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Abstract 
Seismic assessment of unreinforced masonry (URM) buildings is still a critical issue due to the material and 
construction technique heterogeneity and complexity. As a matter of fact, several strategies have been developed to 
model URM behavior, e.g.: equivalent frame, equivalent homogenization, distinct elements. FE 2D and 3D models, 
with micro- or macro-modelling approach, provide accurate results, though they require a complex calibration and 
expensive computational efforts. By contrast, 1D models, with lumped or distributed nonlinear behaviour, aim to catch 
the main structural performance, ignoring local effects. In adapting FE codes developed to model RC frames to the 
modelling of masonry structures by the equivalent frame approach (EFA), a critical issue is to take into account shear 
strength and deformability vs axial force variation. In modelling URM buildings by means of EFA, if shear strength 
dependence on axial force variation is neglected performing nonlinear time-history analyses (NLTHAs) or pushover 
analyses, the assessment of structural performance could provide inaccurate results. This issue plays a key role, besides 
the axial force variation induced by the shear strength of the spandrel, especially when vertical seismic action is 
considered. Indeed, advanced seismic codes (e.g.: ASCE 41-17, NTC 2018) recommend to employ, if necessary, both 
horizontal and vertical seismic actions during NLTHA, in order to reproduce the earthquake load acting on URM 
structures during ground motion. In this context, the present paper proposes a new modelling scheme able to reproduce 
the dependence of the shear strength on the axial force value currently acting on the cross section of the masonry 
element. The modelling scheme aims to substitute the vertical rigid elements, which are inserted between piers and 
spandrels in the EFA, with a force-based fiber section element. Its cross section and material properties are calibrated in 
order to take into account the contribution of both the shear strength and deformability of the masonry pier in the 
structural analysis. The end sections of the fiber element are constrained aiming at behaving as a shear type element. By 
using this modelling scheme, reliable results, both in terms of stiffness, strength and post-peak behavior are obtained. 
Proposed scheme efficiency is proved by favourable comparison against experimental results carried out both on 
masonry walls and frames. 

Keywords: masonry; shear strength and deformability; N-M-V interaction; FEM modeling; equivalent frame. 
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1. Introduction 

The assessment of the seismic vulnerability of masonry buildings is certainly still a challenge for researchers 
operating in all five continents. In this context, the formulation of mathematical and mechanical models for 
the "material" masonry and for the numerous morphologies of the masonry structural systems is still one of 
the problems that has not received completely satisfactory answers. The heterogeneity and complexity of the 
materials and construction techniques, combined with the influence that the manufacturing methods of the 
masonry and construction details have on the behaviour of the structure product, making coding of models 
capable of adequately representing the expected behaviour of the structures in relation to the construction 
techniques used is extremely complex. As a matter of fact, different strategies have been developed to model 
behaviour of UnReinforced Masonry structures (URM). Aiming at characterizing the behaviour of the 
masonry “material”, both equivalent homogenization and distinct elements are used, while in capturing the 
behaviour of the whole structure both micro or macro-modelling approach are followed.  

When structures with simple structural morphology are considered, such as in the case of seismic 
evaluation of single structural unit of residential building, most of the international seismic codes share the 
idea that calculation approach can diversified if the absence of stiff deck, efficient slab-to-wall, and wall-to-
wall connection preclude to ensure a box-like behaviour. Thus, when the masonry wall is not suitably 
connected to the deck to prevent wall out‐of‐plane overturning, the seismic response is controlled by 
out‐of‐plane failure mechanisms. Simple equations derived by linear and nonlinear kinematic approaches 
allow one to assess the behaviour under seismic excitation, and they can rule the design of the first effective 
retrofitting systems to avoid out‐of‐plane collapse. By contrast, when box-like behaviour of the structure is 
ensured, a mechanical model able to assess the behaviour of the whole structural unit have to be considered. 

To this aim, detailed 2D and 3D Finite Element models with complex constitutive law able to 
represent the non-linear behaviour of the masonry and its ineffectiveness in tension, and special connection 
elements able to model the slab-to-wall, and wall-to-wall connections can predict the whole structure seismic 
behaviour at the cost of large computational efforts. Moreover, in order to obtain adequate level of accuracy, 
the numerical parameters that characterize the constitutive load of masonry and connection elements should 
be suitably calibrated, on the basis of in situ or laboratory tests. 

