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Abstract 

The victims, who are affected by serious earthquake, often suffer the several difficulties such as long-term evacuation, 

due to consecutive aftershocks and reconstruction of their households. These difficulties were caused by various factors, 

especially delay of current inspection procedure of earthquake-damaged houses. 

Several researches have been conducted in order to solve these issues. Image processing with deep learning has been 

evolved because particularly the image recognition has remarkably developed in recent years. In terms of timber houses, 

image classification is currently widely used, but it is difficult to adapt these methodologies into detailed inspections 

such as disaster certificate for insurance because image classification is good at qualitative damage assessment rather 

than quantitative one. 

Thus, object detection and image segmentation have been attracting attention. This is because they have a potential for 

their automatic and speedy processing and enabling quantitative damage assessment. Actually, they were already used 

for infrastructures damage evaluation. In this study, the same technique is applied to the image diagnosis of timber 

houses damaged by earthquakes. 

Firstly, a damage extractor was created and verified, which is based on semantic segmentation. The tagging all images 

in the database into four types of damage was carried out, that is crack and spalling in mortar exterior, crack in siding 

board , and crack in concrete basement. However, this database didn’t work well in deep learning because of the lack of 

images and the bias of image feature values. Hence, chromakeying is employed and it enabled to improve deep learning 

accuracy, and the effectiveness of chromakeying to the deep learning database was also confirmed. 

Secondly, a damage rate calculation process was built based on extracted damages. However, various noises were 

observed in extract results. Then in order to reduce these noises, pre- and post-image processing was employed and 

accuracy of damage extraction was improved. The quantitative damage assessment based on the guideline of damage 

assessment for earthquake insurance was conducted using damage extractors. And damage rate of some samples were 

also calculated to verifying the process. 

Finally, for the improvement of image diagnosis, not only surface damage but also structural parameters should be 

considered, and the correlation between structural drift ratio and surface damage for Japanese timber houses was 

focused on. Although previous researches and limited experiments decides the correlation strictly, this is not enough for 

various conditions. Thus, the new experiments data were added to make the data improved. As a result, image diagnosis 

can estimate the range of structural maximum drift ratio according to the surface damage with non-structural 

components construction condition. 

Keywords: Image diagnosis; Deep learning; Image processing; Timber house; Damage assessment 
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1. Introduction 

The victims, who are affected by serious earthquake, often suffer the several difficulties such as long-term 

evacuation, due to consecutive aftershocks and reconstruction of their households. These difficulties were 

caused by various factors, especially delay of current inspection procedure of earthquake-damaged houses. 

 Several researches have been conducted in order to solve these issues. Image processing with deep 

learning has been evolved because particularly the image recognition has remarkably developed in recent 

years. In terms of timber houses, image classification is currently widely used, but it is difficult to adapt 

these methodologies into detailed inspections such as disaster certificate for insurance because image 

classification is good at qualitative damage assessment rather than quantitative one.  

 Thus, object detection and image segmentation have been attracting attention. This is because they 

have a potential for their automatic and speedy processing and enabling quantitative damage assessment. In 

this study, the same technique is applied to the image diagnosis of timber houses damaged by earthquakes. 

Then, the applicability of the image diagnosis to quantitative damage assessment was confirmed. 

2. Image Database of Timber Houses Affected by Earthquakes 

Image recognition using deep learning generally needs huge image database such as Image-Net [1]. However, 

it commonly takes an enormous amount of time and manpower to construct the image database. In order to 

simplify this construction process, transfer learning is widely used. The transfer learning transfers a pre-

trained Convolutional Neural Network (CNN) model to an original CNN model which are made by original 

small image database. Then, the CNN model can get a rich knowledge for variety of image recognition. 

 However, in the case of collecting images of timber houses affected by earthquakes, it’s not easy to 

collect the original small image database or could not be collectable. This is because these images are 

collectable only when a severe earthquake happen. Actually, trying the collecting images of damaged 

exterior walls from the past damage inspections in affected areas, these images were few and it was difficult 

to construct enough image database for deep learning. Thus, the data augmentation method was adopted to 

augment the image database which was made by real-damage images which were collected in the inspections. 

