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Abstract 

Earthquake-triggered landslide is a highly serious issue, having caused important damages and considerable fatalities 

worldwide. The most popular software codes in geotechnical earthquake engineering (e.g. PLAXIS) experience big 

difficulties in reproducing this issue, mostly because do not consider large strains; they are necessary to reproduce the 

huge relative displacements involved in sliding. Other requirements prevent the use of such simulation tools: the boundary 

conditions need to incorporate some flexibility to describe the absorbing behavior, and the complexity of the nonlinear 

soil behavior during sliding must be characterized with many parameters, among other considerations. Conversely, the 

Newmark method was proposed long ago, and has been widely used, mainly because of its simplicity and reliability. 

However, the Newmark method involves important simplifications and has not been calibrated with time-history analyses, 

experimental results, or observed slides; thus, a number of improvements and generalizations have been reported so far. 

Inside this context, this work proposes a general approach that overcomes most of the limitations and weaknesses of the 

previous models but still provides a rather simple algorithm. The presented formulation considers the soil flexibility, 

accounts for the influence of the pore water pressure, and includes sliding criteria for both drained and undrained situations. 

Application examples of the proposed algorithm are presented: (i) sliding of a rigid block on a flat surface, (ii) comparison 

between the classical Newmark approach, (iii) influence of water pressure, (iv) influence of the soil flexibility, and (v) 

influence of the soil damping. 

This work is a part of a broader research activity on seismic stability of soil slopes; includes deriving simple but accurate 

numerical models of earthquake-triggered landslides, conducting parametric studies, and performing laboratory 

experiments. 

Keywords: Earthquake-triggered landslides; Newmark method; soil nonlinear time-history analysis; Sliding 

displacement. 
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1. Introduction 

Earthquakes can activate a number of geotechnical failures, such as liquefaction, loose deposits collapse, 

landslides, rock fall, rock avalanches, and landslide dams. Among these effects, soil and rock landslides are 

highly damaging [1]; thus, this study focusses on earthquake-triggered landslides. 

The stability of slopes subject to earthquakes can be evaluated in several ways. The simplest approach 

is the pseudo-static analysis proposed in [2]. Such strategy consists basically in generalizing the classical static 

limit equilibrium method to the dynamic case; the stability of the most critical soil volume is checked by 

assuming that the seismic acceleration is represented by a static force. That force is related to the earthquake 

acceleration; some works propose to consider the maximum acceleration, others the average one, and others a 

given percentage of the maximum one [3]. In the pseudo-static analysis, the soil is assumed to be rigid; as a 

result, this formulation tends to be conservative [4-5]. In fact, many slopes experienced earthquake 

accelerations well above the yield threshold but suffered little or no permanent displacement [6]. Conversely, 

as this approach is highly inaccurate, the analyzed slopes could be unstable even if the safety factor is greater 

than 1 [2]. Another limitation of this strategy approach is the lack of any provided information on permanent 

displacements. 

Complex finite element analyses can be used instead, but are not particularly well suited to reproduce 

landslides, given that such phenomena are highly complex, involving important discontinuities (i.e. slide 

displacement) and soil nonlinear behavior. Regarding the slide displacement, it can be reproduced with virtual 

highly flexible contact materials undergoing large strains, but most of the available software codes in 

geotechnical engineering do not consider large strains. Recent works try to overcome this difficulty by 

extending the original formulations or proposing meshless methods [7-9]. Concerning the nonlinear behavior, 

can be adequately reproduced, but an important number of soil parameters is required. Another difficulty is 

the necessity to consider absorbing boundary conditions in the analyzed soil domain; this is required to avoid 

unrealistic wave reflection. Moreover, the calculations involve an important number of operations, thus 

becoming impractical for day or mass use, as in Geographical Information Systems. 

Given the above considerations, the Newmark method [10] was proposed as a simplified, although 

reliable, method to assess the seismic slope stability and to calculate its permanent displacement. The Newmark 

method analyzes, in a basic way, the dynamics of a rigid block sliding on a flat rough surface under earthquake 

shaking. Given its simplicity and reliability, the Newmark method has been widely used, both for research [11-

12] and practical applications. Conversely, this strategy is oversimplified, and has not been fully calibrated 

with accurate nonlinear dynamic analyses, experimental results or observations from actual earthquakes; given 

this inaccuracy, the users themselves must judge the significance of the calculated displacement [12-13]. A 

number of improvements of the Newmark method have been proposed; the works [13-14] present detailed 

reviews. Some rather recent studies propose more accurate algorithms [15-20]. These strategies release most 

of the simplifications in the Newmark method; this work presents a formulation that tries to be accurate, 

reliable and general, while keeping most of the simplicity of the original Newmark approach. This research 

belongs a broader research initiative that involves testing and parametric analyses on actual situations. 

