) slip component 

Fig. 4 – Numerical results of the MDOF case 
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It is concluded that the Proposed Method has been verified through a contact non-linear problem with 
respect to inertial force. 

 

3.2 Finite Element case 

To verify the Proposed Method with a non-linear finite element model, let us solve the problem in two 
dimensions involving a structure-soil system affected by vertical displacement together with horizontal ground 
motion using the Proposed Method. 

 The two-dimensional finite element model used in this study is shown in Fig. 5. The structure is wall-
shaped and of reinforced concrete as shown in (a). The three consecutive elements from the bottom are 
considered to be the foundation of the structure. Plane elements, which represent reinforced concrete, and rod 
elements, which represent distributed mass of the structure at each floor, are used in the model. Note that the 
rod elements do not represent stiffness. 

 Each plane element can represent the nonlinearity of both concrete and reinforcing steel. The material 
constants are listed in Table 2. The constitutive model of each material [5] is shown in Fig 5 (b). The concrete 
model is based on the multi-directional smeared crack model [6]. 

 

 

  

 

(a) finite element model in two dimensions (b) constitutive models of (upper) concrete  
and (lower) reinforcing steel 

Fig. 5 – Non-linear finite element model for verification of the proposed formulation 

 

Table 2 – Material constants 

Material 
unit volume 

weight 
 (kN/m3) 

Young 
modulus 
(N/mm2) 

compressive 
strength 
(N/mm2) 

tensile 
strength 
(N/mm2) 

Poisson ratio 

Concrete 24 25,100 33 2.37 0.2 

Steel 77 205,000 379.5 379.5 0.3 

 

 The property of the soil used in this section is the same as listed in Table 1 in the previous section.  To 
represent the uplift behavior of the structure, gap elements are again used. However, there are two things 
modified from the modeling in the previous section to avoid potential numerical instabilities. One is that the 
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gap elements are solely used to model both the soil-structure interaction and the uplift behaviors of the 
foundation. In this modeling, the initial stiffness of each gap element is set to be that of the corresponding soil 
spring. The other one is that the number of gap elements is increased from the previous section, as seen in Fig. 
5 (a), because the discretization of soil spring may affect the response of the structure. Note that the same 
assumption as the previous section is applied to the gap elements: in other words, no friction slip is allowed, 
and the shear force is released at the transition from the fixed state to the separated state. The damping model 
is given by the instantaneous stiffness proportional damping model in which the damping coefficient is set to 
3% with respect to the first natural period of the system. The reason why the instantaneous stiffness is used to 
define the damping model is to assure that no damping force is carried by a gap element during its separated 
state. 

 Upward displacement is applied in the vertical direction to the left half of the model as shown in Fig. 5 
(a). The displacement is given at the fixed point of the gap elements as the imposed displacement as described 
in sections 2.2 or 2.3. The input wave of the displacement ݀௙ሺݐሻ is shown in Fig. 6 (a). The corresponding 
velocity wave ݒ௙ሺݐሻ is obtained by differentiating the displacement wave. The dominant period ܶ of the input 
displacement is five seconds, while the maximum displacement occurs at 2.5 seconds. 

 Horizontal acceleration ܽ௘ሺݐሻ is superimposed with the above displacement, which is treated as the 
inertial force as described in sections 2.1 or 2.3.  The wave is defined by a Ricker wave, where the central 
frequency is 4 Hz and the maximum occurs at 2.5 seconds as shown in Fig. 6 (b). 

 

  

(a) vertical displacement wave: upward is positive (b) horizontal acceleration wave 

Fig. 6 – Input waves for verification with two-dimensional finite element model 

 

 The motion of the input displacement shown in Fig. 6 (a) is relatively slow, which may be treated as 
quasi-static. It is expected that the response of the structure can be comparable to a response that is subject to 
static displacement. Therefore, four cases are computed and compared as listed in Table 3 for verifying the 
Proposed Method. Cases S and D are used for verifying only the loading of the displacement by comparing 
dynamic displacement with static displacement. Cases S+D and D+D are used to verify the superimposed 
loading, which is of interest, of displacement and acceleration.  

 

Table 4 – List of cases for two dimensional finite element model 

Case Displacement Acceleration 

S Static N/A 

D Dynamic N/A 

S+D Static Dynamic 

D+D Dynamic Dynamic 
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 The results of Cases S and D are shown in Fig. 7.  Both results are comparable. The compressive stress 
is observed around the fault location. There can also be found the compressive stress on the right-most part of 
the structure, which is probably because of the uplift and rotational motion of the structure due to the upward 
fault displacement. It is confirmed that the Proposed Method can provide results for the quasi-static 
displacement applied in a dynamic problem consistent to static loading. 

