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Abstract 

The simulation of seismic wavefield at seafloor and ocean acoustic field involve the coupling between seawater, 

saturated seabed, elastic bedrock and structure. That means, we target simulation where several types of equations are 

involved such as fluid, solid and saturated porous media equation. The conventional method for this fluid-solid-

saturated porous media interaction problem is to use exsisting solvers of different equations and coupling method, 

which needs data mapping, communication and coupling algorithm between different solvers. Here, we present an 

alternative method, in which the coulping between different solvers is avoided. In fact, when porosity equals to one and 

zero, the saturated porous media is reduced to fluid and solid respectively, so we can use the porous media equation to 

describe the ideal fluid and solid, and the coupling between porous media, solid and fluid turns to the coupling between 

porous media with different porosity. Based on this idea, firstly the Biot’s equations are approximated by Galerkin 

scheme and the explicit lumped-mass FEM is chosen, that are well suited to parallel computation. Then considering the 

conditions of coupling on the irregular interface between porous media with different porosity, by solving the normal 

and tangential interface forces, the coupled algorithm is derived, which is proved to be suitable for the coupling 

between fluid, solid and saturated porous media. Thus, the coupling problem between fluid, solid and saturated porous 

media can be brought into a unified framework, in which only the solver of saturated porous media is used. The three-

dimensional parallel code for this proposed method is programed. To demonstrate the validity and feasibility of our 

method, we calculate the cases of a plane P wave vertically incident onto basin-like seabed, and compare our numerical 

results with those obtained by reflection/transmission matrix method for elastic seabed case. In general, the waveforms 

calculated by the two methods match well. And the waveforms for elastic seabed case and elastic saturated seabed case 

are compared. 

Keywords: fluid-solid coupling, saturated porous medium, marine earthquake engineering, explicit lumped-mass finite 

element method, transmitting boundary 
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1. Introduction 

For marine seismic surveys, forward modeling of seismic waves is required. In the seismic analysis of 

marine engineering structures, submarine ground motion is also required as the input of structural analysis. 

In addition, in the acoustic simulation of the ocean, the influence of the elastic sea floor and terrain also must 

be considered. In these areas, when it is necessary to study the dynamic response of a certain sea area, due to 

the presence of seawater, seismoacoustic scattering is involved, and it is affected by surrounding media. We 

call this problem the near-field seismoacoustic scattering problem in the sea area. 

When the sea area is layered horizontally, the problem can be solved by the transfer matrix method. 

Okamoto and Takenaka[1] used the reflection / transmission matrix method to consider the fluid-solid 

interface conditions, and simulated the seismoacoustic scattering of the two-dimensional irregular fluid-solid 

interface when the P-SV wave was incident. However, this method is only suitable for terrains with gentle 

slopes. For steep terrains, it will lead to calculation instability. Utilizing the characteristics of boundary 

element method suitable for steep terrain, and the characteristics of global matrix propagator with less 

memory requirements in the simulation of multi-layer media, Qian and Yamanaka[1] extended the global 

matrix propagator, considered the fluid-solid interface conditions, and combined the boundary element 

method with the global matrix propagator method to simulate the seismoacoustic scattering of a two-

dimensional irregular fluid-solid interface when P-SV waves are incident. Chen Shaolin et al.[3] used the 

Thomson-Haskell transfer matrix method to analyze the response of a horizontally stratified seawater-

saturated seabed-bedrock system when P-SV waves were incident.  