2. Proposed formulation for seismic soil slope stability analysis 

2.1. Introductory remarks 

The proposed formulation is a simplified approach to estimate the slide displacement of a slope triggered by a 

known seismic acceleration. The sliding wedge is represented by a cubic block resting on an inclined flat 

surface. Two versions of the formulation are presented in the next two subsections; in 2.2 (more simplified) 

the block is considered infinitely rigid, and in 2.3 its flexibility is taken into consideration. 

2.2. Formulation for rigid block 

As discussed in subsection 2.1, the proposed formulation estimates the slide of a rigid block lying on a flat 

inclined surface parallel to the slope (soil surface). Figure 1.a shows such a situation, and Figure 1.b exhibits 

the actual sliding case (wedge) that the sketch in Figure 1.a is intended to represent (albeit only approximately).  
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(a) Forces acting on the block (b) Actual situation to be represented 

Figure 1.  Rigid block sliding on a flat surface 

Figure 1.a displays a block lying on an inclined plane with angle . In Figure 1.a, W and H represent the 

weight and height of the block, and T and N are the parallel (shear) and orthogonal (normal) reaction forces, 

respectively. The lower (darker) part of the block is below the water table; r is a dimensionless coefficient 

(ranging between 0 and 1) characterizing the water table position. The absolute parallel block displacement is 

denoted as , and �̈�g is the horizontal seismic ground acceleration at the base (excitation). The two other 

components of the ground motion (vertical and horizontal inside the sliding plane) are not relevant, given that 

their influence on the block sliding is only moderate [21]. Noticeably, Figure 1 shows that only negative values 

of seismic acceleration are able to trigger a downward slide. 

There are two possible conditions in the contact surface: stick (the relative displacement between the 

block and the base,  − ug cos , is constant) and slip ( − ug cos  is not constant). Under stick condition, the 

equations of motion of the block in the parallel and orthogonal directions are given by 

𝑊 sin  − 𝑇 =
𝑊

𝑔
 �̈�g  cos  𝑊 cos  − 𝑁 = −

𝑊

𝑔
 �̈�g  sin  (1) 

If there is no water pressure (i.e. r = 0) or there is drained condition, the stick and slip conditions are 

defined by the Mohr-Coulomb criterion:  

|𝑇| ≤ 𝑐′
𝑊

 𝐻
+ 𝑁 (1 − 𝑟

w

) tan ′ = 𝑐′

𝑊

 𝐻
+  𝑁 (1 − 𝑟

w

) (2) 

In equation (2),  and w refer to the soil and water unit weight, and c’ and ’ are the effective soil 

cohesion and friction angle, respectively;  is the friction coefficient ( = tan ’). Noticeably, the cohesion 

term (𝑐′ 
𝑊

 𝐻
) should be only considered prior to the first slide; therefore, this contribution is commonly ignored 

in practical calculations. 

If r  0 (water pressure) and there is undrained condition, the stick and slip conditions are defined by:  

|𝑇| ≤ 𝑆u
𝑊

 𝐻
 (3) 

In equation (3), Su is the undrained strength; it behaves similarly to the cohesion, although it should not 

be considered only for the first slide but for the whole duration of the analysis. It should be kept in mind that 

Su might change during the seismic action. 
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Under slip conditions, the block equation of motion in the parallel direction should be modified; 

conversely, the equation in the orthogonal direction remains unaltered. Thus, for drained and undrained 

conditions, the left equation (1) becomes, respectively: 

𝑊 sin ±  𝑁 (1 − 𝑟 

w


) =

𝑊

𝑔
 ̈ 𝑊 sin± 𝑆u

𝑊

 𝐻
=
𝑊

𝑔
 ̈ (4) 

The right equation (1) remains unaltered; can be used to obtain N. 

