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Abstract 
Model updating of large-scale, sparsely-instrumented civil engineering structure is often ill-conditioned and 
can be computationally challenging when high-fidelity finite element models are utilized. In this study, the 
model updating of a passively controlled building is examined, carried out by adopting an efficient Bayesian 
model updating approach and using earthquake measurements. The building is located at Tohoku Institute of 
Technology and is equipped with a structural health monitoring system that measures its seismic response, 
including accelerations of a few monitored floors and displacement and force of a few monitored oil dampers. 
To alleviate the computational burden, a computationally efficient finite element (FE) model, simplified from 
a high-fidelity FE model of the building, is utilized as the initial model to be updated. Subsequently, a modal 
sensitivity analysis is performed for the selection of significant model parameters, in which a derivative-
based sensitivity index is utilized to rank the importance of different parameter candidates. Then, a time-
domain Bayesian model updating approach based on a stochastic simulation algorithm is adopted to estimate 
the selected model parameters using earthquake measurements. The parameter estimation uncertainty is 
qualified in the form of probability distribution (the posterior distribution), which contains useful information 
about the reliability of the updated parameter values, as well as the correlation in the way they affect the 
monitored responses. Finally, a relatively large earthquake event is selected to demonstrate the effectiveness 
of the proposed approach for the model updating of this building, comparing measured and predicted 
responses, the latter established using the updated FE model. 
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1. Introduction and description of the investigated building  
Model updating methods are commonly used in structure dynamics to calibrate physically based 
models, such as finite element models, to better represent real-world structures [1,2]. The updated 
models can be then utilized confidently in many practical applications such as response prediction, 
damage diagnosis and safety assessment [3,4]. Model updating is intrinsically an inverse problem 
that identifies unknown (i.e, uncertain) model parameters from observed structural response data. 
Many model updating methods have been proposed in the literature and may be generally classified 
into two categories: deterministic methods [5,6] or probabilistic methods [7,8]. The former 
identifies an optimal point estimate of the model parameters, while the latter can provide more 
diverse, probabilistic information about the parameter estimates, such as statistical moments or 
probability distributions. 

In real world settings, large-scale civil engineering structures are often sparsely instrumented, 
while their dynamic behavior is usually characterized by high-fidelity, finite element models with 
many parameters. As a result, model updating of such kind of structures is intrinsically ill-
conditioned and, very frequently, computationally challenging [9,10]. Ideally, the model updating 
should be conducted in a probabilistic manner to account for the effects of both the unavoidable 
modelling errors and the measurement noise, on the parameter estimation [11,12,13]. Of particular 
importance among the probabilistic methods is Bayesian-inference, also frequently referred to 
Bayesian model updating approach [8]. This approach has recently received increasing attention in 
system identification, mainly because of its ability to provide not only the optimal estimates of 
model parameters but also their associated estimation uncertainty quantified in the form of 
probability distributions. These probability distributions, called in this setting the posterior 
distributions, contain valuable information about the reliability of the updated model parameter 
values, as well as their possible correlation in the way they affect the monitored responses, as 
identified through the updating process. This study focuses on the application of such a Bayesian 
inference approach to the model updating of a real-world passively-controlled building structure 
using earthquake measurements. 

 

(a)     (b)  
Fig. 1 – Building information: (a) front view; (b) distributions of accelerometers and oil dampers 

 
The investigated structure, shown in the Fig. 1, is located in Sendai, Japan and is the 

administration building of Tohoku Institute of Technology. It was constructed in 2003 and is steel 
framed with precast concrete slabs. The plan dimension is 48m by 9.6m while the total height is 
34.2 m with eight stories above the ground. The story height is 3.8m except the first floor, which 
has a height of 8m due to the fact that the first two stories merge for a large public place. The 
building was designed according to the Japanese Earthquake Resistance code for School Buildings. 
For enhancing the capability of seismic-energy dissipation, a total of 56 oil dampers of two types 
were installed additionally in building: 4 dampers in each direction for each story. The details of 
the installed oil dampers are shown in Fig. 2. The piston of each oil damper is fixed with a U-type 
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abutment on the floor and the central cylinder is attached to a V-type brace, as also indicated in Fig. 
1(b).  