For complex seafloor topography, numerical methods such as finite difference method, boundary 

element method, finite element method, and spectral element method are generally used, and artificial 

boundary conditions are used to simulate the effects of infinite domains. Nakamura et al.[4] used a finite 

difference method to simulate seismoacoustic scattering. In order to meet the conditions of the fluid-solid 

interface, a second-order approximation was used for the equations near the interface, and a fourth-order 

approximation was used for the rest. They also simulated the seismic wave propagation of the Suruga Bay 

earthquake in 2009, and studied the effects of the submarine topography and seawater layer. The results show 

that the submarine topography has a greater impact on the amplitude and duration of the coda wave, and the 

seawater layer has a greater impact on the coda wave amplitude. Komatitsch et al.[5] considered the 

continuous normal velocity and continuous stress at the interface between seawater and bedrock to establish 

the integral weak form of the coupled equilibrium equation. They also obtained spectral element simulation 

methods of submarine seismic waves through spectral element discrete and explicit Newmark time 

integration. In marine acoustics, the parabolic equation (PE) method is widely used to consider the influence 

of submarine topography on sound wave propagation (Collins et al.[6], Tang et al.[7]). This method can 

quickly establish a long-range sound field, but it is difficult to consider irregular and complex terrain on the 

sea floor. Murphy et al.[8] used the finite element method to simulate the ocean sound field. Compared with 

the parabolic equation method, this method can calculate the effects of the full wave field and the complex 

topography of the ocean floor, but it is less efficient and ignores the shear effect of the elastic medium on the 

ocean floor. 

The above methods all regard the seabed as elastic dry bedrock. When the sea floor is regarded as a 

saturated porous medium[9,10], the mutual coupling among fluids, solids, and saturated porous media[11,12] is 

very complicated. One solution is to discretize the sonic equation of the fluid and the equation of the solid or 

saturated porous medium, and consider the interface conditions by the Lagrangian multiplier method 

(Komatitsch et al. [5], Murphy et al.[8], Li Weihua et al.[13]) to get dynamic equation and solve it, which is 

usually called the monolithic method. Another solution is the partitioned method[14-22]. This method analyzes 

fluids and solids by different solvers, and then couples them at each time step through the interface coupling 

algorithm. If the monolithic method is used to solve the problem of seismoacoustic scattering, it is necessary 

to combine the wave equations of seawater, bedrock, and saturated porous media, which makes it difficult to 

implement this method by programming. If the partitioned method is adopted, seawater, bedrock, and 

saturated porous media can be analyzed by independent solvers, and then interface coupling is performed 

through data exchange, which is very inconvenient. Theoretically, solid and fluid media are special cases of 
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saturated porous media with porosities of 0 and 1, respectively. The above couplings can all be described in 

the saturated porous media theoretical system. Based on this, Chen Shaolin et al.[23] established a unified 

calculation framework for the coupling problem between seawater, bedrock, and saturated porous media, 

avoiding the inconvenience of the monolithic method and the partition method. 

Based on a unified computing framework, this paper develops a numerical simulation technique for 

near-field fluctuations in the sea area. This technique takes the free field obtained by the transfer matrix 

method as an input, simulates an infinite region by transmitting artificial boundaries, and uses a unified 

calculation framework for fluid-solid coupling in the inner domain. These methods provide techniques for 

seismic wave field simulation of complex media and complex terrain in the sea. In this paper, an example of 

a basin-shaped depression on the sea floor is used to verify the effectiveness of the method, and further 

analysis of seismoacoustic scattering in a saturated sea floor situation. 

2. Basic theory 

This paper selects the model mentioned in [24]. The vector representation of the basic differential 

equation of the model is as follows:  

Solid-phase equilibrium equation for saturated porous media 

 (1 ) ( ) (1 )T T

s w sP b  − − + − = −L σ L U u u  (1) 

Liquid equilibrium equation for saturated porous media 

 ( )T

w wP b − + − =L u U U  (2) 

Compatibility equation (considering initial pore pressure and initial body strain as zero) 

 [ (1 ) ]w s

wP E e e   = − = + −  (3) 

Where sL  and wL  are differential operator matrices, σ   is the effective stress vector,   is the average 

pore pressure, which is positive when under tension. P  is the pore water pressure, which is positive when 

under compression. U  and u  respectively represent the displacement vectors of the liquid and solid phases, 