In equation (4), the plus-minus sign arises from the fact that  𝑁 (1 − 𝑟
w


) or 𝑆u

𝑊

 𝐻
  is opposed to the 

relative velocity between the block and the ground; obviously, the positive and negative signs correspond to 

shear force going downhill and uphill, respectively.  

After equations (2) and (3), the stick-slip conditions are governed by the following conditions: 

▪ The analysis starts with stick condition; the first slide begins once the shear demand reaches the shear 

strength: |T| =  N (1 − 𝑟
w


) or |T| = 𝑆u

𝑊

 𝐻
. 

▪ Stick resumes when the relative velocity drops to zero (̇ = �̇�g  cos) and the shear demand is less than 

the shear strength (|T| <  N (1 − 𝑟
w


) or |T| < 𝑆u

𝑊

 𝐻
). 

▪ Slip starts again when |T| =  N (1 − 𝑟
w


) or |T| = 𝑆u

𝑊

 𝐻
. 

By replacing the shear strength conditions (|T| = 𝑐′
𝑊

 𝐻
+   N (1 − 𝑟

w


) or |T| = 𝑆u

𝑊

 𝐻
) in the equations of 

motion (1), the following critical values of the driving input acceleration are obtained:  

�̈�g = ± 𝑔 

𝑐′
 𝐻 cos+ (1 − 𝑟

w

) tan′ ∓ tan 

1± tan′ tan 
 

�̈�g = ± 𝑔 (
𝑆u

 𝐻 cos
∓ tan ) (5) 

Left equation (5) shows that the water pressure eases sliding, given that the effective stress term is 

reduced when r  0. 

Noticeably, by neglecting the contribution of the cohesion term and assuming that r = 0 (i.e. there is no 

water effect), the left condition in equation (5) becomes 

�̈�g = ± 𝑔 tan( ± ) (6) 

The original Newmark method [5,10] is a highly simplified approach to estimate the slide of a rigid block 

lying on a flat inclined surface (Figure 1.a). Apart from the simplifications in the previous development, the 

Newmark method does not contemplate the influence of water (r = 0) and considers other assumptions: 

▪ Under slip condition, the block sliding displacement is obtained by integrating two times the part of input 

acceleration that exceeds the critical level (i.e. the difference between the seismic acceleration and such 

level: �̈�g ∓  𝑔 tan( ± )). This situation involves a relevant simplifying condition given that equation (4) 

shows that the actual situation is different. 

▪ Only downward slip motion is considered; in practice this assumption is equivalent to remove the absolute 

sign in equation (2), and to take only the negative sign in equation (4). In this situation, left equation (5) 

becomes  

�̈�g = − 𝑔 

𝑐′
 𝐻 cos 

+(1−𝑟
w

) tan′+tan

1−tan′ tan
 and equation (6) turns into �̈�g = −𝑔 tan( − ). 

Noticeably, the results of Newmark method do not depend on the parallel extension of the block; this 

condition holds for the proposed strategy. 

The Newmark method has become very popular, given its simplicity; however, it involves several relevant 

simplifying assumptions that might impair its accuracy and reliability. By summing up the above description, 
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such suppositions are: (i) the slide of any soil volume is represented by the one of a cubic block (difference 

between Figure 1.a and Figure 1.b), (ii) the sliding block is infinitely rigid, (iii) the shear strength of soil is 

represented by a classical Mohr-Coulomb model, (iv) the upslope sliding resistance is infinitely large, as 

upslope sliding is not considered, (v) during sliding, the relative displacement between the block and the soil 

is described by double time integration of the portion of the seismic driving acceleration that exceeds the 

critical value, and (vi) the numerical integrations can be performed without special care to the numerical 

instability and inaccuracy. The proposed formulation releases the assumptions ii, iii, iv, v and vi. 

2.3. Formulation for flexible block 

As discussed previously, this subsection describes a more exact formulation accounting for the block flexibility. 

