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Abstract 

Modal parameters of a structure identified from its measured dynamic responses can offer a valuable reference to efforts 

to update structural design models and perform vibration control, health monitoring and damage assessmen of the 

structure. This study presents a novel blind source separation (BSS) approach to accurately identify modal parameters 

of a linear system with classical damping under non-stationary input from its output-only measurements and 

demonstrates the applications to a steel frame under shaking table tests. The proposed approach employs the temporal 

predictability of the continuous wavelet transforms of responses to estimate the modal vectors of a structure and to 

obtain its modal responses in wavelet domain. The modal damping ratios and natural frequencies are further estimated 

from the Fourier spectra of modal responses. Notably, the existing BSS approaches typically require the number of 

measured degrees of freedom of a structure equal to the number of modes to be identified. The proposed approach does 

not have such requirement by using the filtering properties of the wavelet transform. The efficiency of the proposed 

approach is first validated using numerically simulated acceleration responses of a six-story shear building subjected to 

earthquake base excitations with considering the effects of noise and incomplete measurements. The band-filter-like 

real Shannon wavelets are utilized in this study. Finally, the proposed approach is further employed to process the 

acceleration responses of an eight-story steel frame under shaking table tests to show the applicability of the proposed 

approach to engineering practices. The identified modal parameters are compared with those obtained from 

autoregressive with exogenous input models with the continuous Cauchy wavelet transform to confirm the accuracy. 

Keywords: blind source separation; temporal predictability; continuous wavelet transform; modal parameter 

identification; output-only earthquake responses 
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1. Introduction 

Failure of civil infrastructure due to severe loading, such as a strong earthquake, or degradation of material 

can cause substantial societal and human consequence. Identification of modal parameters of a structure from 

its earthquake responses and ambient vibration responses is important to carry out the damage assessment of 

the structure. The input base excitations or forces to a structure may not be all measurable because of the 

difficulties of identifying or measuring the input forces (i.e., considering soil-structure interaction under an 

earthquake or too many possible input forces in ambient vibrations). Additionally, the cost in establishing a 

structural health monitoring system is less without measuring the inputs. Consequently, it is a challenging 

and important task to identify the modal parameters of a structure from its measured responses only. 

A vast number of output-only approaches have been published based on the concept of blind source 

separation (BSS), which assumes that observed signals are linear combinations of source signals. The modal 

decomposition expression of the dynamic responses of a linear structure fits the mathematic model of BSS. 

The most popular BSS algorithms can be categorized into three classes: independent component analysis 

(ICA) [1-3], second-order blind identification (SOBI) [4-6], and sparse component analysis (SCA) [7,8]. ICA 

assumes that the source signals are statistically independent and have non-Gaussian distributions. Hyrärinen 

and Oja [9] provided a solid theoretical background behind ICA and introduced measures of non-Gaussianity, 

including fourth-order cumulent and negentropy. A time-domain ICA is typically limited to weakly damped 

systems and strongly affected by noise in the data [10,11]. Yang and Nagarajaiah [2] proposed a time-

frequency-domain ICA to improve these shortcomings by using a short-time Fourier transform. SOBI 

assumes that the source signals are statistically uncorrelated. Morovati and Kazemi [5] introduced a time-

frequency-domain SOBI to enhance the capability of a time-domain SOBI in processing seismic data and 

identifying modal parameters of closely spaced modes and highly damped modes. McNeil [12] combined 

Hilbert transform with SOBI to process the responses of nonclassical damping structural systems. Hazra and 

Narasimhan [13] employed SOBI with stationary wavelet transform to process the ambient vibrations 

responses and earthquiake responses of a bulilding. SCA assumes that the source signals can be sparsely 

represented in a transformed domain. Different transforms, including discrete cosine transform [14], short-

time Fourier transform [15], and quadratic time-frequency analysis, and different clustering algorithms with 

various norms [7] have resulted in different SCA-based techniques. 