In order to cope with the need of practitioners for a simple, easy to manage and to control, still reliable 
models, macro-modelling approaches was developed since the seventies. Simplified methods able to assess 
the seismic resistance of a masonry building were formulated after the earthquake of Friuli in 1976; 
Tomaževič M. [1], and Tomaževič M. and Turnsek, V. [2] developed the POR method, based on the shear 
resistance of the masonry walls of each story, considered as fixed at the ends. Thus, the behaviour of each 
storey was assumed to be independent by that of the other storeys. The masonry building seismic resistance 
was assumed to be coincident with that of the critical story, i.e. the story characterized by the minimum value 
of the ratio between the horizontal seismic story shear and story shear resistance. 

At the end of the last century, aiming at capturing the main structural performances, and ignoring the 
local effects, Magenes and Della Fontana [3] developed the Equivalent Frame Approach (EFA). Similarly to 
the modelling of steel or reinforced concrete frames, the masonry building structure model is composed by 
one dimensional elements, able to represent both the flexural and shear strength and deformability of the 
piers. The concentrate or distributed non-linear behaviours are modelled by simplified or conventional stress-
strain law for the masonry, and/or simplified generalized external force-relative displacements at the ends of 
the one-dimensional macroelements. Recently, Marques and Lourenço [4] published a state of art report on 
frame models and macro-element modelling.  

Thus, the seismic vulnerability can be evaluated by using the conventional analysis method suggested 
by seismic codes, i.e. lateral force method or modal response spectrum analysis for linear system, or more 
advanced static (pushover) or time history non-linear analyses. To this aim, either Finite Element (FE) 
software codes derived on purpose (e.g., TREMURI by Lagomarsino et al [5], SAM by Magenes and Della 
Fontana [6] and Magenes et al., [7], 3DMacro by Caliò et al. [8]), or more general FE codes for framed 
structure (e.g. SeismoStruct by SeismoSoft [9], OPENSEES by Mazzoni et al. [10]).   
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In adapting the FE codes developed to model RC frames to the modelling of masonry structures using 
the equivalent frame approach (EFA), a critical problem is that of taking into account the shear strength and 
deformability with respect to the variation of the axial force. 

In modelling URM buildings by means of EFA, if shear strength dependence on axial force variation 
is neglected performing pushover analyses or Non-linear Time-History Analyses (NLTHAs), the assessment 
of structural performance could provide inaccurate results. This issue plays a key role, besides the axial force 
variation induced by the vertical component of seismic action, also in more conventional analysis of 
equivalent frames due to the masonry piers axial force variation induced to shear strength of the spandrel. 

In this context, the present paper proposes a new modelling scheme able to consider the dependence of 
the shear strength on the axial force value currently acting on the cross section of the masonry element. The 
modelling scheme aims to substitute the vertical rigid elements, which are inserted between piers and 
spandrels in the EFA, with a force-based fibre section element. Its cross section and material properties are 
calibrated in order to take into account the contribution of both the shear strength and deformability of the 
masonry pier in the structural analysis. 

2. The equivalent frame approach 

Many different model have been formulated according to the EFA. Among them, the SAM (Simplified 
Analysis of Masonry Buildings) proposed by Magenes and Della Fontana [7] plays a key role due to its 
simplicity and being based on solid mechanical model. The model was initially formulated for 2D systems, it 
was extended to reproduce the behaviour of 3D masonry buildings. 

According the EFA, a masonry pier or spandrel is modelled by a deformable part with finite resistance 
modelled using non-linear beam-column element, and of two infinitely rigid and resistant parts at the ends of 
the element (Fig. 1) modelling the beam-to-column “nodes”, characterized by significant dimensions in 
equivalent masonry frames. 

 
Fig. 1 – Equivalent frame and a pier loaded in the plane schemes. 

The height of the deformable part or "effective height" of the pier is defined according to what 
proposed by Dolce [11], to keep roughly account for the deformability of the masonry in the node areas. 
More precisely, the effective height Heff of the deformable part of the pier is determined as follows:  

 
 1

3


 

eff

H h
H h D

h
 (1) 

where H is the inter-story height, D the width of the masonry pier, and h’ is the geometrical height of the 
pier, determined as depicted in the figure 2 by the intersections of the pier axis with straight line inclined at 
30 degrees with respect to the horizontal line, starting from the edge of the door or window. In the original 
formulation the behaviour of the piers element was assumed to be elasto-plastic with deformation limit. That 
is, it was assumed that the piers have elastic linear behaviour until one of the possible failure criteria is 
verified. The stiffness matrix in the elastic phase assumes the usual shape for frame elements with shear  
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Fig. 2 –Definition of the effective height of the masonry piers. 

deformation, and is determined once the Young E modulus, the G modulus are defined, and the geometry of 
the section. 