Figure 2 displays, similarly to Figure 1.a, the sliding block; Figure 2.a presents the discretization of the block 

with a lumped masses model, and Figure 2.b depicts the corresponding mechanical model. The bottom degree 

of freedom is denoted with “b”, accounting for “base”. The absolute parallel displacement of the base is 

represented by b, and the relative parallel displacement of the i-th degree of freedom respect to the base is 

termed as di. In Figure 2.b, mi, ki and ci refer to the mass, stiffness and damping associated to the i-th degree 

of freedom, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Flexible block modelling (b) Lumped masses model 

Figure 2. Flexible block sliding on a flat surface 

Under stick condition (b − ug cos  is constant), the motion of each lumped mass in the parallel direction 

is described by the following matrix equation: 

𝐌 �̈� + 𝐂 �̇� + 𝐊 𝐝 = −𝐌 𝟏 (�̈�g cos− 𝑔 sin )  (7) 

In equation (7), d is a vector that contains the parallel displacements of each DOF relative to the base 

(b), M and K are the mass and stiffness matrices, and 1 is the constant unit vector: 

𝐝 = (
𝑑1
⋮
𝑑n

) 

𝐌

= (
𝑚1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑚n

) 

𝐊

=

(

 
 
 
 

𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘2 + 𝑘3 −𝑘3
0 −𝑘3 𝑘3 + 𝑘4

⋱
𝑘n−1 + 𝑘n −𝑘n
−𝑘n 𝑘n )

 
 
 
 

 

𝟏

= (
1
⋮
1
) (8) 

The damping matrix C can be generated by a Rayleigh model as 𝐂 =  𝐌 +  𝐊.  

W 

z 

x 

H 

�̈�g 

n 

 

N 

T 

n − 1 

b 

2 
1 

r H 

mn 

mn −1 kn, cn 
b + dn 

b + dn −1 

 

.
4a-0001

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 4a-0001 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

6 

In the orthogonal direction, it is assumed that the block is infinitely rigid; then, both under stick and slip 

conditions, the motion is described (analogously to the second equation in (1)) by the following scalar equation: 

𝑔 𝟏𝐓 𝐌 𝟏 cos  − 𝑁 = −𝟏𝐓 𝐌 𝟏 �̈�g  sin   (9) 

In the sliding surface, the base shear force (similarly to the first equation in (1)) is given by 

𝑇 = − 𝟏𝐓 𝐌 �̈� − 𝟏𝐓 𝐌 𝟏 (�̈�g cos − 𝑔 sin )  (10) 

Like in equations (2) and (3), the stick and slip conditions under drained and undrained conditions are 

respectively defined by: 

|𝑇| ≤ 𝑐′ 
𝟏𝐓 𝐌 𝟏

 𝐻
+ 𝑁  tan ′  (1 − 𝑟

w

) = 𝑐′ 

𝟏𝐓 𝐌 𝟏

 𝐻
+  𝑁 (1 − 𝑟

w

) |𝑇| ≤ 𝑆𝑢  

𝟏𝐓 𝐌 𝟏

 𝐻
 (11) 

In the left equation (Mohr-Coulomb criterion), as discussed after equation (2), the cohesion term 

(𝑐′ 
𝟏𝐓 𝐌 𝟏

 𝐻
) should be only considered prior to the first slide; thus, it is commonly neglected. 

Under slip condition, a new DOF must be considered, given that the parallel motion of the base is not 

equal to that of the soil: b  ug cos . In drained condition, the corresponding n + 1 equations of motion are  

 𝑁 (1 − 𝑟

w


) = −(𝑚b + 𝟏

𝐓𝐌 𝟏) (̈b − 𝑔 sin ) − 𝟏
𝐓𝐌 �̈� 

(12) 
𝐌 �̈� + 𝐂 �̇� + 𝐊 𝐝 = −𝐌 𝟏 (̈b − 𝑔 sin ) 

The first (scalar) equation (12) is obtained by adding the n + 1 equations in (12); the second (matrix) 

equation correspond to the last n equations in (7).  

In undrained condition, equations (12) become: 

𝑆𝑢  
𝟏𝐓 𝐌 𝟏

 𝐻
= −(𝑚b + 𝟏

𝐓𝐌 𝟏) (̈b − 𝑔 sin ) − 𝟏
𝐓𝐌 �̈� 

(13) 

𝐌 �̈� + 𝐂 �̇� + 𝐊 𝐝 = −𝐌 𝟏 (̈b − 𝑔 sin ) 

Equations (12) or (13) are solved by eliminating ̈b; this leads to 𝐌∗ �̈� + 𝐂 �̇� + 𝐊 𝐝 = 𝐌 𝟏 
 𝑁 (1−𝑟

w

)