 

(a)    (b)  

Fig. 2 – Damper details: (a) front view; (b) configurations 
 

A structural monitoring system has been installed in the building to study its dynamic behavior, 
as well as the on-site performance of the oil dampers during earthquakes. The accelerations along 
the longitudinal and transverse directions of the building are recorded using two-directional 
accelerometers. Three accelerometers are placed near the central locations of the 1st, 4th, and 8th 
floors, as shown in the Fig. 1(b), for monitoring the translational motions during earthquakes. In 
addition, 4 oil dampers placed on the 1st and 8th floors along the two horizontal directions are 
selected to be monitored. The force and displacement response of the selected oil dampers are 
measured by using load cells with strain gauges and displacement transducers, respectively. Fig. 3 
and Fig. 4, respectively, show the monitored floor acceleration and the monitored damper response 
along the longitudinal direction of the building during a large earthquake (Mw 7.0) on May 26, 2003. 
This set of earthquake measurements will be utilized in this study to demonstrate the model 
updating process for this building. 

 

  
Fig. 3 – Acceleration of monitored floors during a large earthquake on May 26, 2003 

 

 
Fig. 4 – Force-displacement hysteresis curves of monitored dampers during the same earthquake 

shown in Fig. 3 
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The remaining of this paper is organized as follows: in section 2, the FE modeling of the 

building based on its design blueprints is introduced, including discussions related to simplifying 
assumptions adopted during the FE model development. Then, a modal sensitivity analysis is 
conducted for the model parameter selection in Section 3. Section 4 presents an efficient Bayesian 
model updating approach to estimate the selected model parameters using earthquake 
measurements, and further discussed results from the model updating. 

2. Finite element modelling of the building 
The planar equation of motion of the building subjected to earthquake excitation can be expressed 
by 

,d gxMx + Cx + Kx + f x x = MI                                             (1) 

where M and K are the n n  mass and stiffness matrices of building, respectively, C is the n n  
inherent structural damping matrix, modelled by using the linear viscous damping model, x  is the 
n-dimensional vector of displacement relative to the building base, ,df x x is the n-dimensional 
force vector of resultant forces from the oil dampers, nI  is the earthquake influence coefficient 
vector and gx  is the input acceleration, corresponding in this case to the acceleration of the  
ground floor of the building.  

For the estimation of the mass and stiffness matrices of the building, a high-fidelity finite 
element model, as shown in Fig.5, was created in the SAP2000 environment based on the structural 
drawings of building. The structure is assumed to be fixed at the ground floor without considering 
any soil-structure interaction effects. The connections between steel columns and beams are fully 
constrained. The floor slabs are modelled by shell elements for accurate mass distribution. The oil 
dampers are modelled as by a nonlinear Maxwell model that consists of a linear spring element 
connected in series with a nonlinear viscous dashpot element. The damper parameters were 
independently identified from the seismic measurements and are directly utilized in the remainder 
of this study. 

  

 
Fig. 5 – A high-fidelity finite element model of the building 

 
 Since only the translational motion of floors is monitored, emphasis is placed here on updating 

the corresponding translational modes, specific the one along the longitudinal direction. As such, 
the high-fidelity FE model is reduced to a computationally more efficient planar/2-D FE model, 
that can be ultimately represented by Eq. (1), as long as appropriate parameters are identified for 
the different matrices and forcing vectors. To further alleviate the computational burden, 
assumptions common for building structure are also adopted, such as concentrating the mass of 
structural components at the floor levels and neglecting the mass of nodes in the vertical direction. 
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The resulting planar FE model has 7 translational, dynamic (i.e., with mass) Degrees of Freedoms 
(DoFs) and 279 (zero-mass) rotational DoFs for the beam-column joints. This model is referred to 
as the initial FE model to be updated. Mass and stiffness matrices pertaining to the dynamic DoFs 
are obtained through static condensation of the initial FE model and are the ones that will be used 
in the dynamic time-history analysis of the building according to Eq (1). 