Then, a pseudo-damage image database was employed. This is because, the real-damage image database 

even took an enormous amount of time and manpower to select appropriate images for deep learning. Thus, 

the pseudo-damage image database was constructed from chroma-keying images, which made the 

construction process easy and speedy. And also, the pseudo-damage image database was more easily editable 

than real- damage image database. 

2.1 Constructing image database and CNN models for damage extractors 

To verify an applicability of pseudo-damage image database, leaning accuracy of two types of image 

database, which are real-damage image database and pseudo-damage one, was evaluated by two indicator 

such as mini-batch leaning accuracy and loss in the deep learning. Table 1 shows the employed CNN model 

cases which were consist of combination of pre-trained CNN models and CNN models.  

 

Table 1 – Cases of CNN models 

Case names SV16 SV19 DLR18 DLR50 DLM DLX DLIR 

CNN models SegNet DeepLabv3+ 

Pre-trained 
CNN models 

VGG1
6 

VGG19 ResNet18 ResNet50 MobileNetv2 Xception 
InceptionRe

sNetv2 
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 In this verification, six image databases for each kind of damage such as real mortar cracks (RMC) , 

chromakeying/pseudo mortar cracks (CMC), real mortal spalling (RMS), chromakeying/pseudo mortar 

spalling (CMS), real siding board cracks (RBC), and chromakeying/pseudo siding board cracks (CBC) were 

used for each CNN model cases. Therefore, forty-two cases which consist of seven CNN models and six 

image databases were examined. These cases were evaluated by indication of learning accuracy and loss. Fig. 

1 shows an example of results of learning accuracy and loss. The higher leaning accuracy, the more 

successful deep learning, and the closer the learning loss is to zero, the more successful deep learning. Thus, 

all cases were evaluated by the indicator, and it was confirmed that the all cases had enough learning 

accuracy. 

 

 

 

 

 

 

Fig. 1 – Examples evaluation with learning accuracy and loss (Case of SV19/RMC) 

 

 After evaluation of the learning accuracy, recognition accuracy of each cases was evaluated by 

damage extraction results of 100 test images. Fig. 2 shows indicator of the recognition accuracy such as 

recall and precision. Recall is index in order to evaluate recognition omissions, and precision is index in 

order to evaluate false recognition. These indexes are calculated from Eq. (1) and Eq. (2). 

 

Table 2 – Metrics of data prediction 

 

 

 

 

 

Recall = TP / (TP+FN) 

 

Precision = TP / (TP+FP) 

 
Ground Truth 

Positive Negative 

Predicted 
Positive True Positive False Positive 

Negative False Negative True Negative 

(1) 

(2) 
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 Table 3 shows examples of evaluation results of recall and precision. When the value of recall is closer 

to 1, recognition omissions area is deceased. When the value of precision is closer to 1, the false recognition 

area is also decreased. In terms of damage extraction, recognition omissions which cause underestimate of 

damage assessment should not be allowed. Thus, recall was evaluated intensively to make damage extractor 

which can recognize whole damage area. And also, in order to prevent false recognition area, precision was 

evaluated as a second indicator.  

 After evaluating recall and precision of each CNN model cases, the best result case of CNN model for 

each damage database is selected except for RBC. Table 4 shows the summary of employed CNN models.  

 

Table 3 – Examples of evaluation with recall and precision 

CNN cases SV16/CMC SV16/CMS SV16/CBC 

Original images 

 

  

Ground truth    

Predicted results    

Evaluation 

images 
   

Recall 0.960890 0.781363 0.762427 

Precision 0.385761 0.913714 0.667609 
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Table 4 – Summary of employed CNN models 

 

 These CNN models had the maximum values of average recall and precision of each models evaluated 

by 100 test images. However, the CNN model for RBC didn’t work well, and its recall and precision were 

zero. This is because, the surface of siding board is often contaminated and cracks on the siding board cannot 

see clearly. Thus, the chromakeying/pseudo damage model of siding bord crack (CBC) was only adopted. 

2.2 Evaluation of CNN models based on damage extraction results 

Based on the damage extraction results of each CNN models which applied to the photos of Kumamoto 

earthquake reconnaissance in 2016, each CNN models were evaluated and compared. Fig. 2 shows the 

comparison of damage extraction results for each CNN models. 