The study is to explore the applicability of the BSS approach using temporal predictability proposed 

by Stone [16, 17] to identify the mode shapes and modal responses of a linear structural system with classical 

damping under earthquake base excitations. To overcome the drawbacks of most BSS approaches that 

identify less active modes than the number of measured degrees of freedom, the continuous wavelet 

transform is applied to measured responses of a structure, and the modal vectors and modal responses of the 

structure are estimated in wavelet domain via reformulated Stone’s measure of the temporal predictability in 

wavelet domain. Then, the natural frequencies and modal damping rations are identified from the Fourier 

spectra of modal responeses. The validity of the proposed approach is first confirmed  through processing the 

numerically simulated absolute acceleration responses of a six-story shear building subjected to an 

earthquake with consideing the effects of noise and incomplete measurements. Then, the present approach is 

further applied to identify the modal parameters of an eight-story steel frame under shaking table tests.  

2. Methodology 

The BSS approaches are based on the model  

ˆ( ) ( )t tx As , (1)
 

where 
ˆ ( ) and ( )t tx s denote column vectors of observed signals and source signals, respectively, and 

A is constant matrix. Baeds on statistically independnet source signals, Stone [16] adopted the 
conjecture that the temporal predictability of any signal mixture is less than that of any of its 
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component source signals and proposed  a measure of temporal predictability to determine A and s(t) 

in time domain. Such approach requires that the dimension of  ˆ ( )tx is the same as that of s(t).  

The form of Eq. (1) is exactly the same as that for the modal decomposition of dynamic 

responses, x(t), of a linear structure, 

 i

1

( )= (t)= t ,
N

i

t q


x Φq φi

 

(2) 

where Φ is the modal vector matrix of the structure with N degrees of freedom; iφ  is the i
th
 column of Φ ; 

1 2(   )T

Nq q qq , and qi(t) is the modal response function corresponding to the i
th
 mode iφ . Notably, x and 

q can be acceleration, velocity or displacement. In real applications, incomplete measurements are always 

encountered, and more modes than the measured degrees of freedom are wanted to identify, which forms 

underdetermined output-only problems. Consequently, Eq. (2) is reformed as  

                                                              i

1

( )= (t)= t ,
N

i

t q


y Φq φi
 (3) 

where y denotes the vector of responses of measured degrees of freedom, and Φ , sub-matrix of Φ , is modal 

vector matrix corresponding to the measured degrees of freedom. To fit the needs in real applications, the 

continuous wavelet transform is introduced into Stone’s approach to filter out the unwanted frequency 

components of the responses for identifying wanted modal vectors and modal responses.  

The continuous wavelet transform (CWT) has provided a popular time-frequency domain analysis 

technique. The continuous wavelet transform of a function of time, f(t), belonging to 2L  space, is 

defined as 

    
1 2

( ) *
t b

a t dt
a

W a,b f t f 




 
 
 

 ψ , (4) 

where the superscript *  denotes  the complex conjugate; a is a scale parameter, which is typically a 

positive real and plays the role of the inverse of frequency; b is a translation parameter, which 

indicates the locality of the transformation, and )(t is a mother wavelet function. Appling CWT to 

Eq. (3) and using the filtering properties of CWT yield  

    ,
k N

i k

ia,b Q a,b  




 i φY  (5) 

where       a,b W a,b t ψY y  and       Q a,b W a,b q ti ψ i . The CWT is applied to the responses to 

preserve the frequency components of the responses between natural frequencies of k
th

 and (k+ N )
th

 

modes. Equation (5) can be rewritten as 

     ˆ ,Ta,b = a,b a,b-1
Q Φ Y W Y  (6) 

where         1

T

k k k N
a,b Q a,b Q a,b Q a,b 

Q and 
1

ˆ
k k k N 

   Φ φ φ φ . 

