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Abstract 

The objective of this article is to compare the effectiveness of tuned mass dampers (TMDs) with that of a swimming pool 

designed as a tuned liquid dampers (TLDs) for seismic response mitigation of a reinforced concrete (RC) base isolated 

(BI) building. The effect of amplitude of ground motion in their effectiveness is investigated. Furthermore, the effect of 

depth to length of the TLD is investigated. Base shear, floor acceleration and displacement response of the building with 

and without the TMD/TLD schemes are studied. It is noticed that that vibration mitigation of BI building is achieved by 

installing TLDs or TMDs. However, TLD is more effective as compared to the TMD to mitigate the seismic response of 

BI building. It demands for a TLD system having higher water level to produce better performance. Further, it is seen that 

having the TLD at ground floor is more effective than adding at top floor. However, this is not the case for a TMD system. 
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1. Introduction 

Over the recent couple of decades, the structural vibration mitigation techniques have been simplified for 

reduction of their dynamic response caused by different natural hazards. Tuned mass dampers (TMDs) and 

tuned liquid dampers (TLDs) are one of the common control methods used for response mitigation of structures 

under dynamic loadings. Their applications in various situations and loads have been addressed by several 

researchers [1-20]. A detailed literature survey on passive TMDs is presented in Elias and Matsagar [21].  

Base-isolation (BI) has been one of the most common and recognized technique of earthquake response 

mitigation. This technique depends on friction pendulum (FP) or lead rubber bearings (LRB) at the base of the 

structure. BI technique performs by making the isolated structure more flexible at the base, so decreasing 

acceleration response, and consequently base shear force on the structure. Because of increased flexibility, 

displacement demand on the structure gets amplified, and extra damping is required to keep displacement 

demand in suitable limits. There is a tradeoff between the extent to which acceleration and displacement 

demand can be controlled by BI system combined with additional damping devices [22].  

TMD is efficient in response mitigation of BI systems if the loading frequency is lower than the natural 

frequency of the structure [23]. Better efficiency is expected by optimally designed non-traditional TMD for 

reducing of earthquake response of BI buildings [24]. Recently use of TMD with inerter (TMDi) presented to 

have effective performance to mitigate earthquake response of BI buildings [25-28]. Effectiveness of single 

tuned mass dampers (STMD), multiple tuned mass dampers (MTMD) and distributed multiple tuned mass 

dampers (d-MTMD) on seismic response control of BI buildings was investigated by Stanikzai et al. [29, 30]. 

They found that d-MTMDs were more effective and practical than other schemes. Use of a tuned liquid damper 

(TLD) as a cost-effective method to reduce the wind induced vibrations of BI structures is presented by Love 

et al [31]. Very recently a comparison of TMD, a New TMD (New TMD) and a tuned liquid column damper 

(TLCD), for response mitigation of a BI structure is considered [32]. 

Past studies do not contain a comparative investigation on effectiveness of TMDs and TLD in response control 

of BI buildings under earthquake ground motions. It is therefore necessary to consider this comparative study 

to understand the effectiveness of TMD and TLD in response control of BI building.  

2. Mathematical model 

Figure 1 demonstrates the mathematical model for N-story BI building a) without TMD/TLD, b) installed with 

a TMD at top floor, and c) installed with a TLD at top floor. The floor masses m1 to mN are lumped masses, 

whereas, mb and md are mass of BI and TMD respectively. TMD consists of mass (md), stiffness (kd) and 

damping (cd) is attached at top floor. The displacement of the floors is denoted by X1 to XN and Xb and xd are 

the displacement of BI and TMD respectively. The stiffness of floors is denoted by k1 to kN and damping of 

fixed base structure was computed using Rayleigh approach. Design of BI building is done based on methods 

described in References [33, 34]. Elias and Matsagar [35] provided design procedure for single TMD, which 

is adopted in this study. In order to design the TLD a method described in Reference [17] is adopted. The 

governing equation of motion for the system under consideration can be written as  

 [𝑀]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + [𝐾]{𝑥(𝑡)} = −[𝑀]{𝑟}{�̈�𝑔} (1) 

where [𝑀] , [𝐶]  and [𝐾]  are the mass, damping and stiffness matrices of the structure {𝑥} =
{𝑋1, 𝑋2,⋯𝑋𝑁, 𝑋𝑏 ,⋯ 𝑥𝑇1, 𝑥𝑇2, ⋯ 𝑥𝑇𝑛}

𝑇 , �̇� and �̈�  are the unknown relative (floor, isolator and TMD) 

displacement, velocity and acceleration vectors, respectively; �̈�𝑔 is earthquake ground acceleration and r is 

the vector of influence coefficients. The matrices of hybrid system can be found in Reference [30]. 
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Fig. 1 – Mathematical model of N-story (a) BI, (b) BI + STMD at top floor, (c) BI + TLD at top floor  