 

 

 

 

 

 

 

 

 

Fig. 2 – Comparison of damage extraction results 

Damage 

types 
Image database Model names 

CNN 

models 

Pre-trained 

CNN models 

Average of 

recall 

Average of 

precision 

Mortar 

crack 

Real damage DLR50/RMC DeepLabv3+ VGG16 0.745 0.190 

Chromakey damage SV19/CMC SegNet VGG19 0.748 0.195 

Mortar 

spalling 

Real damage SV16/RMS SegNet ResNet18 0.799 0.967 

Chromakey damage DLR50/CMS DeepLabv3+ ResNet50 0.746 0.948 

Board 

crack 

Real damage ― ― ― ― ― 

Chromakey damage DL50/CBC DeepLabv3+ Xception 0.566 0.274 

DLR50/RMC                         SV19/CMC                          SV16/RMS                       DLR50/CMS 
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 CNN models for chromakeying/pseudo damage image database can extract the damage more accurate 

rather the CNN models for real damage image database. Thus, SV19/CMC, DLR50/CMS, and DLR50/CBC 

were adopted for damage extractors in the following discussion. 

 

3. Damage Evaluation Method Based on Damage Extraction Results 

Before damage evaluation, the noises such as plants and wires in the damage extraction results shown in Fig. 

2 were removed by using pre- and post-image processing algorithm. Then, the damage rate calculated based 

on the damage extraction results. 

3.1 Pre- and post-image processing for noise elimination 

During the pre-image processing, graph cut technique [2] was applied to damage extraction results which 

were extracted by semantic segmentation. Fig. 3 shows the example process of graph cut processing. The 

graph cut can segment area such as building and background. In this pre-image processing, the noises in the 

background were eliminated. However, some noises in the foreground on the building remained, and post-

image processing was applied to the results. During the post-image processing, area limitation and Hough 

transformation [3] denoised the foreground noises. Fig. 4 shows the example of pre- and post-image 

processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 –Example of graph cut processing 

 

Original image Graph cut Segmented image 

Target RGB 
boundary 
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Fig. 4 –Example of pre- and post-image processing 

 

 In the post-image processing algorithm, the edge of damage extraction area which was extracted by 

semantic segmentation and pre-image processing was firstly extracted by Sobel edge extraction method [4]. 

Then, the closed area was filled and grouped, and deleting 1 pixel of edge from each filled area groups. This 

is because, Sobel edge extraction usually made area thicker than original area. After that, some noises remain. 

Thus, noises were eliminated by considering the area ratio which divide the extracted area into crack area 

and noise area. At the intermediate check, there were still some noises such as wires, eaves and window 

frames which were straight line. Then, the linear noises were denoised by Hough transformation. And finally, 

the remained noises were eliminated by area limitation again. 

 Using only semantic segmentation, the correct damage area was not extracted but a lot of noises were 

extracted with damage area. After the pre- and post-image processing were applied to the noisy images, its 

applicability was confirmed. 

③Filling closed area ②Sobel edge extraction ①After pre-image processing 

④Reducing area ⑤Area limitation ⑥Intermediate check 

⑦Hough transformation 

 

⑧Area limitation 

 

⑨Final damage extraction result 
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3.2 Quantitative damage evaluation method based on damage extraction results 

For damage evaluation, the following equations shown in Eq. (3) to (5) were expressed by the damage 

assessment guideline for earthquake insurance [5]. 

 

𝐷𝑅𝑖𝑛𝑠 = (
𝑑𝑤𝑖
𝑎𝑤𝑖

×
𝑎𝑤𝑖
𝐴𝑤

)

𝑖

= (𝛼𝑖 × 𝛽𝑖)

𝑖

 

 

 

𝛼𝑖 =
𝑑𝑤𝑖
𝑎𝑤𝑖

 

 

 

𝛽𝑖 =
𝑎𝑤𝑖
𝐴𝑤

 

 

 

where, DR: damage rate of exterior wall damage, dwi: damage area on ith side of wall, awi: wall area on ith 

side of wall, Aw: whole wall area, αi: damage rate of ith side of wall, βi: area rate of ith side of wall 

 

 In this paper, Eq. (4) was used for damage assessment of a single side of wall. To verify the validation 

of damage calculation results, the observed results of damage rate which were obtained from visual 

inspection by three persons. Table 5 shows the calculation results based on the extraction results with pre- 

and post-image processing. Where, the 1st, 2nd, 3rd: human-observation results, ERh: maximum human 

error rate among three persons’ results, ERd: maximum diagnosis error rate between three persons’ results 

and image diagnosis results.  