Redefine the measure of temporal predictability, denoted by TP, proposed by Stone [16] in 

wavelet domain as 
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  
    

    

1

1

ˆ
ˆ

n 2

i j i j

j i
i n 2

i
i j i j

j

Q a,b -Q a,b
V

TP Q a,b log log
V

Q a,b -Q a,b





 




, (7) 

where 
iQ  and ˆiQ are long-term and short-term predictors of Qi, respectively, and are given  by 

       i j L i j-1 L i j-1Q a,b =λ Q a,b + 1-λ Q a,b , (8) 

       ˆ ˆ
i j i js s-1 i j-1Q a,b =λ Q a,b + 1-λ Q a,b , (9) 

-1/h
λ =2 

 , 
(10) 

hs is typically set equal to 1 and hL is sufficient larger than hs. The present study sets hL=900000, which was 

used in Yang and Nagarajaiah [18]. Incorporating Eq. (6) into (7) leads to 

  
 

  ˆ

T

i i

i T

i i

QTP a,b =log
w Rw

w Rw
, (11) 

where wi is the i
th
 column of W; the (i, j) components of R and R̂  are, respectively, 

                                                            
n

i jij i k k j k k

k=1

r Y a,b -Y a,b Y a,b -Y a,b , (12) 

         ˆ ˆˆ
n

ij i k i k j k j k

k=1

r Y a,b -Y a,b Y a,b -Y a,b , (13) 

       i j L i j-1 L i j-1Y a,b =λ Y a,b + 1-λ Y a,b , (14) 

       ˆ ˆ
i j i js s-1 i j-1Y a,b =λ Y a,b + 1-λ Y a,b . (15) 

Maximizing TP yields  

    
i

iTP Q a,b =
W

0 . (16) 

Substituting Eq. (11) into Eq. (16) gives 

   2
ˆ

ˆ

2
T T

i i

i i
V V

 
w w

R R 0 . (17) 

Equation (17) is rewritten as 

                                                                         ˆ
ˆ

T Ti
i i

i

V
=

V
R w R w , (18) 

which presents an eigenvalue problem, and wi can be easily determined.  

After wi are determined, the modal eigenvector matrix corresponding to the measured degrees of 

freedom is determined by ˆ
TΦ W , then the modal responses in wavelet domain  a,bQ are found through 

Eq. (6). The modal assurance criterion (MAC) [19], given Eq. (19), is applied to verify the agreement 

between the identified (
iIφ ) and theoretical (

iTφ ) mode shapes,  
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2

MAC

T

iiII iT

T T

iI iI iT iT


φ φ

φ φ φ φ
. (19) 

After  Q a,bi is found, the natural frequency and modal damping ratio of the i
th
 mode are simply 

estimated in frequency domain. Following Eq. (4) gives 

 
1 2

( ) *i

t b
a t dt

a
Q a,b q 





 
 
 

 i
. (20) 

Applying Fourier transform to Eq. (20) gives 

( , ) ( ) ( )i iQ a a a q    ,  (21) 

where ( , ) ( , ) i b

k kQ a Q a b e db





  , ( ) ( ) iaa e d    





   and ( ) ( ) i t

k kq q t e dt





  . Hence, 

( , )
( )

( )

i

i

Q a
q

a a




 
 . (22) 

When  kq t represents modal acceleration responses, structural dynamics gives 

2

2 2

( )
( )

2

k

k

k k k

g
q

i

 


    

  

, (23) 

where ( )kg   represents the Fourier transform of external force corresponding to k
th
 mode, and k  and 

k are the naturtal frequency and modal damping ratio of k
th
 mode, respectively. Equation (23) indicates that 

if ( )kg  does not have sharp peaks, which typically happens in earthquake inputs, there should be only one 

sharp peak in  kq  . Using Eqs. (22) and (23), one obtains 

2 22

1 1 1 1

2 2 2

1 1

( , ) 2( ) ( )

( ) ( ) 2( , )

k j j k k j kj j k j

j j k j j k k j kk j

Q a ia g

a g iQ a

        

        

   

 

  


  
 (24) 

Since the external forces are not measured, it is assumed that the external forces are piecewise constants in 

frequency domain, and 
1( ) ( )k j k jg g   in Eq. (24). To find k  and 

k  from the Fourier spectum 

( , )kQ a  , an error function is defined as follows, 

2
2 22

1 1 1

2 2 2

1 1

( , ) 2( )

( ) 2( , )

k j j k k j kj j

j jj j k k j kk j

Q a ia
E

a iQ a

       

      

  

 

   
  
   
 

 . (25) 

The data points with j between 0.95 p and 1.05 p and ( , )k jQ a   between  0.5Max ( , )kQ a   

and  Max ( , )kQ a  , where p is the frequency corresponding to  Max ( , )kQ a  , are used to construct Eq. 

