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Abstract 

Unreinforced masonry structures, consisting of interacting distinct blocks, have been constructed since the earliest 

days of civilization, are still commonly built in many countries all over the world, and constitute a significant 

percentage of current structures. Many of these structures are located in seismically active regions and were built before 

the establishment of any design code requirements for earthquake-resistant construction. Compared with modern 

structures built of materials with well-understood constitutive laws, the mechanics of masonry structures are still not 

clearly understood in spite of their long use. The failures and damage reported in recent earthquakes attest to the need 

for efficient strengthening procedures and therefore an efficient analytical method for analysis of masonry structures. In 

this paper, first, the discrete finite element method (DFEM) developed by the author for analysis of blocky systems 

under static and dynamic loading is briefly presented. The DFEM consists of a mechanical model which represents the 

deformable blocks and contact models that specify the interactions among them. In the DFEM, a visco-elastic 

constitutive law for linear behavior and a visco-elasto-plastic constitutive law for nonlinear behavior of blocks and 

contacts are used together with an updated Lagrangian scheme. The DFEM calculates displacements at the joints as 

well as deformations within the blocks, which can be used to follow the processes of the failure mechanism of masonry 

structures under static and/or dynamic loadings. Through some illustrative examples, the applicability of the DFEM to 

the stability analysis of unreinforced masonry structures is investigated and discussed. It has been shown that the DFEM 

is capable of simulating large displacements of blocky systems, such as open rock slopes, underground openings, 

tunnels, fault propagation, and fault-structure interaction. It is concluded that the DFEM is a promising method for 

studying the stability of unreinforced masonry structures.  
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1. Introduction

Masonry structures, consisting of interacting distinct blocks, have been constructed since the earliest days of 

civilization, are still commonly built in many countries all over the world, and constitute a significant 

percentage of current structures. Many of these structures are located in seismically active regions and were 

built before the establishment of any design code requirements for earthquake-resistant construction. 

Compared with modern structures built of materials with well-understood constitutive laws, the mechanics of 

masonry structures are still not clearly understood in spite of their long use. The failures and damage 

reported in recent earthquakes attest to the need for efficient strengthening procedures and therefore an 

efficient analytical method for analysis of masonry structures. 

The analysis of unreinforced masonry and rock engineering structures excavated in discontinuous rock 

masses has been receiving particular interest among civil engineers, rock mechanics, and rock engineers. 

Since rock masses consist of distinct blocks due to geological discontinuities, several techniques have been 

developed to analyze masses consisting of distinct blocks. A literature review shows that during the last three 

decades, the limiting equilibrium analysis [1,2] and some numerical analysis methods such as the finite 
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element method (FEM) [3], distinct element method (DEM) [4], and discontinuities deformation analysis 

(DDA) [5] have been developed for the analysis of problems involving discontinuities in rock mechanics. 

  The DEM has been used for years in different industries (e.g., mining, civil engineering, and nuclear 

waste disposal) for the solution of problems involving deformation, damage, fracturing, and stability of 

fractured rock masses and masonry structures [6-9]. Recently, a number of modeling techniques have been 

developed to simulate coupled hydro-mechanical problems with the DEM; these methods have been 

reviewed by author [6,7]. For example, the Universal Distinct Element Code (UDEC), developed by Itasca 

Consulting Group, Inc. [10], utilizes an explicit solution scheme that can model the complex, non-linear 

behavior of media containing multiple intersecting joint structures. Joint models and properties can be 

assigned separately to individual discontinuities or sets thereof. The analysis of rock mass stimulation by 

fluid injection requires analytical tools, such as numerical models based on DEM, which can represent 

discontinuities explicitly [11]. A similar approach for simulation of fracturing and hydraulic fracturing of 

rocks is based on the combined finite element method (FEM) and DEM. The formulation of the method and 

some example applications are found in Rougier et al. [12]. In spite of all these techniques, it is difficult to 

say that a unique technique that guarantees satisfactory results has been developed. Although DEM and 

DDA can be used for the static and dynamic analysis of discontinuous media, the treatment of rate-dependent 

behavior of materials in these methods is not realistic. For example, DEM introduces a forced damping to 

suppress oscillations, while DDA adopts very large time steps so that artificial damping occurs as a result of 

numerical integration. 