Many different model for characterizing the behaviour of the pier were developed. Recently, Peruch et 
al. [12], aiming at reproducing the cyclic behaviour of masonry structure by implementing the equivalent 
frame model in the open source software OpeenSees [10], used a macroelement consisting in a forced-based 
beam element joined with a phenomenological shear-relative displacement relationship that describes the 
shear behaviour derived by mechanical model or experimental test. They stressed that a fibre‐section beam-
column element allows for a quite accurate modelling of the N-M interaction both in the elastic and non-
linear stages, while the force‐based formulation, guaranteeing equilibrium between shear and bending 
moment, ensure a consistent combination between the fibre beam-column element and the phenomenological 
shear-relative displacement relationship. In order to model the axial stress-strain behaviour in compression of 
the fibres, they used the “Concrete 02” material of the OpenSees library, that reproduce the simplified Kent 
and Park constitutive law [13] for the concrete. They also notice that the modelling of material with very low 
or without tension resistance, as is the main feature of the masonry, can results in convergence difficulty in 
ensuring local equilibrium. Therefore, they advised to add elastic fibres with negligible area at the corners of 
the real masonry section, in order to stabilize the convergence procedure, without significantly modified the 
overall behaviour.  

The choice of the phenomenological shear-relative displacement relationship plays a key role in 
determining the accuracy of the model. Aiming at modelling the cyclic behaviour of the masonry wall, the 
Authors selected the “hysteretic” uniaxial material of the OpenSees library to reproduce the shear behaviour 
of the pier, characterized by a trilinear stress-strain relationship. In particular, the Authors described the 
relationship by means of an elastic branch up to the shear value of Vel, the cracked phase up to the 
achievement of shear capacity Vr, the softening branch up to the attainment of the ultimate shear strength Vu, 
and finally a constant shear strength residual value. When cyclic behaviour is modelled, the main features of 
the “hysteretic” material are the capacity of reproducing degraded unloading stiffness based on ductility, 
pinching of hysteretic cycles during reloading by two parameters that control deformation and force, and two 
damage parameters linked to ductility and energy demand. 

The main parameters that define the shape of the envelope of the trilinear curve are the shear strength 
VR and the corresponding strain deformation r. Aiming at modelling the behaviour of existing masonry 
building, where the failure due to diagonal cracking often precedes the sliding shear failure, the following 
well know formulation proposed by Turnšek and Čačovič [14] is assumed: 

 1mt
r

mt

f l t N
V

b f l t
   (2) 

being fmt = the diagonal tensile resistance of the masonry, l and t the dimensions of the resisting pier section, 
b a coefficient related to the pier slenderness H/l and N the axial stress acting on the section. The minus sign 
in the second-member radical in Eq. (2), instead of the more common positive sign, arises from having 
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assumed N positive if traction. The value of the shear at the end of the elastic branch Vel = 0.6 Vr was 
assumed, and the corresponding shear deformation el given by the following relation 

 el
el el

m

V
c

G l t

   (3) 

being k the shear coefficient ( = 1.2 for rectangular section), Gm the shear modulus of the masonry, and cel a 
suitably coefficient derived by experimental test. Shear deformation R at the attainment of the shear 
strength, and the ultimate shear Vu and deformation u can be derived either by matching experimental 
results, seismic code indication, or theoretical model. 

Lastly, the Authors stressed that the equivalent element implemented in the OpenSees software in [12] 
and in previous papers [15] are not able to represent the variation of the shear resistance with variation on 
axial load N, since the features of the elements derived for reinforced concrete frame do not easily allows the 
modelling of such a behaviour. 

In the following section, it will be shown as a simple substitution of the rigid element placed at the end 
of piers and spandrels with a force-based beam-column element with equivalent suitably calibrated fibre 
section dimensions and trilinear stress-strain law is able to model shear strength and deformation taking into 
account the effect of the variation of the axial force. 