Fig. 6 presents the comparison between the measured response and the corresponding predicted 
response by the initial FE model, including acceleration of monitored floors and force of monitored 
oil dampers. In this time-history analysis, the inherent damping matrix is determined by adopting 
a damping ratio of 2% for the first three modes and 10% for the other modes. A time-segment, 
30s~55s, of the strong shaking phase of building is only shown in this figure. It is clearly evident 
that a large discrepancy is observed between the actual measurements and the model predictions. 
This indicates considerable modeling errors for the initial FE model, and clearly motivates the need 
to update it used measured responses. 

 

(a) Acceleration of monitored floors            (b) Force of monitored dampers 
Fig. 6 – Comparison between measured and predicted response of the initial FE model  

3. Modal sensitivity analysis and parameter selection
A common but crucial issue in model updating is the selection of the parameters to be updated 
between all-possible parameter candidates in an initial FE model. To help this selection a sensitivity 
analysis is typically performed, identifying the significant parameters while ruling out insignificant 
parameters for the measured response quantities according to some sensitivity index [2,6]. This 
approach can both reduce the computational complexities and avoid ill-posedness features of model 
updating for complex large-scale structures with incomplete measured response data, which is the 
case for the investigated building. 

 The initial FE model has 506 nodes, 94 shell elements, and 920 frame elements. Generally 
speaking, many parameters of those elements, such as mass density and elastic modulus of 
materials, or constrains of nodes, may be considered as parameter candidates for the model 
updating. In this study, the mass of all structural components and the elastic modulus of steel 
columns are first considered. To reduce the number size, these parameters are grouped by floors, 
rather than by element types, which results in 7 mass density parameters (denoted by m ) and 7 
elastic modulus parameters (denoted by E ). In addition, the dominate submatrix of the stiffness 
matrix, associated only with the translational, dynamic DoFs, is also considered to be updated. This 
submatrix is the tri-diagonal matrix representing a shear-type model of the building and is 
ultimately parameterized though the story stiffness parameters. This introduces an additional 7 
candidate parameters, denoted herein by k ).  

A modal sensitivity analysis [6] was conducted to quantify and rank the importance of the 
parameter candidates discussed above. Specifically, the first-order partial derivatives of modal 
outputs with respect to model parameter inputs are utilized as sensitivity index. Modal outputs of 
two types, natural frequencies and mode shape ratios, are considered as the target output for the 
sensitivity analysis. Specifically, the mode shape ratios are defined only for the two upper floors 
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for which measurements are available, since information for the ratios for other floors are not 
observable from the available data. The first-order partial derivatives were caculated at the prameter 
design point/value by using finite diference approximation, for example for the natural frequency 

/ / , where and  are the variations of a parameter candidate and 
a natural frequency, respectively. A small variation of 5% design value is considered for the
parameter candidates to perform the sensitivity analysis. 

 

 
Fig. 7 – Modal sensitivity analysis of selected parameters of the initial FE models 

 
Fig. 7 presents the caculated partial deratives of the first two modes, where the parameters of 

same type (from left end to right end) are ordered by floor number (from first floor to top floor). 
The sign of partial derivatives shows the global relations between the variations of modal output 
and candidate parameters. As expected, the mass parameters m and the stiffness-related parameters 

E  and k , respectively, have positive and negative relations, respectively, with the first two nature 
frequencies. Findings and insights on the results are the following: 

(1) The mass parameters have an increasing trend of importance, as floor orders increase, for 
the first natural frequency. The second frequency is insensitive to the mass of both the fourth floor 
and the fifth floor. For the mode shape ratios, the mass density is insignificant for the first mode, 
but significant for the second mode. 

(2) The elastic modulus parameters have a decreasing trend of influence on the first natural 
frequency, compared to the mass parameters. Of particular importance among the parameters is the 
elastic modulus of the first floor, to which almost all of frequencies and modal shape ratios are 
sensitive, except for the second modal shape ratio. Elastic modulus of other floors is less important 
for modal shape ratios for both the first two modes. 