 In this paper, first, the discrete finite element method (DFEM) developed by the author for analysis of 

blocky systems under static and dynamic loading [13-17] is briefly presented. The DFEM consists of a 

mechanical model which represents the deformable blocks and contact models that specify the interactions 

among them. In the DFEM, a visco-elastic constitutive law for linear behavior and a visco-elasto-plastic 

constitutive law for nonlinear behavior of blocks and contacts are used together with an updated Lagrangian 

scheme. The DFEM can handle large block motions within the framework of the finite element method. then, 

the applicability of the DFEM to the analysis of unreinforced masonry structures such as open rock slopes 

and pseudo-dynamic analysis of masonry arch structures will be presented and discussed. 

2. Modeling of Block Contacts  

Discontinuum is distinguished from continuum by the existence of discontinuities at contacts between the 

discrete bodies that comprise the system.  The actual geometry of contacts is never smooth and has asperities 

of varying amplitude and wave length (Aydan et al. 1989).  Relative sliding or separation movements in such 

localized zones present an extremely difficult problem in mechanical modeling and numerical analysis. The 

most suitable and mechanically sound approach in modeling slope discontinuities is band-type modeling. In 

this approach contacts between neighboring blocks are considered as bands with a finite thickness.  The 

thickness of the bands is related to the thickness of shear-bands observed in tests or in nature, and the height 

of asperities along the plane (Aydan et al., 1989).  For an idealized contact shown in Fig. 1, the average 

normal and shear stresses and strains are defined as follows: 
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where,  A and  h are the area and the thickness of the band;
n

F and
s

F stand for the normal and tangential 

forces; and
n

 and 
s

 denote the normal and  tangential deformations, respectively (Fig. 1). Furthermore, it 

is also possible to define the average strain rates 
n

 and 
n

 .  As a result, this model also enables one to 

define stress-strain rate dependent responses, objectively.  The problem is, then, to select a constitutive 

model such as an elastic, elasto-plastic or elasto-visco-plastic type constitutive law which is appropriate for 

modeling the mechanical behavior of contacts between neighboring blocks.  

3.  Discrete Finite Element Method (DFEM) 

The developed DFEM, in assessing the stability of rock block systems such as rock slopes, is based on the 

finite element method. It consists of a mechanical model to represent the deformable blocks and contact 

models that defines the interaction among them.  The deformation of blocks is assumed to be small unless 

they are allowed to rupture.  Small displacement theory is applied to the deformable blocks while blocks can 

take finite displacement.  The large deformation of blocky systems is associated with separation, translation 

and rotation of blocks.  Blocks are polygons with an arbitrary number of sides, which are in contact with the 

neighboring blocks, and are idealized as a single element or multiple finite elements. Block contacts are 

represented by contact elements.  

 

3.1 Mechanical Modeling  

The general equation of motion is given by 

  

          b u                                                                             (5) 

where  , b,  , and u  are stress tensor, body force, mass density, and acceleration, respectively. The 

following presentation is restricted to the framework of the small-strain theory. The strain  -displacement u  

relations are represented by 
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Fig. 1 : Mechanical model of a contact as a band 
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T  u u                                                                               (6)     

The strain rate -velocity v  relations are given by 

 

      
1

[ ( ) ]
2

T  v v                                                                                  (7)     

where v = u . The following constitutive relationship among stresses and strains and strain rates holds:  

 

      e v   D D                                                                                         (8)   

 

where 
eD and 

vD  are elasticity and viscosity tensors (Mamaghani, 1993), respectively. However, they can be 

replaced by elasto-plastic and visco-plastic tensors, if necessary. This type of constitutive law allows for the 

modelling of intact blocks as well as contacts, interfaces, or rock discontinuities. The boundary conditions 

are ˆu u  on u  and ˆ  t n  on t , where û  is the displacement on boundary u  and t̂  is the surface 

traction in the n direction on boundary t . The initial conditions are 
ou  and ˆ

ou  at 0t  .   

 

3.2 Finite Element Modeling 
In the following discussion, the finite element form of the equation of motion is derived. Taking a variation 

on u , the integral form of Eq. (5) can be written as  

 

      

( ) d d d
  
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                                                             (9)  

    

With the use of the Gauss divergence theorem and the boundary conditions, the weak form of the governing 

equation takes the following form: 

 

      ˆ ( )

t

d d d d
   

                t u b u u u u                                                 (10)     

Eq. (10) is discretized in the space domain by assuming displacements are approximated by the following 

expression: 

 

      ( )tu NU                                                                                         (11) 

 

where N  is the shape function. Using the approximate form and the constitutive law, the following 

expressions, in condensed form, are obtained for a typical finite element (Mamaghani, 1993; Mamaghani et 

al., 1999):   

 

        MU CU KU F                                                                               (12) 

 

where F is the force vector and M, C, and K, are the mass, damping, and stiffness matrices, respectively. 

