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Abstract 

This study explores the implementation of Bayesian finite element model updating, by combining operational acceleration 

and strain data from a sparse array of sensors, to detect the damage which would have incurred in a structure during an 

earthquake. A small-scale model of four-story, single bay, shear building model was fabricated. The building was 

instrumented with accelerations at floor levels and strain gauges at the columns, closer to the floor. At first, the story 

stiffness of the model was evaluated using static pull tests. The model was then mounted on a miniature shake table and 

was subjected to white noise base excitation to simulate ambient conditions. Both displacement and strain modal 

parameters were recovered from simulated ambient vibration data measured using data from the accelerometers and strain 

gauges. Further, stochastic subspace algorithm (SSID) was used to identify the natural frequencies, displacement mode 

shape amplitudes, and strain mode shape amplitudes. The identified modal parameters of the healthy structure are then 

used to update an analytical model of the system, which had been developed based on the physical geometric 

measurements of different elements and compared with experimentally obtained stiffness of the elements. Further, a 

damage scenario is simulated by loosening of the bolts in the first floor. The modal parameters of the damaged model are 

then identified and used to again update the analytical model. Markov Chain Monte Carlo (MCMC) simulation using the 

Metropolis-Hastings algorithm is used for generation of posterior distributions of the unknown stiffens parameters. The 

results of the study demonstrate that utilization of strain data for model updating significantly improve the updating 

results. Further studies are however needed to understand sensitivity of sensors and their locations on damage 

identification.   

Keywords: Post-earthquake condition assessment; Multi-sensor data fusion; Bayesian FEMU; OMA 

1. Introduction

1.1 Background 

In the context of civil infrastructure, the importance of structural health monitoring (SHM) in life safety and 

providing long term economic benefit is well accepted. Among the various schemes of structural condition 

assessment, which have evolved over the years, vibration-based [1,2] methods have gained significant attention 

of the researchers. This is because the vibration-based techniques are found to be far superior than visual 

inspection [3], non-destructive [4] and static based methods [5,6]. Vibration based SHM schemes can be used 

to mitigate issues such as subjectivity of different inspectors and inaccessibility of damaged locations.  Further, 

damages, which are not visible to the naked eye, can also be easily dealt in a superior fashion using vibration-

based techniques. Also, in the aftermath of a damaging event such as a strong earthquake, a decision to vacate 

or reoccupy a building can be taken utilizing operational data in the context of vibration-based health 

assessment.  

Over the past few decades, there had been a significant development in sensor [7] technologies, both 

wired and wireless [8] ones, and the field of SHM has benefited immensely from this advancement. It is now 

well-known that each type of sensor and data have their own advantages and disadvantages. For example, 

displacement mode shapes can easily be recovered through acceleration data. However, these mode shapes are 

3f-0031 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 3f-0031 -

mailto:samitrc@iitk.ac.in


17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

2 

often less sensitive to some particular damage in comparison to the strain mode shapes, which are evaluated 

through strain data as damage are often very localized [9]. Further, from acceleration data alone, it is not 

feasible to detect permanent and quasi-static deformations, which may be easily inferred from strain data. 

Acceleration measuring devices such as force balance and piezo-electric accelerometers, which are generally 

used in operational modal analysis [10,11], usually produce data with significantly high signal to noise ratio. 

But the data from foil-based strain gauges [12] can easily get noisy depending on many factors. Installation of 

foil-based strain gauges can be more laborious as compared to accelerometers. Certain locations in a structure 

such as near to the base of a building, strain readings are usually higher compared to the acceleration reading. 

But free ends usually provide high acceleration readings and less strain readings. Hence, a combination of data 

from various sensors is envisioned to provide better accuracy of an SHM scheme. 