U , u  are the velocity, and U , u  are the acceleration. s  and w  are the density of the solid and liquid 

phases, respectively.  is the porosity, b=20/k0, k0 is fluid permeability coefficient, 0 is the kinematic 

viscosity coefficient, Ew is the bulk modulus of the fluid, es and ew respectively represent the volume strain of 

the solid and liquid phases. It can be known from the equation that when the porosity ratio is 1, it can 

degenerate into the ideal fluid equation, and when the porosity ratio is 0, it can degenerate into the elastic 

wave equation. Therefore, fluids, elastic solids, and saturated porous media can be uniformly described by 

the general saturated porous media ( 0 1  ) equation. The only difference between these materials is the 

material parameters. The problem of seismic wave propagation in the sea area can be described by the 

general saturated porous media equation, and the area of interest is calculated as shown in Figure 1. 

 

Fig.1 Schematic diagram of seawater-bedrock interaction analysis model 

2.1 Wave field input 
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On the boundaries of the calculation area (except for free surfaces), artificial boundaries (as shown in 

Figure 1) need to be set up to simulate the effects of infinite domains. At the boundary, we assume that the 

medium is layered horizontally. Due to the damping of the medium and the boundary is far from the area we 

care about, this assumption has little effect on the response of the area we care about. Thus, we can use a 

transfer matrix method to obtain the response of a horizontally layered medium under plane wave input (free 

field, as shown in Figure 2), and use it as an input to the problem of seismoacoustic scattering when a 

complex interface is involved. For details, please refer to [3]. 

 

Fig.2 Schematic diagram of free field analysis  

2.2 Finite Element Analysis of Inner Domain 

When we perform finite element discretization on this area, all the finite element nodes of the entire site 

calculation area can be divided into three categories: internal nodes, interface points between different media, 

and artificial boundary points (as shown in Figure 1). The near-field fluctuation problem in the calculation 

area is controlled by the motion equations of these three types of nodes, which will be introduced separately 

below. 

2.2.1 Motion of internal node 

Using the Galerkin method to discretize equations (1) and (2), and considering the influence of boundary 

conditions, the decoupling motion equilibrium equation of any node i can be obtained as (Chen Shaolin, 2005): 

 0s s s

i si i i i+ + − =u M F T S  (4a) 

 0w w w

i wi i i i+ + − =U M F T S  (4b) 

Where siM  and wiM  respectively represent the mass of the solid phase and the mass of the liquid 

phase concentrated at the junction, 
s

iF  and 
w

iF  respectively represent the solid and liquid constitutive forces 

concentrated at the nodes, 
s

iT  and 
w

iT  respectively represent the solid and liquid viscosity resistances 

concentrated at the nodes, 
s

iS  and 
w

iS  respectively represent the solid and liquid interface forces acting on 

the nodes. In the same medium, since all displacements and stresses are continuous, the stresses acting on 

them through the element interface are equal and opposite directions. In the process of unit assembly, 
s

iS  and 
w

iS  of the internal nodes are both zero. 

If node i is an internal node (non-interface point), At this time, 
s

iS  and 
w

iS  are equal to zero. If the 

constitutive relationship is given, the equations (4a) and (4b) can be solved by time-step integration, and the 

solid and liquid phase displacement recursive formula of node i is finally obtained as follow: 

 

2
( 1) ( 1) ( )

2 ( )p p p s s

i i i i is

i

t

m

+ − 
= − − +u u u F T  (5a) 

 

2
( 1) ( 1) ( )

2 ( )p p p w w

i i i i iw

i

t

m

+ − 
= − − +U U U F T  (5b) 

Where 
1p

i

+
u , 

p

iu  and 
1p

i

−
u  respectively represent the solid phase displacement vectors of node i at time 

(p+1), p, and (p-1). 
1p

i

+
U , 

p

iU  and 
1p

i

−
U  are the liquid phase displacement vectors of node i at time (p+1), p, 

and (p-1), respectively. Δt represents the time step, 
s

im  and 
w

im  are the mass of the solid phase and the mass 

4c-0004 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 4c-0004 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

5 

of the liquid phase concentrated at the i-node, respectively. 