(3) The story stiffness parameters are the most significant parameters among all of parameters 
candidates for both the first two modes. Almost all of story stiffness parameters significantly affect 
the first two natural frequencies, except for the second and the third stiffness parameters which are 
quite important for the first natural frequency, but become insignificant for the second one. 
Regarding the mode shapes ratios, the story stiffness parameters also show greater importance 
compared to any other type of parameters. 

Considering both their physical explanations and the significance for the examined modal 
outputs, the story stiffness parameters are only selected as the updating parameters. To further 
alleviate the ill-pondeness of the updating problem, these parameters are further grouped as 

,1 ,2 ,3[ , , ]T
k k k k , in which ,1k , ,2k , and ,3k are, respectively, the stiffness parameters of the 

first two floors, the following two floors, and the upper three floors. Herein these parameters are 
quantified as the ratios of the variation of story stiffness assigned to the stiffness submatrices with 
respect to the design values.  So value of 0 corresponds to the original (design) parameters and 
value of 0.2 to a 20% difference in the parameter values with respect to the design values.    
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Finally, the inherent damping of the structure, here ultimately parameterized though modal 
damping ratios, is considered as characteristic to be updated, as it is widely acknowledged to have 
a significant influence on the structural dynamic response. Note that since the adopted sensitivity 
analysis focused on modal properties of the undamped structure, it cannot reveal anything about 
the importance of these damping ratios. Instead, the decisions made here follow general structural 
dynamics observations. Specifically, the damping ratios for the first three modes, denoted by 

1 2 3[ , , ]T , are selected as uncertain parameters to be updated, while the damping ratios of 
the remaining, higher modes, considered of low importance, are constrained to their preset design 
values discussed earlier. 

4. Bayesian model updating of the building 
4.1 Bayesian formulation  
The idea of Bayesian inference for model updating [8,12] is expressed through Bayes’ theorem as 

1( ) ( ) ( )p c p p                                                       (2) 

where  is the vector of parameters to be updated, including the model parameters and the 
parameters that characterize the model prediction errors, ( )p  is the prior probability density 
function (PDF), ( )p  is the posterior PDF for , ( )p D  is the likelihood function for the data 
D (corresponding to input/output data or output-only data) and c is a normalization constant that 
makes the integral of the posterior PDF over the parameter space equals to unity and, ultimately 
represents the evidence for the data D. The prior PDF is usually determined based on user’s 
empirical knowledge and Bayes’ theorem updates this prior knowledge through the available data 
to provide the posterior PDF ( )p .  

As described in the introduction, the acceleration measurements of floors are utilized for the 
model updating, corresponding to acceleration response of the first floor (used as input data) and 
accelerations response of other two upper monitored floors (used as output data). Under 
assumptions of zero-mean independent Gaussian variables for the model prediction errors [10], the 
likelihood function can be expressed by 

2 2

/2 22 11

1 1 ˆexp ( ) ( )
22

, ,
d

d

N

i j i jN
i

k
j ii

p x t x tD                     (3) 

where 2
i  is the unknown variance of the model prediction error for the ith measured output 

quantity, ˆ ( )i jx t  and ), ,(i jkx t  are, respectively, the measured and predicted accelerations of 
monitored floors at time point tj, Nd is the length of discrete time history data. For the latter 1000 
data points for each channel of the output measurements are uniformly selected from the time-
segment of 30s~55s, as shown in Fig. 6(a). Subscript i is utilized herein to distinguish between the 
different measured responses.  

 The vector of parameter to be updated through the Bayesian inference scheme, includes the 
story stiffness parameters and damping ratios, as well as the unknown variances for the prediction 
errors, and is dented by ,1 ,2 ,3 1 2 3 1 2[ , , , , , , , ]Tk k k . The prior PDF for the updating 
parameters is assumed as follows: all story stiffness parameters are independently and uniformly 
distributed over [-0.2 1], all damping ratios are independently and uniformly distributed over [0 
0.1], and the variance 2 , 1, 2i i  is uniformly distributed over 2

,0 1 acc i , in which ,acc i  is the root-
mean-square value of the acceleration data.  