𝑚b+𝟏
𝐓𝐌 𝟏

 

or  𝐌∗ �̈� + 𝐂 �̇� + 𝐊 𝐝 = 𝐌 𝟏 
𝑆𝑢 

𝟏𝐓 𝐌 𝟏

 𝐻

𝑚b+𝟏
𝐓𝐌 𝟏

, where 𝐌∗  = 𝐌 −
𝐌 𝟏 𝟏𝐓 𝐌

𝑚b+𝟏
𝐓𝐌 𝟏

. Given that these equations have the 

same form that any standard linear matrix equation describing the motion of multi-degree of freedom systems 

(like (7)), all the available solution algorithms can be utilized. Once this equation is solved, the eliminated 

degree of freedom can be obtained by the first equation (12) or (13). 

Alike to the criteria exposed after equation (2), the stick and slip conditions are governed by the following 

conditions: 

▪ The first slide begins once the shear demand reaches the shear strength: |T| =  N (1 − 𝑟
w


)  or  

|𝑇| = 𝑆𝑢  
𝟏𝐓 𝐌 𝟏

 𝐻
. 

▪ Slip resumes when the relative velocity drops to zero (ḃ = �̇�g  cos ) and the shear demand is less than 

the shear strength (|T| <  N (1 − 𝑟
w


) or |𝑇| ≤ 𝑆𝑢  

𝟏𝐓 𝐌 𝟏

 𝐻
). 

▪ Slip starts again when |T| =  N (1 − 𝑟
w


) or |𝑇| = 𝑆𝑢  

𝟏𝐓 𝐌 𝟏

 𝐻
. 

Conversely to the rigid case (subsection 2.2), these conditions do not lead to any constant critical 

acceleration (such as equations (5) and (6)). On the other hand, as discussed previously, the formulation in 
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subsection 2.2 (rigid block) is independent on the parallel size of the block; this circumstance holds when the 

block flexibility is taken into consideration. 

The presented approach extends the original Newmark method, but preserves the advantages of a relatively 

simple mathematical scheme. It can be considered as a “coupled” formulation, according to the general 

classification of strategies for calculating earthquake-triggered slope slide [13,22]. 

3. Numerical examples  

3.1. General description 

This section describes preliminary application examples of the proposed algorithm. The objective is to 

highlight its ability to reproduce the block sliding behavior, to point out the difference with the classical 

Newmark method, and to investigate the influence of the water and the block flexibility and damping in the 

sliding displacement. Subsection 3.2 presents an example on the earthquake-triggered sliding of a block resting 

on a flat surface, subsection 3.3 compares results from the proposed approach and the Newmark one, 

subsection 3.4 discusses the influence of the water pressure, and subsections 3.5 and 3.6 explore the influence 

of the soil (block) stiffness and damping parameters, respectively. Finally, subsection 3.7 discusses global 

remarks. 

In all these examples, the driving ground motion is the FN (Fault Normal) Component of the Cholame-

Shandon Array #5 record of the 17-08-1966 Parkfield earthquake; that event had moment magnitude 6.69. 

This input has 0.444 g maximum acceleration, 0.863 m/s Arias intensity [23], and 6.50 s effective duration 

[24]. The average shear wave velocity in the top 30 m is vs,30 = 792 m/s; thus, the soil is classified as type B 

according to the American criteria [25].  

3.2. Sliding of a rigid block on a flat surface 

Figure 3 displays the results of the proposed algorithm by assuming that the block is infinitely rigid 

(subsection 2.2) and is sliding on a flat surface ( = 0). The block height is 8 m, and the main soil parameters 

are zero cohesion, unit weight 20 kN/m3 and friction angle 5º; no water effect is considered. Figure 3 

encompasses only the relevant (sliding) time interval.  

Figure 3 shows a regular behavior, with expected results. Figure 3.a displays the forcing accelerogram 

and the two critical levels (equation (6)), and Figure 3.b presents the sliding displacement. Comparison among 

such plots shows that the stick and slip conditions described in subsection 2.2 are fulfilled; the final sliding 

displacement is − 45 mm; the negative sign indicates a leftward displacement. 