2.2.2 Motion of interface point 

In this section, we discuss the case where node i is the interface point of two different saturated porous 

media, as shown in the figure below. 

 

Fig.3 Schematic diagram of interfacial force 

If the concept of a separator is used, the dynamic equation of the interface point i in medium 1 can be 

described by (4a) and (4b). The dynamic equation of interface point k (the same spatial point as point i) in 

medium 2 is expressed as follows(The physical quantities are underlined to distinguish them from medium 1): 

 0s s s

k sk k k k+ + − =u M F T S  (6a) 

 0w w w

k wk k k k+ + − =U M F T S  (6b) 

By performing time-step integration on the dynamic equation, we can get: 

 
( 1) ( 1) ( 1) ( 1)ˆp p p p

i i Ni Ti

+ + + += + +u u u u  (7a) 

 ( 1) ( 1) ( 1) ( 1)ˆp p p p

i i Ni Ti

+ + + += + +U U U U  (7b) 

Where 

 
2

( 1) ( 1) ( )
ˆ 2 ( )p p p sp sp

i i i i is

i

t

m

+ − 
= − − +u u u F T  (8a) 

 

2
( 1) ( 1) ( )

ˆ 2 ( )p p p sp sp

i i i i is

i

t

m

+ − 
= − − +u u u F T  (8b) 

 

2
( 1) ( )p sp

Ni Nis

i

t

m

+ 
 =u S  (8c) 

 

2
( 1) ( )p sp

Ti Tis

i

t

m

+ 
 =u S  (8d) 

 

2
( 1) ( )p wp

Ni Niw

i

t

m

+ 
 =U S  (8e) 

 

2
( 1) ( )p wp

Ti Tiw

i

t

m

+ 
 =U S  (8f) 

( 1)p

Ni

+u  is the solid phase displacement caused by the normal interface force 
sp

NiS , and 
( 1)p

Ti

+u  is the 

solid phase displacement caused by the tangential interface force 
sp

TiS . 
( 1)p

Ni

+U  is the liquid phase 

displacement caused by the normal interface force 
wp

NiS , and 
( 1)p

Ti

+U  is the liquid phase displacement caused 

by the tangential interface force 
wp

TiS .  

Similarly, we can get the following formula: 

 ( 1) ( 1) ( 1) ( 1)ˆp p p p

k k Nk Tk

+ + + += + +u u u u  (9a) 
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 ( 1) ( 1) ( 1) ( 1)ˆp p p p

k k Nk Tk

+ + + += + +U U U U  (9b) 

The terms at the right end of the equal sign are the same as (8). 

The continuous conditions of the interface in discrete form are: 

 ( )+ = − +s w s w

Ni Ni Nk NkS S S S  (10a) 

 = −s s

Ti TkS S  (10b) 

  = −w w

Ni NkS S  (10c) 

 0= =w w

Ti TkS S  (10d) 

 =Ni Nku u  (10e) 

 =Ti Tku u  (10f) 

 ( )  = − +Ni Nk Nk NkU U u u  (10g) 

According to the formulas (7)-(9), and the interface continuous conditions (10), we can get the 

following formula after derivation(Chen Shaolin, 2019): 

 
22 1 12 2

22 11 12 21

−
=

−

sp

Ni

A B A B

A A A A
S  (11a) 

 
21 1 11 2

21 12 11 22

−
=

−

wp

Ni

A B A B

A A A A
S  (11b) 

where 

 
2

11

1 1
( )

 
=  + 

 
s s

i k

A t
m m

 (12a) 

 

2

12

( )
1

s

k

t
A

m





  
= − 
 

 (12b) 

 ( )( )( 1) ( 1)

1
ˆ ˆp p

i i k iB + +=  −n n u u  (12c) 

 
2

21 ( )
s s

k k

A t
m m

  
=  − + 

 
 (12d) 