(25). A  typical genetic approach in MATLAB was employed to find k  and 
k , which minimizes the error 

function in Eq. (25). 

In the present study, real Shannon wavelets were chosen for the CWT. The wavelets are defined as 
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( ) sinc( ) cos(2 )b b ct F F t F t      , (26) 

where sinc( )=sin( )/t t t  . The wavelet is like a perfect band-pass filter with center at Fc and bandwidth 

equal to Fb.  

3. Numerical Verification 

The accuracy and effectiveness of the proposed approach in identifying modal parameters are verified by 

processing numerically simulated absolute acceleration responses of a six-story shear building subjected to 

earthquake base excitations. Each floor of the shear building has a mass of 1 ton, and the stiffness of 1
st
 to 6

th
 

stories are 2000, 1500, 1100, 800, 600 and 500 KN/m, respectively. The damping matrix is set equal to 0.5M 

1/s, where M is the mass matrix of the system. The Runge-Kutta method was applied herein to determine the 

dynamic responses of the shear building with a time increment of 0.004 s. The theoretical natural frequencies 

of the system were 1.31, 3.35, 5.25, 6.78, 8.42 and 11.02 Hz, and the modal damping ratios were 3.04%, 

1.19%, 0.76%, 1.59%, 0.47%, 0.36%. 

To simulate the situations encountered in real applications, the absolute acceleration responses of the 

1
st
, 3

rd
 and 6

th
 floors with 10% variance of the signal-to-noise ratio were considered in the following analyses. 

Figure 1 depicts the earthquake base excitations and the absolute accelerations responses and the 

corresponding spectra of 1
st
, 3

rd
 and 6

th
 floors. The natural frequencies can be roughly estimated from the 

spectra. 

To identify the modal parameters of the first three modes, the Shannon wavelet with Fc=3.5 and Fb=5 

was used, and the responses with frequency band [1, 6] Hz were preserved in wavelet domain. The present 

approach gave the modal responses and the corresponding Fourier spectra shown in Fig. 2, while Fig. 3 

shows the estimated results for the 4
th
 to 6

th
 modes using filtering band [6, 12]Hz. Each of the spectra shown 

in Fig. 2 has only one clear peak, which indicates that the modal vectors corresponding to these modal 

responses are reliable. The MAC values for the first to third modes are 0.996, 0.917, and 0.991, respectively. 

The natural frequencies and modal damping ratios estimated from those spectra are given in Table 1. 

 

 

 

 

 

Fig. 1 Base excitations and the absolute accelerations responses and the corresponding spectra of 1
st
, 

3
rd

 and 6
th
 floors 

 

Each of the spectra in Fig. 3 has multiple peaks and is not corresponding to a single mode even though 

the spectrum in Fig. 3(a) looks like that for a single mode. The results in Fig. 3 are not satisfactory, and the 

3rd floor 

6th floor 

1st floor 

base 
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MAC values for the identified vectors corresponding to Figs. 3(a) to (c) are 0.944, 0.588 and 0.684, 

respectively. To find better results, the responses through CWT using Shannon wavelets with (Fc, Fb) =(7.5, 

3) and (9.5, 4) were separately processed. The obtained modal responses and corresponding Fourier spectra 

are given in Figs. 4 and 5. Apparently, those spectra reveal that the modal responses in Figs. 4(a) and (b) are 

satisfactory for the 4
th
 and 5

th
 modes, respectively, while the modal responses in Figs. 5(a) and (b) are good 

for the 5
th
 and 6

th
 modes, respectively. The responses in Figs. 4(c) and 5(c) are corresponding to spurious 

modes. The MAC values of the identified modal vectors corresponding to the responses given in Figs. 4(a) 

and (b) are 0.954 and 0.998, respectively, while they are 0.987 and 0.999 for the identified vectors 

corresponding to responses in Figs. 5(a) and (b), respectively. The spectra in Figs. 4(a), 4(b), 5(a) and 5(b) 

were further used to identify natural frequencies and modal damping ratios, which are shown in Table 1. 