3. Equivalent force-based element for shear strength and deformation modelling 

When using calculation software designed for the analysis of reinforced concrete or steel framed systems for 
the simulation of the behaviour of masonry structures through the equivalent frame approach, one of the 
most important problems is the modelling of the dependence of the shear strength on the actual value of the 
axial force. While for reinforced concrete element, sophisticated model able to capture interaction between 
axial/flexural and shear behaviour of RC structural walls and columns under cyclic loading are available 
[16], shear strength of masonry element is often still modelled neglecting its dependence on axial force. This 
assumption makes not possible of taking into account the changes in shear strength during seismic events in 
which the vertical component of the seismic acceleration has significant effects. Moreover, it does not even 
allow to model the changes in the pier shear strength in simple pushover analyses, where the effect of the 
frame behaviour ensured by the spandrel of significant strength it induces appreciable variations of the 
normal stress in the piers. 

This drawback cannot be immediately resolved into the common beam elements implemented in any 
FE software that models the non-linear behaviour of one-dimensional beam elements, because shear strength 
is not usually coupled with axial force.  

Nonetheless, the equilibrium equations of the element in the absence of loads orthogonal to the axis 
can be written in the following form: 

 1 i jV M H   (4) 

where Mj is the bending moment at the base of the element, and iMi/Mj  the ratio of the bending moment 
at the ends i and j of the element. Commonly is not possible to link the shear force to the value of the 
bending moment at one end of the element, since the shape of the bending moment diagram, i.e. the value of 
i is not known a priori. In clamped-free element, or in clamped-clamped element (Grinter type), trivial 
relations between bending moment end and shear force is known, namely V=Mj/H (i = 0) and V = 2 Mj/H 
(i = 1) respectively. However, it is noteworthy that in elements that are symmetrical with respect to the 
midpoint without lateral loads applied along the element axis, when the end rotations are equal, i= 1. 

On these bases, the proposed model substituted at the rigid links at the end of the pier one beam-
column deformable element, that in the following will be denoted as Equivalent Shear Strength Element 
(ESSE). At the ESSE end sections a constrain that imposes equal end rotations is assigned, in order to have a 
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simple unique law linking the shear V and end moments Msr value (Fig. 3), namely Msr = V Hsr /2 (sr = ik, 
mj), where Hsr is the length of the ESSE. If the pier shear deformability is not included in the flexible part of 
the model, the ESSE will be characterized by a flexural deformability equal to half (or one) of the shear 
deformability of the actual piers, otherwise negligible deformability will be assigned at the element. 
Moreover, the element is composed by a beam with hinges element with an elastic interior element. The end 
section dimensions and fibre axial stress-strain law suitably defined, so as the bending moment-plastic hinge 
rotation relationship are able to reproduce, via the relation Msr= V Hsr /2, the phenomenological shear-relative 
displacement relationship assumed for characterizing the shear behaviour of the pier, taking into account the 
shear strength dependence on axial force value. This is obtained by initially governing the strength of the 
element, then suitably adapting the deformability. 

 
Fig. 3 – Bending moment distribution along the pier in conventional and proposed (ESSE) model 

3.1 Modelling of the shear resistance 

In order the ESSE be able to reproduce the phenomenological shear-relative displacement relationship 
assumed for characterizing the shear behaviour of the pier, a bending moment-flexural curvature relationship 
that resemble the shape of stress-strain deformation of the fibre will be designed. To this aim, an ideal 
section formed by only two fibre of area Af placed at distance d/2 by the element axis is assigned to the 2D 
ESSE. Aiming at ensuring that at the end of the elastic branch of the moment-curvature relationship, the 
shear force is equal to Vel, a linear first branch of the fibre stress-strain law with the same Young modulus in 
tension and compression is assumed. Thus, the section fibre stress can be expressed as a function of external 
axial load N and bending moment Mik as follows: 

 
2

ik

f f

MN

A A d
    (5) 

In order to reproduce the variation of the shear strength with axial force variation expressed by Eq. (2) 
in the expected range of variation of the axial load [Nmin ≤ Nv ≤ Nmax] around the value Nv induced by the 
gravity loads, Eq. (2) is linearized in the form:  

 VR (N) = V0 -  N (6) 

where the slope  and V0 can be evaluated by the least squares method in the axial force variation range 
where either the external axial force is expected or a shear failure rather than a flexural one is expected [Nmin 

≤ N ≤ Nmax]. Alternatively, the V0 value can be fixed in order to ensure that, for the axial load given by 
gravity load Nv Eq. (6) provide the “actual” pier shear strength Vv, i.e. evaluated assuming N = Nv in Eq. (2). 