3. Numerical Study 

In this study a five-story reinforced concrete (RC) building is taken from Reference [34]. The design period 

for BI is decided to be 2.5 sec. Each floor assumed to have mass of 20.4 ton and stiffness of 39700 kN/m. The 

damping ratio is assumed to be 2% to be used for estimation of multiplier to mass and stiffness matrices 

following Rayleigh approach. The damping ratio for BI is assumed to be 5% and yielding displacement of 5 

cm. The yield restoring shear-force of damper system is 7.5% of total building weight. It is also important to 

consider the fact that that TLD assumed to be a swimming pool. Therefore, the height of water can be more 

than 2 meters for swimming pool inside an apartment. TLD is designed to have a length of 5.5 meters, a width 

of 3 meters and a water height of 1.8 meters. These dimensions allow the hybrid system to have a period of 

about 2.27 seconds. A TMD designed to have similar mass of the TLD. The analysis is carried for BI building, 

BI building equipped by a TMD, BI building equipped by a TMD under the Bucharest, 1977; Imperial Valley, 

1979; Panisler, 1983; and Mexico City, 1995 (Figures 2 through 5). Figures 2 through 5 show the variation of 

response reduction by increasing the depth of water in the swimming pool.  
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Fig. 2 – Variation of response reduction by increasing the water depth under Bucharest, 1977. 

 

Fig. 3 – Variation of response reduction by increasing the water depth under Imperial Valley, 1979. 
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Fig. 4 – Variation of response reduction by increasing the water depth under Panisler, 1983. 

 

Fig. 5 – Variation of response reduction by increasing the water depth under Mexico City, 1995. 
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It is important to know the response of the BI building equipped by swimming pool according to the water 

level of the pool, because it will not always be full of water. The depth is not increased behind 1.8 meters as it 

will not practical to have that kind of swimming pool. It is noticed that all kind of response under all considered 

earthquakes are reduced.  

Figures 6 through 9 show the variation of response reduction by changing the location of the swimming pool. 

Its location moved from ground which was assumed to be on BI to the top floor of building. Although, 

practically it is not possible to have it on BI level, only based on mathematical formulation analysis carried 

out. It appears from Figure 3, that except the ground level, other positions will not have significant effect on 

performance of a TLD. This is the due to the fact that BI buildings, superstructure is acting as a rigid body and 

experiences same displacement throughout the height. This is in good agreement with findings earlier 

presented in References [29, 30]. Therefore, it is concluded that the TLD can be placed at any location of the 

selected BI building while subjected to earthquakes.  

 

Fig. 6 – Variation of response reduction by changing the position of TLD under Bucharest, 1977. 

Figures 10 through 13 demonstrate the comparison of TLD and TMD in response mitigation of BI building 

under earthquakes. The peak ground acceleration (PGA) of the selected earthquakes are varied to check its 

influences on effectiveness of TLD and TMD. The variation in increase of response is linearly, this is due to 

consideration of bi-linear model of BI model, which is not able to provide the nonlinear increase or decrease 

in response. Although, this approach is well-accepted but adopting the Wen model is more accurate. However, 

for this study to present the pattern this simpler approach is adopted. It is noticed in the Figures 10 through 13 

that higher the PGA, higher the response of BI, and slightly more the performance TLD and TMD. Generally, 

TLD is providing more effectiveness as compared to the TMD in response control of BI building under the 

selected earthquakes.  
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Fig. 7 – Variation of response reduction by changing the position of TLD under Imperial Valley, 1979. 

 

Fig. 8 – Variation of response reduction by changing the position of TLD under Panisler, 1983. 
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Fig. 9 – Variation of response reduction by changing the position of TLD under Mexico City, 1995. 

 

Fig. 10 – Variation of response of BI, BI+TMD, BI+TLD by changing the PGA of Bucharest, 1977 

 

0 1 2 3 4 5

65

52

39

26

13

0

0 1 2 3 4 5

65

52

39

26

13

0

0 1 2 3 4 5

65

52

39

26

13

0

 

 
R

es
p
o
n
se

 R
ed

u
ct

io
n
 (

%
)

TLD Position

D
is

p
la

ce
m

en
t

 

 

A
cc

el
er

at
io

n

TLD Position

 

 

B
as

e 
S

h
ea

r

TLD Position

 

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.3

0.6

0.9

1.2

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 BI;  BI+TMD;  BI+TLD

 

 

PGA (g)

D
is

p
la

ce
m

en
t 

(m
)

 

 

A
cc

el
er

at
io

n
 (

g
)

PGA (g)

.
3b-0066

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 3b-0066 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

9 

 

Fig. 11 – Variation of response of BI, BI+TMD, BI+TLD by changing the PGA of Imperial Valley, 1979. 

 

Fig. 12 – Variation of response of BI, BI+TMD, BI+TLD by changing the PGA of Panisler, 1983. 

 

Fig. 13 – Variation of response of BI, BI+TMD, BI+TLD by changing the PGA of Mexico City, 1995. 
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4. Conclusions 

A comparative study on effectiveness of tuned liquid damper (TLD) and tuned mass damper (TMD) for 

response mitigation of a five-story reinforced concrete (RC) building is presented. Based on the results 

discussed following conclusions can be drawn: 

1. TLD is more effective as compared to the TMD to mitigate the seismic response of BI building.  

2. It demands for a TLD system having higher water level to produce better performance.  

3. It is seen that having the TLD at ground floor is more effective than adding at top floor. However, this 

is not the case for a TMD system. 
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