 In the first case, ERh was nearly equal to ERd. Therefore, it was considered that the image diagnosis 

could be done correctly. On the contrary, in other cases, there were large errors between damage rate 

calculated by human and by image diagnosis. Particularly, the third case and the fifth case had large errors. 

This was because, on the exterior walls, there were some minor cracks, which were difficult to find out from 

low resolution images. Moreover, in the second case and the fourth case, damage rate calculated by image 

diagnosis was lower than human-observation values. This was because some damages were covered by 

green-plants and trees, which made the damage invisible. Then, the invisible damages were not extracted by 

image diagnosis, but could be estimated and considered for damage calculation by human. Thus, there were 

some errors between the image diagnosis results and human calculation results. 

 However, in the fourth case, it was confirmed that human error also could be happened because of 

covering damage and image resolution. These human errors could be happened in the range up to 

approximately 25%. Thus, considering the range of human error rate, image diagnosis results in the first, 

second and fourth case could be considered roughly equal to human-observation results. Thus, it was 

confirmed that when the damage rate calculated by image diagnosis was over 65%, the image diagnosis 

could be done correctly with accuracy equal to the human visual calculation of damage rate. 

 

 

 

(3) 

(4) 

(5) 
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Table 5 – Results of damage rate calculation 

 

 

 From the above results, the image diagnosis system can be proposed as shown in Fig. 5. In this paper, 

after damage extraction and denoising, damage rate could be correctly and quantitatively calculated in the 

range over 65%. 

 

Fig. 5 –System of damage rate calculation based on image diagnosis 

No. 1 2 3 4 5 

O
ri

g
in

al
 

im
ag

es
 

     

E
x

tr
ac

ti
o

n
 

re
su

lt
s 

     

 
A side: 79.5% 

B side: 98.8% 
71.4 % (2F) 

27.5% (1F) 

8.8% (2F) 

64.3% (1F) 

0% (2F) 
23.3% (2F) 

1st 
A side: 71.6%, 

B side: 98.7% 
81.7% (2F) 

15.2% (1F) 

42.2% (2F) 

65.3% (1F) 

0% (2F) 
34.5% (2F) 

2nd 
A side: 70.3% 

B side: 96.9% 
81.8% (2F) 

13.1% (1F) 

48.2% (2F) 

86.9% (1F) 

0% (2F) 
42.0% (2F) 

3rd 
A side: 89.8% 

B side: 98.2% 
81.1% (2F) 

13.7% (1F) 

47.1% (2F) 

83.4% (1F) 

0% (2F) 
34.5% (2F) 

ERh 
A side: 21.7% 

B side: 1.8% 
0.9% 

13.8%(1F) 

12.4% (2F) 

24.9% (1F) 

0% (2F) 
17.9% 

ERd 
A side: 11.4% 

B side: 1.9% 
12.7% 

52.4%(1F) 

81.7% (2F) 

26.0% (1F) 

0% (2F) 
44.5% 

A side B side 

Shooting whole house images 

Damage extraction 

Semantic segmentation 

Noise Reduction 

Pre- and post-image processing 

Damage rate calculation 

 

Quantitative  

damage assessment 

Detailed diagnosis 

required 

100% 

65% 
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4. Estimation of Structural Drift Ratio Based on Surface Damage Image Diagnosis 

In the image diagnosis system, the damage which appears on the exterior walls was assessed. This damage 

assessment results could be used for calculating repair cost and evaluation of repair performance. On the 

other hand, the seismic performance could not be assessed by using only the image diagnosis system without 

structural earthquake response. Thus, in this chapter, it was considered that combining the image diagnosis 

system and structural earthquake response estimation method. 

 In the current inspection [6] in Japan, estimation methodology as shown in Table 6 in order to estimate 

experienced maximum drift ratio and residual seismic performance of timber houses is often used. The 

estimation of experienced maximum drift ratio is conducted based on inspection of superficial damages such 

as exterior wall damage and interior wall damage. Since there is a possibility of upgrading of image 

diagnosis system, the applicability was examined. 