Multi-sensor data fusion (MSDF) [13,14] is the technique in which data from various sensors are 

combined rather than using only one type of data. Installing a dense array of sensors, which covers all the 

important degrees of freedom of a structure, is highly uneconomical considering the cost of sensors, wiring, 

data acquisition system, labour, maintenance etc. The large amount of data from such a dense array of sensors 

also increase the storage and computational burden on host machines. Thus, most MSDF methods aim to 

extract quality information from a sparse array of heterogeneous sensors. MSDF can be used (i) to avoid 

numerical integration and differentiation which otherwise would introduce error, (ii) reconstruction of 

responses at locations that are not instrumented, and (iii) for considering the effects of environmental factors 

such as changes in temperature. There are a few studies where displacement and velocity measurements are 

combined [15], while a few other papers considered fusing displacement and acceleration data to extract 

meaningful information [16, 17]. Research studies focusing on combining data from (i) acceleration and strain 

sensors [18,19,20] and strain, acceleration and displacement sensors [21] are also available.    

Over the last few decades Bayesian finite element model updating (FEMU) [22,23,24,25] has emerged 

as one of the most powerful tools for model-based damage detection. The Bayesian framework of probability 

offers an effective way to quantify various uncertainties, and to combine useful information from both 

mathematical models and experimental data. Although Bayesian inference can also be used for model class 

selection, in the present work, it is assumed that the mathematical model of the problem is known a priori and 

only the prior distributions of the mathematical model are updated by using the various experimentally 

identified modal parameters and simulation.  

 

1.2 Motivation and Scope 

Majority of studies which had been done in Bayesian FEMU in the context of damage detection, focuses only 

on displacement modal parameters. The purpose of this study is to include both displacement and strain modal 

parameters from strategic locations for better model updating. For this purpose, a small-scale model of four-

story, single bay, shear building model was fabricated. Accelerometers were installed at the floor levels while 

strain gauges were installed at the columns, closer to the floor. At first, the story stiffness of the model was 

evaluated using static pull tests. The model was then mounted on a miniature shake table and was subjected to 

white noise base excitation to simulate ambient conditions. Both displacement and strain modal parameters 

were recovered from simulated ambient vibration data measured using data from the accelerometers and strain 

gauges. Further, stochastic subspace algorithm (SSID) was used to identify the natural frequencies, 

displacement mode shape amplitudes, and strain mode shape amplitudes. The identified modal parameters of 

the healthy structure are then used to update an analytical model of the system, which had been developed 

based on the physical geometric measurements of different elements and compared with experimentally 

obtained stiffness of the elements. Further, a damage scenario is simulated by loosening of the bolts in the first 

floor. The modal parameters of the damaged model are then identified and used to again update the analytical 

model. Markov Chain Monte Carlo (MCMC) simulation using the Metropolis-Hastings algorithm is used for 

generation of posterior distributions of the unknown stiffens parameters. 
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2.   Strain Modal Analysis 

 

This section reviews the formulation of strain modal analysis, where it is assumed that a finite element model 

exists. If 𝜺e is the vector containing elemental strains, then it is related to global displacement vector u as 

follows: 

                                                                        𝜺e  = Au                                                                                   (1)  

where A is the matrix, which maps global displacements to elemental strains. If N is the total number of 

elements and n is the total degrees of freedom of the model, εe will have dimensions Nx1 and u will have 

dimensions nx1.  

Now, the dynamic equilibrium equation for a multi-degree of freedom system is given as 

                                                     𝑴𝒖̈(𝒕)  +  𝑪𝒖̇(𝒕)  +  𝑲𝒖(𝒕)  =  𝒇(𝒕)                                                   (2)          

In Eq. 2, M, C, and K are the mass, damping and stiffness matrices, respectively, and f(t) is the forcing vector. 