 
( )( )2

2

22 ( )
w w s

i k k

A t
m m m

    

 

 − −
 =  + +
 
 

 (12e) 

 ( 1) ( 1) ( 1) ( 1)

2

ˆ ˆˆ ˆ( ( ( ) ( )))p p p p

i i k k i kB  + + + +=  − − −n n U u U u  (12f) 

After finding 
sp

NiS  and 
wp

NiS  from the formulas (11a) and (11b), we can solve 
sp

NkS  and 
wp

NkS  from the 

interface continuous condition, according to the continuous condition of solid phase displacement, the 

following formula can be obtained: 

 
( )( 1) ( 1) ( 1) ( 1)

2

ˆ ˆ

( ) ( )

+ + + ++ − −
=

 +

p p p p s s

k Nk i Ni i ksp

Ti s s

i k

m m

t m m

u u u u
S  (13) 

From formula (10b), we can calculate the interface force 
s

TkS . With the interface force, the 

displacement response of the interface point can be obtained by formulas (7) and (9). 

If the last displacement continuity condition of the saturated bedrock-dry bedrock case in [23] is written 

as: 
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 ( ) 0Ni Nk − =U u  (14) 

After derivation, it can be verified that the calculation formula for this case is a special case of the 

above formula. Similarly, it can be verified that the above formula is also applicable to the case of fluid-dry 

bedrock and fluid-saturated bedrock. Therefore, the fluid-structure interaction problem between fluid, 

saturated bedrock, and dry bedrock can be unified into the same computing framework. 

2.3 Motion of artificial boundary node 

In order to effectively simulate the motion of the outward traveling wave across the artificial boundary, 

we use the multiple transmission formula[25]: 

 ( )
11 1

0

1

1
N

jp N p j

j j

m

u C u
++ + −

=

= −  (15) 

Where: 

 
( )

!

! !

N

j

N
C

N j j
=

−
 (16) 

This local artificial boundary condition is universal and has nothing to do with specific wave equations, 

and can be directly used for wave problems in saturated porous media[26]. Applying formula (15) to the solid-

phase and liquid-phase displacements of the saturated porous medium, respectively, the scattered wave field 

displacements of the boundary point at time p+1 can be obtained, and then add the free field displacement of 

the boundary point to obtain the total solid and liquid phase displacement of the boundary point. 

3. Example analysis 

In order to facilitate comparison and verification, the example model in [1] is selected, which is shown 

in the figure below: 

 

Fig.4 Schematic diagram of computational model 

The model is a water-filled cosine-shaped basin with an overlying seawater layer of 1km in thickness. 

Consider the case where the seabed is bedrock and saturated bedrock, and the relevant material parameters 

are shown in Table 1. Analyze the response of the model when plane waves are incident vertically. Enter the 

pulse wave as shown in Figure 5, the time step ∆t = 0.0015s, the pulse duration is 4.2s, the number of steps n 

= 16384, and the calculation time is 24.576s. 

Table 1 – Parameters of material 

Media  
Void 

ratio /β 
μ0 

ρs  

(kg/m3) 

ρw  

(kg/m3) 
ν 

G 

(MPa) 

Ew 

(GPa) 

M 

(GPa) 
α 

k0 

(μm2) 

Seawater 1 0 0 1000 0.02 0 2.25 2.25 1 1 

Saturated 

bedrock 
0.26 0.001 2500 1000 0.188 29.9 2.25 4.78 0.697 10-7 

Bedrock 0 0 2500 0 0.188 29.9 0 - 0 0 
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    (a) Pulse time history   (b) Pulse Spectrum 

Fig.5 Input pulse 

3.1 Seawater-dry bedrock 

Consider seabed as dry bedrock, the displacement wave field of the seabed and dry bedrock under the 

vertical incidence of pulsed P wave and the response of some points are given. The positions of each point 

are shown in Figure 6. Ac to E1 are the points of the seawater layer at the seawater-bedrock interface, and A2 

to I2 are the points of the bedrock layer at the seawater-bedrock interface. 