They are defined as follows (Mamaghani, 1993):  
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3.3 Modeling of Contacts  

The contact element is used to model contacts of blocks in rock slope discontinuities.  Let’s consider a two-

nodded element ml,  in two-dimensional space and take two coordinate systems oxy  and yxo  as shown 

in Fig. 2.   Assuming that, the strain component yy  is negligible, the remaining strain components take the 

following forms:  
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Let us assume that the shape functions are linear such that: 
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where )(,/)2( mlml xxLLxxx  . Then, the relation between the strains and nodal 

displacements becomes: 
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Fig. 2: Modeling blocks contact 

 

: Modeling blocks contact 
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Thus, the stiffness matrix of contact element in the local coordinate system is explicitly obtained as: 
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where cA  is the contact area, nE and sG are normal and shear elastic moduli of discontinuity, respectively. 

 The stiffness matrix in the local coordinate system is then transformed to the stiffness matrix in the 

global coordinate system by the following relationship: 
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The viscosity (damping) matrix of a contact element in the local coordinate system can also be obtained in a 

similar manner as given below: 
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where, 
*

nE and 
*

sG  are normal and shear viscosity moduli of the discontinuity, respectively.  In the above 

equations, the values of coefficients in the stiffness and viscosity matrices, as well as the value of  are 

affected by updating geometrical changes of blocks and contacts.   
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 It is worth noting that on the basis of simplification of the finite element modeling of block contacts, 

using the small strain theory for modeling of the large deformation, a small error is always present in the 

computed strains of contacts.  Nevertheless, such an error is quite negligible as the geometry of the block 

system is incrementally updated, which takes into account the effect of higher order terms in the definition of 

finite strain tensor.  

4. Numerical Results and Discussions 

In this section, some typical numerical results of slope stability obtained by the DFEM will be presented and 

discussed. In the numerical study, when the inertia term is considered, contacts and blocks are assumed to 

behave as an elasto-visco-plastic material or a visco-elastic material.  On the other hand, if the inertia term is 

omitted, the behavior of contacts and blocks is assumed to be elasto-plastic or elastic.  In all analyses 

reported herein, tensile strength of contact elements was assumed to be zero. Mohr-Coulomb yield criterion 

was implemented in the present codes.  Nevertheless, one can easily implement any yield criterion, which is 

appropriate for the plastic or visco-plastic behavior.  Contact area cA  was assumed to be half the area of the 

side of a block to which the contact element was attached.  The thickness of the bands was taken as twice the 

weighted asperity height.  Taking into account the results reported by Aydan et al. (1989), the thickness of the 

bands was selected as 10 mm.  The secant stiffness method together with updated Lagrangian Scheme was 

employed to deal with non-linear behavior.  The constant strain triangular element with two degrees of 

freedoms at each node, formed by properly joining the corners and contact nodes of an individual block, was 

adopted for finite element meshing of the blocks (Mamaghani, 1993).  However, it must be noted that the 

method is not restricted to the use of such elements and one can easily implement finite elements of chosen 

nodes.  

 The analysis is a pseudo time stepping incremental procedure.  First the initial configuration of the 

structural system, boundary conditions and material properties are input.  Then iterations are carried out by 

forming the global stiffness matrix and solving equilibrium equations of the system.  Later the strains and 

stresses of elements are computed.  The no-tension condition and Mohr-Coulomb's yield criterion are 

checked and the excess forces at contacts are applied to the updated configuration as the penalty load in the 

subsequent iteration until the norm of excess force vector converges to a very small value of convergence 

tolerance.  The computation is terminated when a stable configuration is achieved or the global stiffness 

matrix becomes ill-conditioned as single or multiple blocks tends to move without any interaction with each 

other corresponding to the failure of the system.  The details of the numerical algorithm and computational 

procedure are given in the work by the author [13].   

 

4.1 Stability of One Block on an Incline 

A very simple, yet meaningful problem analyzed by the DFEM is the stability of one block on an incline.  