The modal decomposition of the responses of such a system in terms of real displacement mode shape is given 

as 

                                                               𝒖(𝒕)  =  𝚽𝒒(𝒕)                                                                                 (3) 

where 𝝓 is the displacement mode shape matrix and q(t) is the vector of the modal coordinates. From Eqs.1 

and 3, one can write, 

                                                                𝜺𝒆  =  𝑨𝚽𝒒(𝒕)                                                                                   (4) 

The strain mode shape matrix 𝚿𝒆 is defined from Eq.4 as follows: 

                                                                 𝚿𝒆  =  𝑨𝚽                                                                                         (5) 

In a similar manner, the strain frequency response function (FRF) 𝑯𝜺(𝝎) can be derived from the displacement 

FRF  𝑯(𝝎) as  

                                                       𝑯𝜺(𝝎)  =  𝑪𝑯(𝝎)                                                                                      (6) 

 

3.   Bayesian Finite Element Model Updating 

Bayesian model updating is a statistical tool to minimize the error in the outcomes of a physical process from 

its mathematical model. The following relation is employed for Bayesian model updating schemes: 

                                    Posterior distribution Likelihood Prior distribution 
                              

(7) 

Prior distribution for any model parameter is determined based on the available knowledge about the parameter. 

The term likelihood is a probabilistic function which relates the plausibility of getting the observed outcome 

of the physical process for a given value of a parameter of the mathematical model. Finally, the term posterior 

distribution gives a more favorable distribution for the model parameters by operating the likelihood function 

on the prior and thus, refining the prior distribution to posterior. 

Mathematically, if the outcome of the mathematical model is expresses as ( ; )x i a  for some model class with 

model parameter vector a  and system input 
iZ  for 1,2...i n=  time steps for each time step then the 

experimental/real time outcome of the physical process can be related to ( ; )x i a as: 

                                                     ( ) ( ; ) ( ; )y i x i a e i a= +          1,2,...i n=                                                          (8) 

Eq. 8 comprises of a deterministic part ( ; )x i a  and a random part ( ; )e i a (error or difference of mathematical 

and experimental/real time outcome). The random part ( ; )e i a  can be represented with some probabilistic 

distribution. If (1), (2),... ( )e e e n  represent the error distribution functions for each time step, then the error 

probability model for n time steps can be represented as some function of these error distribution functions. 
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                                               ( | ) ( (1),..., ( ); )n

np E h e e n =                                                                           (9) 

where   is a vector of variances of (1), (2),... ( )e e e n . Therefore, the total uncertain parameter vector comprises 

of the uncertain model parameters vector a  and the uncertain variances vector    and can be represented with 

a vector   as shown in Eq. 10. 

                                                             [ , ]
T T Ta =                                                                                      (10) 

Given the error probability model as defined in Eq. 9, the outcome probability model conditioned on the 

parameter vector   and input nZ  can be defined as 

( | , ) ( (1),..., ( ); , )n n n

np Y Z f y y n Z =  

                                                                  ( (1) (1; ),..., ( ) ( ; ); )nh y x a y n x n a = − −                                       (11) 

if ( )  represents the prior joint distribution of unknown parameters, then the joint probability of outcome 

probability model with parameter vector  conditioned on input nZ can be written as  

                                            ( | ) ( (1),..., ( ); , ) ( )n n n

np Y Z f y y n Z   =                                                      (12) 

Integrating Eq. (12) over the space S
 of parameter vector   

the marginal distribution of outcome probability 

model conditioned on input nZ  can be given as 

                                                 

( | ) ( ; , ) ( )n n n n

n

S

p Y Z f Y Z d



   =                                                             (13) 

Now, if D  represents a data set of input 
mZ and output 

mY  for ‘m’ time steps, then mathematically the relation 

   Posterior distribution Likelihood Prior distribution   can be expressed as 

 ( | ) ( | , ) ( )m m mp Y kp Y Z   =  

                                                                    ( ; , ) ( )m m

mkf Y Z  =                                                           (14) 

where 

1 ( | )m mk p Y Z− =          (15) 