 

 

  

(a) Case S, static displacement case (b) Case D, dynamic displacement case (T=5s) 

Fig. 7 – Comparison of static and dynamic cases for displacement only loading: Deformation, which is 
magnified by 50 times; and principal stress distribution, in which red and blue arrows denotes compressive 
and tensile stresses, respectively. 

 

 The acceleration response spectrum of the results calculated with 5% damping factor obtained from 
Cases S+D and D+D is shown in Fig. 8. The result of the dynamic-dynamic case (D+D) overlaps with that of 
the static-dynamic case (S+D). The peak around 0.2 seconds is due to the natural period of the system, whereas 
the other peak around 0.05 seconds is due to contact-separation of the foundation. It is also confirmed that the 
Proposed Method can provide results for the superposition of quasi-static displacement and acceleration 
consistent with the superposition of static displacement and acceleration. 

 

  

Fig. 8 – Comparison of static and dynamic case for superimposed loading: Acceleration response spectrum 
with 5% damping factor in horizontal direction at roof floor (RF) 
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 Through these cases, the Proposed Method has been verified to solve the superimposed loading of 
displacement and acceleration. 

4. Numerical Examples 

4.1 Effect of dominant period of input displacement 

Here is a demonstration to study the effect of the dominant period of the input displacement on the response 
of a structure. In this study, another upward displacement where the dominant period is one second is 
incorporated, and the numerical result is compared with that obtained in section 3.2. The input displacement 
wave is shown in Fig. 9. The same numerical model and the acceleration wave as in section 3.2, except for the 
input displacement, are used. Note that the superposition of displacement and acceleration is only considered 
in this study. 

 

 

Fig. 9 – Vertical displacement of dominant period one second 

 

 The response acceleration in the vertical direction at the bottom of the structure (BOT) is shown in Fig. 
10 (a). In the first half of the response (0‒2.5 seconds), the one-second case shows significant responses, 
whereas the five-second case does not. The one-second displacement invokes significant acceleration unlikely 
for the five-second displacement. This difference indicates that the one-second displacement is no longer quasi-
static loading. In the second half of the response (2.5‒5.0 seconds), although slight differences between these 
two cases can be seen, the overall responses are quite close. It may imply that the effect of the input 
displacement with the amplitude of 5 cm on the structure is not as much as that of the horizontal acceleration 
with the amplitude of 450 cm/s2. 

 

   

(a) response acceleration in vertical direction at 
bottom of structure (BOT) 

(b) acceleration response spectrum with 5% 
damping factor in horizontal direction at roof floor 

(RF) 

Fig. 10 – Comparison of numerical results of superimposed vertical displacement where the dominant 
periods are 5 seconds and 1 second and horizontal acceleration 
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 The acceleration response spectrum with 5% damping factor in the horizontal direction at the roof floor 
(RF) is shown in Fig. 10 (b). It is observed that the peak around 0.2 seconds differs slightly from each other, 
and the second peak around 0.05 seconds exhibits a bigger difference. The responses of the five-second case 
and the one-second case do not differ much, which is consistent with the discussion above. The overall 
responses are still very close. 

 It can be concluded from this study that the dominant period of the input displacement at this amplitude 
is not as significant as the horizontal acceleration at this magnitude. 

 

4.2 Effect of location of fault displacement 

Here is another demonstration to study the effect of the location of fault displacement on the response of a 
structure. In this study, the location of fault displacement is modified as it becomes 1/4 from the left as shown 
in Fig. 11 (a). All other conditions are maintained from section 3.2. Note that the solo displacement case is 
only computed with the five-second displacement motion. 

 The deformation and the principal stress distribution are drawn in Fig. 11 (b). Compared to the original 
cases (Cases S and D in section 3.2) shown in Fig. 7, the compressive stress field, which is an arch-like shape, 
is organized on the right-hand side in this case. It is observed that the stress distribution could change as the 
location of fault displacement moves. 

 

 
 

 

 

 

(a) location of fault displacement (b) deformation and principal stress distribution 
(T=5s) 

Fig. 11 – Numerical model and principal stress distribution under fault displacement at 1/4 location 

 

5. Conclusion 

In this paper, a concise numerical method in which fault displacement and earthquake motion are superimposed 
has been proposed to establish a method to evaluate the effect of the superposition of fault displacement and 
earthquake motion on the dynamic responses of reinforced-concrete structures. 

 Conclusions obtained in this paper are summarized below. 

compressive stress tensile stress

2k-0036 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 2k-0036 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

11 

1) The equation of motion applicable to the simultaneous input of fault displacement and earthquake motion 
has been formulated. 

2) It has been confirmed that the proposed numerical method (Proposed Method) can properly solve a non-
linear MDOF problem with contact nonlinearity and a two-dimensional finite element problem with 
material and contact nonlinearity. 

3) Two numerical examples are shown to demonstrate the potential studies of the superimposed displacement 
and acceleration loading using non-linear finite element models. 
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