Aiming at modelling the shear strength of the piers through the ESSE, an arbitrary value can be 
assigned to the equivalent limit stress in tension fr,t of its fibres. The dimensions of the section fibre Af that 
ensures that, when the shear force attains the value VR, the most tension fibre reaches fr,t will be derived on 
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this fr,t value, and on the basis of the Eq. (5) and Eq. (6). More precisely, taking into account that in the ESSE 
the end sections are constrained to have the same rotation, and thus V = 2 Mik/Hik according to Fig.1, when 
the latter relation is substituted in Eq. (5), the following relation is obtained: 

 
2 2

ik

f f

VHN

A A d
    (7) 

By imposing that, when the shear force in Eq. (7) attains the limit value given by Eq. (6), the maximum 
tension stress in Eq. (7), obtained by assuming the positive sign in the second term of right hand side, 
reaches the limit value fr,t  one obtains: 

 , 0

2 f
r t

ik ik

A d N d

H
c

H
V Nf     (8) 

For the principle of identity of polynomials, the dimensions of the equivalent section can be evaluated as 
follows: 

 0

,

;
2

ik
ik f

r t

V H
d c H A

d f
   (9a,b) 

Once the dimensions of the equivalent section able to guarantee the dependence of the shear resistance on the 
axial force required by the Turnšek and Čačovič relationship was determined, a fictitious elastic modulus Efic 
was defined, so as to ensure that the ESSE reproduced the elastic (first branch) shear deformability of the 
actual pier. Taking into account that the flexural stiffness Kel,ik of the ESSE with the constrain at the end 
rotation can be evaluated as that of an elastic shear type element (Grinter deformation), the equivalent elastic 
stiffness can be evaluated equating it to the pier elastic shear deformability provided by Eq. (3) for Vel = 1. 
Thus, the following relation is derived:  

 
 

3

2
,

1

12 2 / 4
ik

ik el fi

eff

f

e

c

l
m

H

K E A d

k H
c

G l t
   (10) 

If the model of the flexible part of the pier does not include the shear deformation, the value of Efic of the 
ESSE fibre first branch of the stress-strain law can be evaluated from Eq. (8). Otherwise, a value 100 times 
greater than the former can be assumed, in order to ensure that the increased deformability introduced by 
substituting the rigid offset with the ESSE does not exceed 1% of the pier shear deformability.  
 
3.2 Modelling of the phenomenological shear-displacement relationship 

In order to ensure that ESSE is able to reproduce the phenomenological shear-displacement relation of the 
piers depicted in Fig.4a), it has to be ensured that in the ESSE when the shear attains the maximum strength, 
the relative displacement due to the shear attains the value r

v=r Heff. To this aims, it is noteworthy that, once 
the section is constituted by two fibres only, only equilibrium equations provide the stress in each of the two 
fibre. Thus Eqq. (7-9) holds at each stage, irrespective of the shape of the stress-strain law. This means that, 
once the area of each fibre Af is determined, for any given value of the shear Vx, (x = el, r, u) the 
corresponding stress in the tensile fibre ftx can be evaluated by the rotational equilibrium equation of the 
equivalent section with respect to the compressed fibre: 

 
1

( ) ( , , ,....)
2

ik
t x x

f

H
f V N x el r u

A d
    (11) 

In Eq. (11) N = Nv is assumed for fibre stress-strain law calibration, taking into account that the 
phenomenological shear-displacement relation in Fig.4a is provided for N = Nv.  The stress in the compressed 
fibre fcx is computed by substitution in Eq. (11) of Vx with –Vx, i.e. fcx = (-Vx Hik /d + N).  
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Fig. 4 – a) Phenomenological shear-deformation of the pier; b) stress-strain relationship of the fibre of ESSE 

end sections 

Now, the fibre stress-strain law is defined in order to ensure that the actual pier and the one with the 
ESSE have the same shear deformability in each branch of the curve. The ESSE non-linear behaviour will be 
modelled by the plastic hinge at the ends of the element in which the one-point Endpoint Hinge Integration 
procedure [17] is selected. It is characterized by integration points placed at the element ends. Once an 
arbitrary (e.g. Hik / 100) value of the plastic hinge length lp is selected, the end relative displacement ik,r at 
the attainment of the Vr shear is given by the following relation: 

  , , 2
p

ik r ik el r el p ik

l
l H   
 

    
 

 (12) 

where ik,el = Vel/Kik,el=el Heff  is the elastic relative displacement due to the shear deformation, and el = (Vel 
Hik/2)/(Efic Af d2/4) and r are the end section curvature at the attainment of the elastic ik,el,andik,r = 
r Heff  relative displacement respectively. Thus, the value of r can be easily evaluated by Eq. (12). In order 
to easily control the values of the fibre axial strain at each curvature stage, the stress-strain law in 
compression is set as elastic with Young modulus Efic (Fig. 4b). Thus, the axial strain of the compressed cr 
and tensile fibre tr =r at the r stage can be easily evaluated as follows:  