Thus, with the information of the prior distributions and experimental outcome, one can obtain a more 

favorable posterior distribution of unknown parameters employing Bayesian approach. In this work, the well-

accepted Gaussian likelihood for frequency and mode shape components are used. The details of the 

formulation can be found in Prajapat and Ray-Chaudhuri (25). It may be noted here that, with the increased 

number of unknown parameters, the dimensionality of parameter space S   increases. This makes the 

analytical evaluation of Eq. 14 difficult. Therefore, in this work Markov Chain Monte Carlo (MCMC) 

simulation is employed to draw samples from a higher dimensional joint distribution. A brief discussion on 

Metropolis-Hasting sampling algorithm is presented in the next section, which is used in this work to draw 

samples under MCMC environment.  
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3.1 Metropolis-Hasting Algorithm 

A Markov chain is said to be reached stationary distribution when it satisfies the following equation: 

                                              ( ) ( , ) ( ) ( , )x q x y y q y x =                                                                               (16) 

In Eq. (16),   is the target distribution and q  represents the transitional probability distribution function 

which gives the transition probability from one realization of random value to other realization. In case when 

the exact transition probability function is not known, the transition probability function (often known as 

proposal distribution) has to be assumed. In such case, Eq (16) becomes 

                                                         ( ) ( , ) ( ) ( , )x q x y y q y x                                                 (17)                                                                                                                                                                                 

Metropolis-Hasting sampling algorithm provides a way to reach the stationary distribution in Markov chain 

by introducing a probability of move ( , )x y  as given by the following relation: 

( ) ( , )
( , ) min ,1 ,

( ) ( , )

y q y x
x y

x q x y






 
=  

 
  ( ) ( , ) 0x q x y                                            

                                                   1=                                  otherwise                                                                 (18) 

So, the proposed sample from the proposal distribution is accepted with a probability ( , )x y to achieve the 

target distribution . 

3.   Experimental Investigation  

 

3.1 Experimental Set-up and Instrumentation  

 

The set up consisted of a single-bay, four-storey shear building, made from mild steel plates of thickness 2mm 

and width 30mm. Total height of the building was 1286mm. To simulate floor masses, 14mm thick steel plates 

were used. Bolted connections were used for ease of assembling and removal of various elements. A schematic 

diagram showing relevant dimensions are provided in Fig. 1. To characterize the story stiffness of the model, 

static pull test was carried out. In this test, each floor was pulled laterally using a loading pan and pulley 

arrangement and the corresponding floor displacements were measured using a non-contact laser distance 

meter. The purpose of using the non-contact device instead of conventional linear variable differential 

transformers (LVDTs) for measuring the displacement of the frame was to make sure that the stiffness of the 

frame was not affected by measurement device. The loading was done for each story and the load was increased 

by adding different weight till significant displacement was noted. By using this procedure, the load verses 

deformation curve was generated, for each combination of loading and measurements point. Based on this, the 

flexibility matrix was evaluated. The flexibility matrix was then utilized to evaluate the story stiffness 

corresponding to each floor. This information of story stiffness was then used later to check the accuracy of 

model updating.  

 

For shake table tests, the model was instrumented with 4 piezo-electric accelerometers (PCB 393B04) and 8 

foil-type stain gauges (TML FLA-3-350-11) as shown in Fig. 2. Thus, each floor had one accelerometer, and 

the columns at one side had 2 strain gauges installed on these, one at each end. Further, to capture input motion 

to have an idea of base excitation intensity, one accelerometer and one LVDT were used as can be seen from 

Fig. 2. NI PXIe-1062Q chassis was used for data acquisition and NITB-43330 8 channel bridge input card was 

used for strain gauges. The input ground motion was generated on Keysight 33500B series signal generator 

and was amplified by Beak power amplifier BAA 1000. The amplified signal was given to a linear 

electromagnetic shaker (www.dataphysics.com), which in turn was connected to a miniature shake table 

through floor mounting bolts.  
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                    (a)                             (b) 

Fig.1: (a) Schematic diagram showing various dimensions of the model and (b) Experimental set-up of static 

pull test for stiffness evaluation 

 
Fig. 2: Picture of model on shake table showing sensor details 

 

3f-0031 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 3f-0031 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

7 

3.2 Experimental Procedure and Damage Scenario  

 

Once the model was fixed on the shake table, a band-limited white noise (upper cut 40 Hz) was given as input 

to simulate ambient excitation. The data from all sensors, i.e., accelerometers and strain gauges were recording 

for approximately eight minutes. This test was repeated several times to get an idea of repeatability.  