In order to obtain samples from the posterior PDF, the TMCMC algorithm [14,15] is adopted 
in this study, though should be pointed out that any other algorithm could had been used instead. 
TMCM is a modified version of an adaptive Metropolis-Hasting method proposed by Beck and Au 
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[16] and is capable of sampling from the posterior PDFs with unknown and complex distribution 
shapes, such as extremely peaked or multimodal. Rather than directly sampling from the posterior 
PDF, the TMCMC algorithm adopts a sequential sampling strategy through a sequence of (non-
normalized) intermediate PDFs that converge to the target posterior PDF. The construction of 
intermediate PDFs is achieved by  

) ( ) ( )     0 ,( ,i
i p p i nD                                        (4)

where i  is the tempering coefficient, ranging from 0 to 1, 0 10 1n , n  is the 
number of intermediate PDFs. At the stat stage (i=0), )(i  is proportional to the prior PDF, and at 
the last stage (i=1), )(i  is proportional to the target posterior PDF. In this algorithm, the samples 
of the prior PDF are treated as initial seeds and gradually evolve to the desired posterior samples 
through several step-by-step transitions between the adjacent intermediate PDFs. These evolution 
transitions are achieved by using the resampling technique with a certain constrain on the changes 
between two adjacent intermediate PDFs. Implementation details of the TMCMC algorithm are 
omitted here. The interested reader is referred to publications [14,15] for a detailed description. 

4.2 Results for model updating and discussions 
TMCMC is applied to obtain samples from the selected parameters of the initial FE model using 
the earthquake measurements, following description of Eq. (2). Fig. 8 presents the generated 1000 
samples by TMCMC for six selected intermediate PDFs, in which samples of the first two story 
stiffness and the first two damping ratios are only presented. Results in the figure illustrate how the 
samples in the parameters space converge to the high-probability regions for the posterior PDF as 
the tempering parameter i   increases. Moreover, an obvious correlation between the first two 
story-stiffness parameters is observed across the whole evolution process, which indicates some 
connections for these two parameters in the way they affect the predicted response. No such 
correlation is observed for the first two damping ratios. The posterior samples obtained from 
TMCMC for the story stiffness parameters and the damping ratios are presented in Fig. 9. Both 
frequency histograms and scatter plots of the posterior samples are given. The location of the 
maximum a posteriori (MAP) parameter MAP, the one corresponding to the mode (peak) of the 
posterior PDF 

arg max ( )MAP p                                        (5)

is also shown in this figure.  

(a)  Story stiffness parameters                               (b) Damping ratios 
Fig. 8 – Evolution of samples from TMCMC algorithm for selected stages 

 
The effectiveness of the Bayesian inference scheme is next validated. For this reason, the FE 

model corresponding to the maximum a posteriori (MAP) estimate of the updated parameters, also 
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shown in Fig. 9, is utilized to predict the structural responses of the building during the selected 
earthquake, Fig. 10 presents the measured and predicted response during the strong shaking phase, 
corresponding to both the acceleration of monitored floors and the force history of monitored oil 
dampers. It can be seen from Fig. 10 that the MAP predictions are in good agreement with the 
actual seismic measurements, which shows the effectiveness of the proposed updating approach 
for this building. 