 / ;cr cr fic tr r r crf E d         (13) 

The equality tr =r stresses that Eq. (13) provide the characteristic value that have to be assigned at the fibre 
stress-strain law in tension. Once the maximum shear strength is reached, a constant or a softening branch 
characterizes the phenomenological shear-displacement law. In order to ensure that the ESSE element does 
not lose the ability to carry the gravity load, while the shear strength is reducing, the fibre stress-strain law in 
compression is characterized by in infinitely ascending branch with the same young modulus of the previous 
branch. By contrast, the tension branch which will determine the shape of the moment-curvature law of the 
section, will be determined by a procedure similar at the previously described one. More precisely, denoting 
with ik,u the relative displacement due to the attainment of the ultimate shear deformation u in the actual 
pier, with cu and tu =u  the corresponding compressed and tension fibre strain respectively, and u   the 
corresponding curvature value in the end sections of the ESSE, their values can be derived as follows:  

  , , , ,

1

2ik u ik r u r p ik ik p ikl H l         
 

 (14) 

 / ;cu cu fic tu u u cuf E d         (15a,b) 

Once all the geometrical and mechanical characteristics of the ESSE were defined, in the next sections 
validation of the proposed model will be carried out.  
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4. Model validation 

4.1 Validation against experimental results 

A first validation of the model is performed by showing that the model is able to reproduce with a great 
accuracy the results of an experimental test with a prefixed values of the axial load. Moreover, it will be 
shown which is the assessment of the response provided by the model when the axial load is changed. 

The test was carried out by Abrams and Shah [18], and was used in [12] and [15] for model validation. 
The analysed pier has cross section dimensions l = 2.743 m and t = 0.198 m, height H = 1.626 m, and 
masonry compression and shear strength fm = 6.28 MPa and ftm = 0.15 MPa respectively. The elasticity and 
shear moduli are Em = 2460 MPa and Gm = 1130 MPa. The pier was loaded with a low axial force of Nv = 282 
kN, corresponding to a normalized axial load n = Nv/(fm l t) = 0.083. In Fig. 5a) the shear-displacement 
experimental curve is reported, together with its piecewise approximation, characterized by the following 
point: (Vel =146.3 kN; el =1.143 mm) - (Vr =180.5 kN; r =5.0 mm) - (Vu =121.5 kN; r =12.807 mm). Since 
Eq. (2) evaluated for N=Nv assesses a shear strength of 172 kN, Eq. (2) and Eq. (6) will be multiplied by a 
factor r  = 180.5/172.0=1.048 in order to have the predicted shear strength coincident with the experimental 
one. In Fig.5b) the shear strength domain due to flexural and shear failure, i.e. Vflex = Mu/H = N l/(2 H)[1-
N / (t l fm)] and Eq. (2) are compared. Assuming as range of linearization of Eq. (2) the N value for which a 
shear failure occurs, namely 184.5 kN ≤ N ≤ 2697.5 kN, and enforcing that for the actual axial load the 
linearized curve provides the actual shear strength of the pier, the slope r c = 0.13 and r V0 = 141.79 kN are 
found. The obtained linearized shear strength is also depicted in Fig.5b) as r Vrl.  

Denoting with Im the pier inertia modulus,x
f= Vx H3/(3 Em Im), and x

v the flexural and shear rate of the 
masonry pier displacement at the x state (x = el, r, u), x

v can be evaluated as follows x
v = r -x

f, obtaining 
el

v = 0.893 mm, m, r
v = 4.69 mm, u

v = 12.6 mm. Since no rigid element has to be considered in the 
equivalent frame approach, the height of the ESSE element Hik was set equal to 0.01 m in order not to 
significantly modify the pier flexural deformability, and a plastic hinge end section lengths lp = 0.1 mm is 
arbitrarily chosen. If the arbitrary value of fr,t = 0.15 MPa is selected, Eq. (9a) and Eq. (9b) provide Af  = 
3.446 m2 and Eq. (10) Efic = 4.211 Mpa. It is noteworthy that all the above and the following parameters of 
the ESSE are not intended to characterize a mechanical model, but a "mathematically" equivalent model, and 
therefore they can take on values devoid of any physical meaning. Eq. (11) particularized at the elastic limit 
el provides the value of fibre strength el = 2.7%, and corresponding stress fel,t = Efic el = 0.113 Mpa, and the 
correspondent value of the ESSE end section curvature can be evaluated as el = (Vel Hik / 2)/(Efic Af d2/4) = 
53.59 m-1. At the attainment of the pier shear strength Vr, once the equality of the displacement due to shear 
deformation of the actual pier r