3.3. Comparison between the Newmark and the proposed approaches 

Figure 4 presents a comparison between the results of the proposed algorithm (assuming that the block is 

infinitely rigid, subsection 2.2) and the classical Newmark algorithm. The block height is 8 m, the slope angle 

is 15º and the main soil parameters are zero cohesion, unit weight 20 kN/m3 and friction angle 25º; there is no 

water effect. Similarly to Figure 3, Figure 4 includes only the time interval where the sliding is concentrated. 

Figure 4.a displays the driving seismic acceleration and the critical level given by equation (6) with 

negative sign: �̈�g = − 𝑔 tan(− ) = −  0.176 𝑔 . Conversely, the level with positive sign ( �̈�g =

𝑔 tan(+ ) = 0.839 𝑔) is never exceeded, thus showing that upslope slide never occurs. Figure 4.b shows 

that the difference between the proposed formulation and the classical Newmark method is significant, being 

on the unsafe side. In this example, the final sliding displacement according to the Newmark and the proposed 

strategies are 12.2 and 13.9 mm, respectively (almost 14% increment). 
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(a) Driving ground motion (üg) 

 

(b) Sliding relative displacement ( − ug) 

Figure 3.  Results from the proposed formulation. Rigid block, H = 8 m,  = 0,  = 20 kN/m3, c = 0,  = 5º, 

r = 0 

 

(a) Parallel component of the driving ground motion (�̈�g  cos ) 

 

(b) Sliding displacement ( − ug cos ) 

Figure 4.  Comparison between the Newmark and the proposed formulation. Rigid block, H = 8 m,  = 

15º,  = 20 kN/m3, c = 0,  = 25º, r = 0 

3.4. Influence of water 

Figure 5 describes the results provided for the proposed algorithm in the same case considered in Figure 4, 

except for the presence of water pressure; the following values of r (Figure 1) are considered: 0, 0.1, 0.2, 0.3 

and 0.4. The Mohr-Coulomb criterion is used to describe the sliding condition (equation (2)). 
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(a) Parallel component of the driving ground motion (�̈�g  cos ) 

 

(b) Sliding displacement ( − ug cos ) 

Figure 5.  Influence of the water pressure with drained condition (Mohr-Coulomb criterion). Rigid block, 

H = 8 m,  = 15º,  = 20 kN/m3, c = 0,  = 25º, r = 0, 0.1, 0.2, 0.3, 0.4 

Figure 5.a displays the seismic acceleration and the critical level, as provided by equation (6) (with 

negative sign); such level decreases with increasing r, thus showing that the water pressure facilitates sliding. 

This trend is confirmed by Figure 5.b; the final sliding displacement is 13.8 mm (r = 0), 18.7 mm (r = 0.1), 

26.3 mm (r = 0.2), 40.0 mm (r = 0.3) and 57.9 mm (r = 0.4). 

Figure 6 presents a comparison between the drained and undrained conditions, equations (2) and (3), 

respectively. The considered situation is similar to the one in Figure 5 with r = 0.4; for the undrained condition, 

Su = 150 kPa is adopted. 

 

Figure 6.  Comparison between the results for drained and undrained conditions. Rigid block, H = 8 m,  = 

15º,  = 20 kN/m3, r = 0.4 

Figure 6 highlights the ability of the proposed algorithm to simulate the involved phenomena.  

3.5. Influence of the block flexibility 

This subsection presents an application of the formulation for flexible block described in subsection 2.3. As 

discussed in subsection 3.1, the average shear wave velocity in the top 30 m is vs,30 = 290 m/s; therefore, given 

that the soil unit mass is  = 2000 kg/m3,  the shear modulus is G =  2902 × 2000 = 168.2 MPa (𝑣s = √𝐺 ⁄ ). 

Then, by assuming that the Poisson ratio is  = 0.3, the elastic modulus is E = 168.2 × 2 × 1.3 = 437.32 MPa 

(𝐸 = 𝐺 2 (1 + )).  Given that the results of the analysis do not depend on the block dimensions in the parallel 

direction, a unit area (1 m2) is considered; then, the soil is discretized with 17 degrees of freedom (b-16, Figure 

r = 0 

r = 0.1 
r = 0.2 

r = 0.3 

r = 0.4 

r = 0 r = 0.1 r = 0.2 r = 0.3 
r = 0.4 
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2.a), thus, n = 16. The masses associated to each node are mb = m16 = 500 kg and m1 == m15 = 1000 kg. 