 

Table 6 – Estimation methodology of the current inspection in Japan [6] 

 
Type of exterior wall 

Mortar Siding board 

M
ax

im
u
m

 e
x
p
er

ie
n
ce

d
 d

ri
ft

 r
at

io
 

(r
ad

.)
 

~1/300 Minute cracks around opening corner ― 

~1/200 Cracks around opening corner ― 

~1/120 Expansion of cracks around opening corner Nails are about to come off 

~1/60 Cracks around the opening without corner Cracks around opening corner 

~1/45 
Expansion of cracks around opening 

without corner 

Expansion of cracks around opening corner 

/ A board is about to come off 

~1/20 
A crack on flat parts of wall without 

opening 

A crack around the corner of opening goes 

up and down 

Over 

1/20 
cracks on flat parts of wall without opening 

Cracks around the corner of opening go up 

and down 

 

 Moreover, the estimation methodology was proposed mainly for Japanese timber houses which were 

built according to the seismic standard before 2000. Because of the revision of Japanese seismic standard for 

timber houses in 2000, the estimation methodology needs to be improved. Therefore, in order to apply the 

methodology to houses which were built after 2000, the methodology was upgraded by the previous 

experimental results [7][8] and experimental results of full-scale timber specimens [9][10] in this research.  

 Fig. 5 shows the upgraded estimation method. The estimation of drift ratio of timber houses based on 

the current seismic standard houses was smaller than that of timber houses based on the old standard. This 

was because, the value of stiffness and maximum strength of timber houses based on the current standard 

became higher than that of old standard. Therefore, it was suggested that when the estimation method based 

on the old standard was applied to the timber houses based on the current standard, the estimation results 

could be higher than actual drift ratio. 

 Table 7 shows the estimation results using the image diagnosis results. It was confirmed that the 

maximum experienced drift ratio of each images was estimated. And also, using meta-data, which was the 

difference of construction years, it was suggested that the estimation results could be obtained more 

appropriately. 
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Cracks around the 
corner of the opening 
go up and down 

 A crack around the 
corner of the opening 
goes up and down 

 Cracks around the 
opening corner 

1/60 1/27 1/20 

Drift ratio (rad.) 

Spalling 

Cracks on flat 
parts of wall 

 A crack on flat 
parts of wall 

Cracks around 
opening without 
corner 

Cracks around 
opening corner 

1/200 1/60 1/20 

Drift ratio (rad.) 

Siding board Mortar 

0 0.02 0.04 0.06 

Before 2000 After 2000 

Substitute for novel estimation 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 –Drift ratio estimation classified by construction year 

 

Table 7 – Drift ratio estimation results 

 

 

 

No. 1 2 3 4 5 

O
ri

g
in

al
 

im
ag

es
 

     

E
x
tr

ac
ti

o
n
 

re
su

lt
s 

     

D
ri

ft
 r

at
io

 e
st

im
at

io
n
 

B
ef

o
re

 2
0

0
0
 

Up to 1/15 rad. Up to 1/15 rad. Up to 1/60 rad. Up to 1/15 rad. Up to 1/27 rad. 

A
ft

er
 2

0
0

0
 

Up to 1/20 rad. Up to 1/20 rad. Up to 1/75 rad. Up to 1/20 rad. Over 1/20 rad. 

A side B side 
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5. Concluding remarks 

In this paper, quantitative seismic damage assessment method based on image diagnosis utilizing deep 

learning and pre- and post-image processing was proposed and verified. As a result, the following three 

findings were revealed. 

(1) The real image database was not always required for construction of image database for deep learning, 

but pseudo-damage image database made by chroma-keying could be effectively used for deep learning, 

which made the damage extractor with enough learning and recognition accuracy. 

(2) The quantitative seismic damage assessment could be conducted based on image diagnosis results. The 

threshold value for appropriate damage quantification was over 65% damage rate. 

(3) Based on image diagnosis results, the range of experienced maximum drift ratio was estimated. It was 

suggested that these estimation results could be additional data for quantitative damage assessment for 

Japanese timber houses. 
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