v and that of the ESSE element ik,r is enforced, the value of the plastic hinge 
curvatures of the ESSE element at the r stage is evaluated by Eq. (12), obtaining r = 3667 m-1. The 
corresponding value of the compressed fibre stress is evaluated as fcu = (-Vx Hik /d + N) = 0.231 MPa, and Eq. 
(13b) provides the value of the fibre strain at the attainment of element shear strength r = 4.97. Then, the 
relative displacement of the ESSE element at the ultimate state ik,u is set equal to the shear rate of the 
ultimate displacement at the ultimate state of the actual pier u

v Thus by means of Eq. (14) the ultimate 
curvature of the ESSE end section u = 11991 m-1 is calculated. Finally, since in the compressed fibre fcu 

= 0.169 MPa, Eq. (15b) provides tu = 16.4. 

In Fig. 5a) the numerical FEM base shear vs. top displacement curve is reported, showing that it is 
almost coincident with the target curve. In Fig.5b) the shear strength obtained by the numerical analysis 
performed with the same model and different axial load is compared with the theoretical shear strength, 
proving the efficiency of the model to capture the chosen shear strength vs. axial load variation. Lastly in 
Fig. 5c) the shear-drift response obtained for the different axial load value is reported, showing that the 
model predicts a reasonable Vel and Vu vs. axial load variation, the former due to the delay in the cracking 
stage, the latter due to the increasing in the effect of the friction. Lastly, it has to be remarked that in this 
example, the largest variation of the axial force was modelled. For smaller range of variation, a more precise 
control of these last two shear characteristic values, namely Vel and Vu, can be accomplished.  
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a)                                       b)         c) 

Fig. 5 – a) Abrams and Shah [18] panel: a) V–δ base shear displacement curves; b) shear –axial force 
interaction domain; c) FEM response for different axial load  

4.2 Phenomenological shear-displacement relationship suggested by seismic codes. 

Secondly, the ability of the model in reproducing the shear strength versus axial force variation is shown by 
checking its ability of reproducing the shear-displacement relationship suggested by the Italian seismic code 
[19] for a clamped-free isolated masonry pier. The shear-displacement relationship is characterized by an 
elastic perfectly plastic behaviour, with flexural strength evaluated as Mfu = N l / 2 [1-N / (t l fm)] and shear 
strength, provided by Eq. (2), and the flat plastic branch has an ultimate displacement for flexural failure 
equal to uf = 1% H and for shear failure uv = 0.5% H. Once the ultimate displacement is reached, the piers 
loses the ability to carry horizontal force, while axial load can be carried out until the whole structure failure. 

The analysed pier has cross section dimensions l = 3.0m and t = 0.6 m, height H = 1 m, and masonry 
design compression normal strength fm = 1 MPa, and elasticity and shear moduli Em = 870 MPa and 
Gm=362.5 MPa was selected. To show the level of reliability of the proposed element, the entire range of 
variation of the axial force N has been considered, namely 0 ≤ N ≤ Nmax = l t fm = 1800 kN. A diagonal shear 
strength Vr provided by Eq. (2), and a flexural shear strength Vr,fx = Mr / H was assumed. Assuming an axial 
load given by gravity load Nv = Nmax / 2 = 900 kN, the shear-relative displacement relationship that have to be 
simulated with the ESSE element is characterized by a straight elastic branch up to the shear strength Vr = 
440.9 kN. Denoting with r

f and r
v the flexural and shear rate of the masonry pier displacement at the 

attainment of the shear strength Vr, the corresponding total displacement is r = r
f + r

v = Vr H3/(3 Em Im) 
+ Vr cel  H/( l t) = 1.25x10-4m + 1.621x10-3 m =1.747x10-3m, where Im is the pier inertia modulus. At the 
ultimate state, the total displacement for shear or flexural failure are u

v = 0.5% H=5x10-3 m., or 
u

f=1% H=1x10-2 m, respectively, while the flexural component remains unchanged, i.e. u
f  = r

f , since Vu = 
Vr. 