 

Further, in order to study the case of damage detection, a damage scenario was simulated by loosening four 

bolts of the first floor out of total eight bolts as shown in Fig. 3. One can note from Fig. 3a that all eight bolts 

are present, while in Fig. 3b only 4 bolts are loosened as shown by red circles. After the removal of the bolts, 

tests were conducted in the same manner as that of the undamaged case. Several trials were also made for this 

case and all strain and acceleration data were recorded.  

 

                                                        
                                                            (a)                                            (b)                                             

Fig. 3: Picture depicting: (a) Undamaged state and (b) Damage case with loosened bolts 

 

 

4.   Results and Discussion  

 

4.1 Experimental Results   

 

For system identification, well-known stochastic subspace identification (SSID) approach was used. The 

results were verified using stabilization diagram. Table 1 provides the natural frequencies obtained for three 

trials using both acceleration and strain data for the undamaged case. Mode shapes obtained from experiments 

are shown Table 2 using both acceleration and strain data. One can note that estimates of natural frequencies 

are quite close using both strain and acceleration data. However, displacement mode shapes obtained from the 

acceleration data are different than those from the strain mode shapes. As mentioned earlier, the both data have 

unique advantages in terms of identifying damage. The results for the damage case are not shown here to save 

space.  

 

Table 1: Natural frequencies obtained from experiment for undamaged case 

 

Trials 

Mode 1 

(Hz) 

Mode 2 

(Hz) 

Mode 3 

(Hz) 

Mode 4 

(Hz) 

 Acceleration data 

Trial 1 2.8431 11.3448 16.7702 20.5879 

Trial 2 2.8406 11.3477 16.7699 20.5869 

Trial 3 2.8608 11.3200 16.7647 20.5976 

 Strain data 

Trial 1 2.8443 11.3533 16.7692 20.5883 

Trial 2 2.8355 11.3344 16.7711 20.5873 

Trial 3 2.8448 11.3444 16.7524 20.5966 
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Table 2: Mode shapes obtained from experimental data (undamaged case)  
 Floor Mode 1 Mode 2 Mode 3 Mode 4 

  Acceleration Data 

 

           Trial 1 

4 1.0000 1.0000 1.0000 1.0000 

3 0.9135 0.0443 -1.0859 -1.9489 

2 0.7467 -1.0228 -0.6017 1.8948 

1 0.5380 -0.8796 1.5259 -1.2326 

 

           Trial 2 

4 1.0000 1.0000 1.0000 1.0000 

3 0.9140 0.0405 -1.0863 -1.9485 

2 0.7483 -1.0223 -0.6006 1.8932 

1 0.5424 -0.8767 1.5243 -1.2288 

 

           Trial 3 

4 1.0000 1.0000 1.0000 1.0000 

3 0.9122 0.0405 -1.0852 -1.9499 

2 0.7467 -1.0170 -0.6027 1.9016 

1 0.5381 -0.8827 1.5227 -1.2476 

  Strain data 

 

           Trial 1 

4 1.0000 1.0000 1.0000 1.0000 

3 1.9735 1.0024 -0.2110 -1.1416 

2 2.5188 -0.1420 -0.8232 0.7690 

1 3.5299 -1.1148 0.7351 -0.4038 

            

          Trial 2 

4 1.0000 1.0000 1.0000 1.0000 

3 1.9728 1.0055 -0.2113 -1.1416 

2 2.5210 -0.1316 -0.8241 0.7705 

1 3.5344 -1.1116 0.7344 -0.4037 

            