 

 

Fig. 2 The identified modal responses and spectra 

from responses with [1, 6]Hz 

 

Fig. 3 The identified modal responses and spectra 

from responses with [6, 12]Hz 

 

 

Fig. 4 The identified modal responses and spectra 

from responses with [6, 9]Hz 

 

Fig. 5 The identified modal responses and spectra 

from responses with [7.5, 11.5]Hz 

 

Table 1 summarizes the identified modal parameters of the six-story shear building, and the theoretical 

natural frequencies and modal damping ratios are also given in parentheses. These results disclose that the 

proposed approach with appropriate Shannon wavelets is able to accurately identify the modal vectors with 

MAC values larger than 0.9 and natural frequencies with differences less than 5% from the true ones. The 

identified damping ratios show reasonable agreement with true ones.   

(a) 

(b) (b) 

(a) 

(c) (c) 

(a) 

(b) (b) 

(a) 

(c) (c) 
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Table 1 Identified modal parameters for a six-story shear building under earthquake 

Band-pass 

filtering (Hz) 

Mod

e 

MAC Natural frequency 

(Hz) 

Modal damping 

ratio (%) 

[1, 6] 

1 0.996 1.37  (1.31) 4.36  (3.04) 

2 0.917 3.37  (3.35) 1.46  (1.19) 

3 0.991 5.27  (5.25) 0.74  (0.76) 

[6, 9] 
4 0.954 6.73  (6.78) 0.44  (0.59) 

5 0.998 8.45  (8.42) 0.59  (0.47) 

[7.5, 11.5] 
5 0.987 8.42  (8.42) 0.87  (0.47) 

6 0.999 11.02  (11.02) 0.45  (0.36) 

 

4.  Application to Shaking Table Tests 

To demonstrate the applicability of the present approach to real measured data, it is further employed to 

process the measured acceleration responses of a benchmark eight-story symmetric steel frame in shaking 

table tests (Fig. 6), which were conducted by the National Center for Research on Earthquake Engineering in 

Taiwan. The eight-story steel frame was 1.5m in length, 1.1m in width and 9.44m in height. Lead blocks of 

250 kg were piled on each floor, such that the total mass of each floor was approximately 325 kg. The 

columns had H-shaped sections (H100 100 7.5 7.5). The frame was subjected to base excitations of 

reduced Chi-Chi earthquake in long-span direction. Figure 7 deplicts the base excutations, measured 

accleration responses of the 1
st
, 6

th
 and 8

th
 floors and their Fourier spectra. Notably, there are abnormal sharp 

peaks round 30 and 48 Hz in the spectrum of base excitations. The spectra provide rough estimation of 

natural frequencies of the first seven modes, which is very helpful in selecting the filterimng bands in the 

following analyses for identifying modal parameters of the frame.  

Autoregressive with exogenous input (ARX) models with the continuous Cauchy wavelet transform 

[20] were also employed to find the modal parameters of the frame from the measureed base excitations and 

acceleration responses of all the floors. The identified natural frequencies and modal damping ratios are 

given in parentheses in Table 2, and the identified modal shapes are displayed in Fig. 8. Eight modes with 

the largest natural frequency of 42.41 Hz were identified even though the 8
th
 mode was hardly excited. 