 

  
(a)  Story stiffness parameters                                  (b) Damping ratios 

Fig. 9 – Posterior distribution of story stiffness parameters and damping ratios 
 

(a) Acceleration of monitored floors             (b) Force of monitored dampers 
Fig. 10 – Comparison between measured and predicted response of the MAP FE model  

 
It is worth pointing out that the MAP estimates of the updated parameters is only a deterministic 

point estimate. An important benefit of the Bayesian inference scheme is its ability to quantify the 
estimation uncertainty of these parameters in the form of the posterior PDF. As it can be seen in 
Fig. 9 the posterior samples of each parameters exhibit a single mode, which may be approximated 
by a truncated Gaussian distribution. Table 1 shows the calculated mean values and standard 
deviations of the posterior samples. It is evident from the results in Table 1 that the calculated 
standard deviations, utilized for representing the estimation uncertainty, of the story stiffness 
parameters is not negligible, indicating a substantial variability. For the damping ratios, standard 
deviation increased for higher modes. This should be attributed also to the deterioration in the 
signal-to-noise ratios for the higher frequencies corresponding to these higher modes.  

 
Table 1 – Means and standard deviations of the posterior samples 

 ,1k  ,2k  ,3k 1  2  3  
Mean 0.0002 0.0251 0.2013 0.0146 0.0517 0.0643 
Std 0.0071 0.0096 0.0088 0.0003 0.0023 0.0102 
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The updated story stiffness parameters indicate that the initial FE model underestimates the 
story stiffness of the building by up to about 20%, possibly attributed to the neglected stiffness 
contributions from the nonstructural components. In addition, an increasing trend can also be found 
in the calculated mean values as the parameter as the floor number increases, as shown in Table 1.  
The observed stiffness reduction may be due to many sources, such as the loosening of the 
connections between structural and nonstructural components, and may be amplitude dependent.  

Finally, to quantify the correlation between the updated model parameter values, evident in Fig. 
9, the Spearman’s rank correlation coefficients between each pair of those parameters are calculated 

,1

,2

,3

, 1

2

3

1.00 -0.99 0.72 0.26 0.48 0.04
-0.99 1.00 -0.80 -0.25 -0.49 -0.02
0.72 -0.80 1.00 0.14 0.43 -0.08
0.26 -0.25 0.14 1.00 -0.09 0.19=
0.48 -0.49 0.43 -0.09 1.00 -0.01
0.04 -0.02 -0.08 0.19 -0.01 1.00

k

k

k

k

,1 ,2 ,3 1 2 3                k k k

6  

Very strong correlation is observed between the stiffness parameters. This is expected since trade-
off between these parameters may result to same modal characteristics, and therefore similar 
response. The pairs of stiffness parameters ,1k and ,2k , and ,2k  and ,3k  have negative 
coefficients, indicating that an increase in one parameter needs to be compensated with a decrease 
in  the value of the other. This is an anticipated trade-off for the stiffness between adjacent stories. 
On the other hand the pair of ,1k and ,3k  has positive coefficients, which indicates an increase in 

,1k  needs to be accommodated by an increase in the value of ,3k . This behavior probably stems 
from the negative correlation each of them has to their adjacent story stiffness ,2k , which results 
to a positive correlation between them. It is interesting to note that, ,1k  and ,2k  have correlation 
coefficient nearly to 1 (in absolute value), which means an almost perfect correlation. Correlation 
coefficients between pairs of damping ratios are very small, indicating a very weak correlation 
across the different modes with respect to damping characteristics.  

5. Conclusions 
This study overviewed the model updating of a real-world, passively controlled building structure. 
This updating was carried out by adopting an efficient Bayesian model updating approach and using 
earthquake measurements. To reduce the computation cost associated with the model updating, a 
simpler FE model accommodating high computational efficiency was utilized. To further improve 
efficiency by reducing the number of parameters to be updated and to further avoid ill-posed issues 
for the updating (corresponding to an inversion problem), a modal sensitivity analysis was first 
leveraged to identify  significant model parameters, Then, a stochastic simulation based Bayesian 
model updating approach was adopted to obtain sampled from the selected model parameters using 
the recorded structural response under earthquake excitation. The updating results show the story 
stiffness of the initial FE model is underestimated by an order of up to 20%, which may be caused 
by the omitted contributions from the non-structural components. The updated structure was shown 
to provide a good match with respect to both acceleration and oil-damper force/displacement 
relationships, improving substantially over the poor match the original FE model was facilitating.   
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