Assuming as a centroid of the range of linearization of Eq. (2) Nv, the parameters for the linearized 
form in Eq. (6) are V0 = 233.0 kN and c = 0.225. Since no rigid element have to be considered in the 
equivalent frame approach, the height of the ESSE element Hik was set equal to H/100 = 0.01 m in order not 
to modify the pier flexural deformability. If the arbitrary values of fr,t = 0.1 MPa is selected, Eq. (9a) and Eq. 
(9b) provide Af = 5.166 m2 and Eq. (10) Efic = 1.724 MPa. Since a linear behaviour until reaching of the 
shear strength Vr has to be modelled, i.e. Vel = Vr, the following values are selected:r = el = fr,t/ Efic = 0.580 
and fe,t = fr,t. In order to achieve an elastic-perfectly plastic behaviour (Vu = Vr) until the target displacement 
capacity for shear failureuv = 0.5% H = 5x10-3 m, f,u,t = fr,t is also selected. Since Vu = Vr the flexural rate of 
the ultimate displacement u

f is equal to r
f. Thus, the predicted value of the shear displacement at the 

ultimate condition is r
v =uv - u

f =5x10-3 m - 1.25x10-4m = 4.87x10-3m. In order to evaluate the fibre strain 
at the ultimate condition according to Eq. (14) and Eq. (15), the curvature at the r = el stage is evaluated as 
r =el = (Vr Hik/2)/(Efic Af d2/4)=96.22 m-1. Then, a,b) the relative displacement of the ESSE element at the 
ultimate state ik,u is set equal to the shear rate of the ultimate displacement at the ultimate state of the actual  
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Fig. 6 –Panel that simulate code prescription: a) shear –axial force interaction domain; b) FEM response for 

different axial load  

pier u
vthe latter obtained as the difference of the whole displacement due to shear failure uv and the 

flexural rate u
f , i.e. ik,u=u

v =uv -u
f = 5x10-3 m-1.25x10-4m =4.875 x10-3m. Thus by means of Eq. (14) the 

ultimate curvature of the ESSE end section u = 3371 m-1 is calculated; finally, since in the compressed fibre 
cu = cr = ftr, Eq.(15b) provides tu = 7.44. Lastly, since once the ultimate condition is reached, the pier shear 
strength has to drop to a small value, a residual value of the fibre stress tres can be evaluated (for a fixed 
axial force N) from Eq. (11). In the following numerical example, the value tres was set in order to fix a 
vanishing residual shear strength for Nv = 0.3 Nmax=540 kN. 

In Fig.6 a) the shear-axial force interaction domain for flexure Vrfx and shear Vr failure is compared, and the 
linearized form of the latter Vrl is also reported. The dots represent the values of the shear strength obtained 
by the FEM, confirming the ability of the ESSE model to reproduce the pier shear strength vs. axial load 
variation with great accuracy. In Fig.6b) the force-displacement relationship proves that the calibration of the 
fibre stress-strain law is able to reproduce the prefixed deformation capacity with great accuracy for the 
prefixed axial load N = Nv = 0.5 Nmax. For other axial load values, a variation of the ultimate displacement 
and the residual shear strength is obtained, both of them accurately estimated by the analytical model. Lastly, 
it has to be remarked that, in order to tune the flexural displacement capacity of the deformable part of the 
model of the pier, the ultimate deformation of the stress-strain law of the fibre of the section of the masonry 
pier can be tuned by evaluating the ultimate curvature of the plastic hinge m,u by adapting Eq. (14) at the 
flexural deformation of the piers, and evaluating the ultimate strain mu that has to be assigned at the masonry 
stress-strain law as follows: 

  , ,/mu m m m u m el
m

N
f E

f t
      (16) 

where m,el is the curvature of the base section of the piers at the attainment of the masonry strength fm. 

5. Conclusion 

A new FEM element was derived, able to reproduce the shear strength vs. axial force variation of 
masonry element. The modelling scheme aims to substitute the vertical rigid elements, which are inserted 
between piers and spandrels in the equivalent frame approach, with a force-based fibre section element. Its 
cross section and material properties are calibrated in order to take into account the contribution of both the 
shear strength and deformability of the masonry pier in the structural analysis. The end sections of the fibre 
element are constrained aiming at behaving as a shear type element. By using this modelling scheme, reliable 
results, both in terms of stiffness, strength and post-peak behaviour are obtained. Proposed scheme efficiency 
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was proved by favourable comparison against both experimental results carried out on masonry piers and 
phenomenological shear-displacement relationship suggested by seismic codes. 
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