The theoretical kinematic conditions for sliding and toppling of one block on an incline, under gravity, have 

been given in a chart by Hoek and Bray (1977), hereafter referred to as H-B chart.  The H-B chart with the 

friction angle between the block and the incline  20 is shown in Fig. 3.  In the H-B chart, four modes of 

behavior, namely, (a) stability, (b) sliding without toppling, (c) sliding and toppling, and (d) toppling without 

sliding are delineated by four boundaries I, II, III and IV.  The DFEM is applied to study the stability of one 

block on an incline, and the results are compared with those predicted by the H-B chart.  
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 In the numerical analysis, the assumed material properties of intact blocks are: Lame's constants 

GPa56 and GPa21 , and unit weight 3/25 mkN .  The properties of contacts are assumed as: 

normal stiffness, GPaEn 50 , and shear stiffness, 0.5GPa.sG  For a methodical comparison, the slope 

angle,  , and the aspect ratio of the block, )/arctan( db , ( b = breadth; d = height of the block, Fig. 

3) were varied systematically, while the friction angle,  , was fixed at 
20 .  Different symbols representing 

different modes of behavior obtained by the DFEM are plotted on the H-B chart as shown in Fig. 3.  As can 

be seen from these plots, the results by the proposed method are in complete agreement with the theoretical 

results. Since the validity of the theoretical solutions are also validated by experiments [1, 2], it can be 

concluded that the DFEM is a promising method for studying the mechanics of blocky media. 

 

4.2 Dynamic Stability  

The dynamic stability of square and rectangular blocks on a plane with an inclination of 
30  was analyzed 

by the DFEM. The rectangular block was assumed to have a height to breadth ratio 3/1/ bh .  The 

assumed material properties of the intact rock blocks and mechanical properties of the contact elements used 

in numerical analyses are given in Table 1.  In the table *,,  and * stand for the elastic and viscous 

Lame's constants, respectively.  denotes the unit weight of the blocks. *,, nsn EEE  and *
sG  stand for the 

elastic and viscous normal and shear modulus of the contact, respectively. The friction angles for square and 

rectangular blocks are  25 and  35 , respectively.  Fig. 4 shows computed configurations of the 

square block of size mm 44  and a rectangular block of size mm 412  .  The square block slides on the 

incline (time step sec)04.0t while the rectangular block topples (time step sec)01.0t . These 

predictions are consistent with the kinematic conditions for the stability of a single block in the previous 

example as well as with the experimental results reported by Aydan et al. (1989) [1].  It should, however, be 

noted that the discretization of the domain, mechanical properties of blocks and contacts and time steps may 

cause superficial oscillations and numerical instability.  
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Fig. 3: Kinematic conditions of one block on an incline 

(DFEM versus theoretical results) 
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            It is worth noting that any hyperbolic type equation system; (i.e., Equation 2), requires a certain kind 

of damping (viscosity) to attain a stationary solution, which requires information on the viscous 

characteristics of rocks and discontinuities.  Since time-dependent characteristics of discontinuities and intact 

rocks are less studied and experimental data are still limited, the inertia term is neglected in the computations 

reported hereafter. Also, hereafter, in all computations the loading was assumed to be resulting from the 

gravitational pull.  

 

4.3 Pseudo-dynamic analysis of masonry arch structures 

This section is concerned with the application of DFEM to the dynamic analysis of masonry arch structures. 

In the analysis, the foundation of the structures was subjected to two types of lateral acceleration waves: Acc. 

No. 1 with a large period: 

 

                        
0.50.8 sin( ) 981tAcc te t                                                                 (1) 

 

and Acc. No. 2 with a small period: 

             

                        
0.50.8 sin(3 ) 981tAcc te t                                                               (2) 

 

for which t = time and Acc = lateral acceleration in gal,  as shown in Fig. 5.    

 The assumed accelerations are used to check the response of analyzed masonry structures by DFEM 

under two different waveforms. The material and mechanical properties of blocks, foundations, and contacts 

for the analyzed masonry arch are given in Table 2, where λ, μ, λ*, and μ* indicate the elastic and viscous 

Lame's constants. ρ denotes the unit weight of the rock mass. En, Gs, En
*
, and Gs

* indicate the elastic and 

viscous normal and shear modulus of the contact. h and φ indicate band width of contact elements and 

friction angle, respectively. In all examples, the time step was chosen as 0.2 sec. In the following dynamic 

analysis of the three masonry structures, in the plots of the deformed configurations, the displacement in the 

deformed configurations is amplified by 50 times to make the deformed configuration (mode of failure) more 

visible from the initial configuration.  