          Trial 3 

4 1.0000 1.0000 1.0000 1.0000 

3 1.9718 1.0038 -0.2064 -1.1430 

2 2.5210 -0.1346 -0.8267 0.7767 

1 3.5320 -1.1112 0.7259 -0.4135 

 
4.1 Analytical Model    

 

An analytical model of the building was developed as a base model for the undamaged case.  The modeling 

was done considering shear building assumptions and considering the properties of mild steel and utilizing 

geometric dimensions to get the stiffness matrices. The mass matrix was formed by weighing the individual 

components and using a consistent mass matrix for the connecting column elements. Since, the mass of the 

columns was not very low as compared to the floor masses, the consistent mass matrix was used instead of 

tributary mass commonly used for shear building. It was found that the assumption of consistent mass matrix 

provided better match with the experimental observed results of modal parameters.  

 

 

4.2 Updating results    

 

For model updating, the base model was considered, and the experimental data are used for forming likelihood 

functions. All story stiffness coefficients are considered as unknown. Exponential non-informative distribution 

with mean some arbitrary mean is taken as the prior distribution and Gamma distribution is chosen for the 

proposal distribution. Markov chain is run for a total of 1000 simulation for each unknown parameter. Modal 

data (Frequencies and mode shapes of four modes) from the known structure are considered. Metropolis-

Hasting algorithm is adopted to simulate the posterior distribution. A burning period of 200 and a thinning 
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parameter of 5 are used in Markov chain to get the final posterior distribution. Two sets of simulations are 

conducted. One with using modal parameters from only the acceleration sensors and the other by using modal 

data from both acceleration and strain data. The results are shown in Table 3. Experimentally evaluated 

stiffness values for the undamaged case (first column) are also provided in this table.                                                                         
One can notice that by using both strain data and acceleration data, the results improved noticeably as one can 

notice from the absolute deviation values. It may also be noted that, since the experimental stiffness 

coefficients were not evaluated for the damaged case, the absolute deviation in this case couldn’t be 

determined.                                         

 

Table 3: Evaluated unknown story stiffness parameters  
 Only acceleration 

data 

Both acceleration and 

strain data 

Unknown story stiffness 

parameters with actual 

value (kN/m) 

 

( 

Mean Absolute 

deviation 

(%) 

Mean Absolute 

deviation 

(%) 

Undamaged case 

k1 = 7.715 8.815 14.26 7.997 3.66 

k2 = 6.732 7.223 7.29 6.773 0.60 

k3 = 10.404 9.120 12.34 10.05 3.42 

k4 = 10.326 9.236 10.56 9.963 3.52 

Damaged case 

k1 8.253 - 8.341 - 

k2 6.839 - 6.780 - 

k3 8.953 - 8.963 - 

k4 9.178 - 9.180 - 

 

 

5. Conclusions  

 

This work demonstrates how operational acceleration and strain data from a sparse array of sensors can 

improve the model updating results in the framework of Bayesian finite element model updating. Experiments 

were conducted by fabricating a small-scale model of four-story, single bay, shear building model. The 

building was instrumented with accelerations at floor levels and strain gauges at the columns, closer to the 

floor. Actual stiffness of the model was evaluated using static pull tests and compared with the model updating 

results. Ambient excitation to the model was simulated using white noise base excitation on a miniature shake 

table. Using stochastic subspace algorithm (SSID), natural frequencies, displacement and strain mode shapes 

were evaluated. These results were then used for finite element model updating of the base model. It is found 

from this study that both strain and acceleration data provide similar identified frequencies. Further, it is noted 

that strain mode shapes are considered along with displacement mode shapes derived from the acceleration 

data, the updating results significantly. Hence, it may be concluded that the implementation of Bayesian FEMU 

by using natural frequencies, displacement mode shapes and strain mode shaped identified from OMA can 

lead to a more efficient SHM scheme. Future studies are however needed to understand sensitivity of sensors 

and their locations on damage identification.   
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