Given that the height of each discrete layer is 8 / 16 = 0.5 m (Figure 2.b), the stiffness coefficients are equal to 

ki = 168.2 N/mm2 × 1 m2 / 0.5 m = 3.364 × 108 N/m (i = 1−16). The damping matrix is generated after a 

Rayleigh model by imposing that in the 1st and 3rd modes there is a 5% damping ratio; the values of the 

combination coefficients are  = 1.50 s−1 and  = 9.34 10−4 s. The obtained damping ratios for the 2nd and 4th 

modes are 0.039 and 0.064, respectively; this shows an adequate compensation. 

After these mass and stiffness values, a linear eigenvalue (modal) analysis is performed. The first 

eigenvalue is 1 = 56.90 rad/s, corresponding to a soil fundamental period TF = 0.1104 s; this value is highly 

close to the classical approximation [5] given by TF = 4 H / vs = 4 × 8 / 290 = 0.110 s. This coincidence confirms 

the accuracy and reliability of the considered model. Another relevant output of this modal analysis is that the 

first mode mass participation factor is 81.81%; this highlights the feasibility of representing the block by this 

(fundamental) mode. 

Figure 7 presents a comparison between the results provided by the two versions of the proposed 

algorithm: assuming that the sliding block is infinitely rigid (subsection 2.2), and taking into consideration the 

block flexibility (subsection 2.3). The analyzed case is the same than in Figure 4. 

 

 

 

Figure 7.  Comparison between the results for rigid and flexible block. H = 8 m,  = 15º,  = 20 kN/m3, c = 

0,  = 25º, r = 0 

Figure 7 shows that the influence of the soil (block) flexibility is high. The sliding displacement obtained 

by assuming that the block is infinitely rigid is 13.8 mm (Figure 4), while the consideration of the block 

flexibility yields 43.9 mm.  

To further emphasize the accuracy and reliability of the proposed model, additional calculations are 

performed; such analyses correspond to intermediate values of the soil stiffness ranging between the actual 

value (E = 437.32 MPa) and infinite (rigid block, subsection 2.2). When the deformation modulus is multiplied 

by 10, 100, 1000, 10000 and 100000, the obtained displacements are 31.1 mm, 19.9 mm, 15.3 mm, 14.3 mm, 

and 13.8 mm, respectively. These results show that the calculated displacements tend to approach the value 

for E = ∞ (13.8 mm).  

3.6. Influence of the block damping 

This subsection discusses the influence of the soil (block) damping in the sliding behavior. Figure 8 displays, 

for the same case discussed in subsection 3.5, results for different values of the damping ratio. Noticeably, the 

three considered values (0.03, 0.05 and 0.10) cover the most feasible situations for actual soils possessing the 

characteristics of the considered one (shear wave velocity equal to 290 m/s); in fact, the highest value would 

correspond to severe damaged condition. 
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Figure 8.  Influence of the block damping. E = 437.32 MPa, H = 8 m,  = 15º,  = 20 kN/m3, c = 0,  = 

25º, r = 0 

Figure 8 shows that the influence of damping is significant. More precisely, the more damping, the less 

sliding displacement; this circumstance can be explained by the near-constancy of the input energy.  

3.7. Global remarks 

The results presented in the previous subsections point out that the proposed algorithm is capable to reproduce 

the block sliding behavior in the conditions discussed in its formulation (subsection 2). Whenever possible, 

the observed trends are interpreted in light of the expected behavior. 

4. Conclusions 

This paper presents a computationally efficient formulation to calculate the permanent displacement of flexible 

soil blocks resting on inclined rough surfaces and undergoing horizontal seismic shaking; noticeably, the 

influence of the water pressure is contemplated. The sliding criteria consider both drained (Mohr-Coulomb) 

and undrained conditions. A number of simulations are presented; they are selected to show the capability of 

the algorithm to reproduce all the considered issues, and to highlight its accuracy and reliability. All the 

obtained results are satisfactory; the procedure can be used to assess the safety conditions of slopes during 

earthquakes albeit keeping a low computational effort. 

Further research includes conducting parametric studies on actual slope situations, performing landslide 

experiments, and improving the capabilities of the proposed algorithm; such advances are oriented to consider 

the soil nonlinear behavior and to release the assumption of a specified (imposed) sliding surface. This last 

objective can be attained by checking the stick/slip condition at each node and time instant. 
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