 

Table 1:  Properties of intact rock and contacts 

      * * * *

/ ( )

E G E G c

MPa MPa MPa s MPa s kN m MPa MPa MPa s MPa s MPa MPa

n s n s t

   3 

Properties of Blocks                        Properties of Contacts

Square  BlockSquare  Block Rectangular  BlockRectangular  Block

  10     10      5           5         25         0.1       0.1      0.05     0.05       0        0  (25) 35

Scale (4m)

 

Fig. 4: Dynamic stability of a block on incline 
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Fig. 5: Imposed lateral acceleration waves on foundation. 

 

 

Table 2:  Material properties of rock blocks and contacts for the analyzed masonry arch. 

Structures Properties of Blocks Properties of Contacts 

λ μ λ* μ* ρ En Gs En
* Gs 

* h φ 

MPa MPa MPa MPa kN/m3 MPa MPa MPa.s MPa.s mm (   ͦ ) 

Arch, Tower 30 30 30 30 25 50 25 5 2.5 5 35  

 
 

Figs. 6a, 6c, and 6d show the initial and deformed configurations of a masonry arch at the 23rd time step (4.6 

seconds) and 50th time step (10 seconds) subjected to Acc. No. 1 and Acc. No. 2, respectively. Fig. 6c shows 

that the arch is sliding at the base at the 23rd time step under Acc. No. 1, and the crown blocks of the arch 

start to fall apart while the side columns are still stable. Fig. 6c shows that, under Acc. No. 1 at the 50th time 

step, the arching action disappears and the crown blocks fall apart. The columns slide relative to the base, 

and they tend to topple in two opposite directions. The blocks tend to separate within the side columns (Fig. 

6c).  

 Figure 6d shows that, under Acc. No. 2 at the 23rd time step, there is no sliding at the base of the arch, 

while the crown blocks are separated and tend to fall apart. At the 23rd time step, the side columns of the arch 

exhibit relatively stable behavior under Acc. No. 2 as compared with the Acc. No. 1 (Figs. 6c and 6d).  

However, under Acc. No. 2 at the 50th time step (10 seconds), the side columns of the arch slide at the base, 

and the arching action disappears while the blocks start to fall apart. As expected, the toppling (failure) 

modes of the side columns of the arch differ depending on the nature of the imposed form of acceleration 

waves, as shown in Figs. 6c and 6d for the 50th time step.  

 Fig. 6b shows the displacement responses with time of a nodal point at the top most-right corner of the 

arch corresponding to Acc. No. 1 and Acc. No. 2. The results in Fig. 6b indicate that, as expected, the 

displacement of the side column of the arch with time is much severe under Acc. No. 1 as compared with 

Acc. No. 2, especially in the early stage of loading.  Fig. 6c and 6d show that, under both of the imposed 

acceleration waves, the reaction of the toppled columns forces the crown block to move upward. This is 

because of the geometrically symmetric configuration of the structure and outward inclination of the crown 

block contact interfaces at the center of symmetry (Fig. 6a). As can be observed by examining the 

displacement response curves in Fig. 6b, the real value of the displacement is very small as compared with 

the dimension of the crown block.  
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Fig. 6: Initial and deformed configurations and displacement response with time of the arch: (a) Initial 

configuration, (b) Displacement response with time at the top right corner, (c) Deformed 

configuration under acceleration No. 1, (d) Deformed configuration under acceleration No. 2 

 

5.  Conclusions 

This paper was concerned with stability analysis of slopes, which are composed of a finite number of 

distinct, interacting blocks that have a length scale relatively comparable with the slope of interest, using the 

discrete finite element method (DFEM) recently developed by the authors. The DFEM is based on the 

principles of the finite element method incorporating contact elements. It considers blocks as sub-domains 

and represents them by solid elements. Contact elements are used to model the block interactions such as 

sliding or separation. The DFEM calculates displacements at the joints as well as deformation within the 

blocks, which can be used to follow the processes of the failure mechanism of slopes under static as well as 

dynamic loading.  Through some typical illustrative examples, the applicability of the DFEM to stability 

analysis of rock slopes were investigated and discussed.  It has been shown that the DFEM is capable of 

simulating large displacement of blocky systems, such as open rock slopes and underground openings.  It 

was found that the DFEM is a promising method for studying stability of blocky slopes.  However, the 

hyperbolic scheme of the DFEM is still in its formative phase for which both experiments on viscous 

characteristics of blocks and contacts as well as a numerically stable time-discretization scheme are felt to be 

necessary.  
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