Instead of considering full measurements in establishing ARX models, the present approach was 

applied to process the measured acceleration responses of the 1
st
, 6

th
 and 8

th
 floors. Using Shannon wavelets 

with (Fc, Fb) =(4.5, 7), (10,10), (15, 10), (28, 16) and (41, 8) to perform the CWT and processing the 

resulting responses in wavelet domain yield the possible modal responses and their Fourier spectra. Figures 9 

and 10 display the possible modal responses and their Fourier spectra obtained using (Fc, Fb)= (10, 10) and 

(28, 16), respectively. Each of the spectra shown in Figs. 9(a, b) and 10(a, b) has single peak and is 

corresponding to a real mechanical mode. Those spectra were further utilized to estimate natural frequencies 

and modal damping ratios, which are given in Table 2. The spectra in Figs. 9(c) and 10(c) are apparently 

corresponding to spurious modes. Similarly, other modal parameters, given in Table 2, were obtained from 

processing the wavelet transforms of responses using Shannon wavelets with (Fc, Fb) =(4.5, 7) , (15, 10) and 

(41, 8). The MAC values indicate the agreement between the present modal vectors and those obtained from 

ARX models. 
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Fig. 6 A photo for an eight-story 

steel frame under shaking table 

tests 

 

 

 

 
Fig. 7 Measured base excitations and the absolute accelerations 

responses and the corresponding spectra of 1
st
, 6

th
 and 8

th
 floors 

 

  

Fig. 8 Identified modal shapes by ARX 

 

 

Fig. 9 The identified modal responses and spectra 

from responses with [5, 15]Hz of the 8-story frame 

 

Fig. 10 The identified modal responses and spectra 

from responses with [20, 36]Hz of the 8-story frame 

 

(a) 

(b) (b) 

(a) 

(c) (c) 

8th floor 

6th floor 

1st floor 

base 
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Table 2 Identified modal parameters for an eight-story steel frame under shaking table tests 

Band-pass 

filtering (Hz) 

Mode MAC Natural frequency 

(Hz) 

Modal damping 

ratio (%) 

[1, 8] 1 0.995 2.05  (2.09) 1.66  (1.18) 

[5, 15] 
2 0.982 6.90  (6.96) 0.69  (0.32) 

3 0.995 12.90  (12.73) 0.73  (0.54) 

[10, 20] 4 0.997 19.25  (19.00) 0.46  (0.56) 

[20, 36] 
5 0.961 25.92  (25.78) 0.29  (0.91) 

6 0.959 33.17  (33.30) 5.0  (1.14) 

[37, 45] 7 0.972 39.55  (39.06) 1.06  (1.54) 

 

Comparisons the identified modal parameters using the present approach with those from ARX reveal 

that the present approach gives accurate modal vectors with MAC values larger than 0.95 and natural 

frequencies with less than 2% differences from those obtained from ARX. Most of the damping ratios 

identified by the present approach show reasonable agreement with those obtained from ARX. The modal 

parameters of 8
th
 mode were not identified because the mode was hardly excited as observed from the spectra 

in Fig. 7. 

5. Conclusion 

The study has shown a valid BSS approach using the temporal predictability of wavelet transformed 

responses to accurately identify the modal vectors and natural frequencies of a linear system with classical 

damping with considering noise and underdetermined case. The study reformulates the measure of temporal 

predictability proposed by Stone [11, 12] in wavelet domain. The filtering property of wavelet transform 

allows the present approach to identify more active modes than the number of measured degrees of freedom.  

The present approach was validated through processing the numerically simulated absolute acceleration 

responses of three degrees of fredom of a six-story shear building under earthquake with considering 10% 

noise. The modal vectors and natural frequencies of six modes were accurately identified, while the modal 

damping ratios were identified with reasonable accuracy. The identified frequencies differed from the true 

ones by less than 5%, whereas the MAC values were larger than 0.9. The proposed approach was further 

employed to handle the acceleration resonses of a symmetric eight-story steel frame under shaking table tests. 

The modal vectors and frequencies of  the first 7 modes obtained using the measured responses of three 

floors showed a very good agreement with the parameters identified using ARX models with complete 

measurments. The MAC values were larger than 0.95, while the differences were less than 2% in the natural 

frequencies.  
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