 

Fig.6 Schematic diagram of observation point 

 

(a)                                                       (b) 

Fig.7 The displacement at the top of the bedrock layer 

Figure 7 shows the horizontal and vertical displacements of the bedrock layer at the seawater-bedrock 

interface when the P wave is vertically incident. (a) is calculated by Okamoto[1], (b) is calculated by the method in 

this paper. It can be seen that the waveforms of the two are basically the same, and periodic reflected waves and 

scattered waves from the depression can be clearly observed at the horizontal part of the sea floor. The surface 

wave propagating along the interface can also be seen from the figure. 

Figure 8 is the wave field diagram of the interface selected when the P wave is vertical incident. 
w

xU  and 
w

yU  are the horizontal and vertical displacements of the seawater, 
b

xu  and 
b

yu  are the horizontal and vertical 

displacements of the dry bedrock. It can be seen from the figure that the y-direction displacement is symmetrical 

about the center point E1, and the x-direction displacement is antisymmetric about the center point, which is 

consistent with the result of qualitative analysis. What’s more, due to the amplification effect of the free field and 

the reflection coefficient of the incident wave when it is incident from the seawater to the bedrock is large, the 

displacement of the seawater surface is large and periodic reflections are formed. The period of the model entering 

the free vibration phase is 0.267s, which is consistent with the theoretical value 4 ph v , h  and pv  are the thickness 

and compression wave velocity of the seawater layer. Comparing Fig. 8 (b) and Fig. 8 (c), the horizontal 

displacement of the seawater is larger than that of the bedrock. In the flat area, the vertical displacement of the 
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seawater and the bedrock is equal and satisfy the continuous normal displacement, but in the depression area, the 

seawater has greater displacement. 

b

xu b

yu b

xu
b

yu

w

xU w

yU
w

xU w

yU

(a) The displacement at the top of the seawater layer (b) The displacement at the bottom of the seawater layer

(c) The displacement at the top of the bedrock layer (d) The displacement at the bottom of the bedrock layer

 

Fig.8 Displacement of seawater-bedrock system for P wave incidence 

  

  

(a) Normal component of displacement at B1 (B2) (b) Normal component of displacement at C1 (C2)

(c) Normal component of displacement at D1 (D2) (d) Normal component of displacement at E1 (E2)

 

Fig.9 Normal component of displacement on interface in seawater-bedrock system for P wave incidence 

Figure 9 shows the normal displacement of the interface point, 
w

NU  is the normal displacement of the 

seawater at the interface, and 
b

NU  is the normal displacement of the bedrock at the interface. It can be seen 

from the figure that 
w

NU  and 
b

NU  at the same location on the seawater and bedrock interface are completely 

coincident, satisfying the continuous condition of normal displacement at the seawater-bedrock interface. 

3.2 Seawater-saturated bedrock 

Considers the seabed as saturated bedrock and analyzes the response of seawater and saturated bedrock 

under the vertical incidence of pulsed P waves. 
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w

yUw

xU
w

yUw

xU

(a) The displacement at the top of the seawater layer (b) The displacement at the bottom of the seawater layer

s

xu
s

yu s

xU s

yU

(d) The displacement at the bottom of the saturated bedrock layer

s

xu
s

yu s

xU s

yU

(c) The displacement at the top of the saturated bedrock layer

 

Fig.10 Displacement of seawater- saturated bedrock system for P wave incidence 

Figure 10 is the wave field diagram of the interface selected when the P wave is vertical incident. 
s

xu  

and 
s

yu  are the horizontal and vertical solid phase displacements of the saturated bedrock, 
s

xU  and 
s

yU  are 

horizontal and vertical liquid phase displacements of saturated bedrock. Compared with the case where the 

seabed is dry bedrock, the displacement change of the seawater surface is relatively gentle. This is because 

the reflection coefficient of the incident wave from seawater to saturated bedrock is smaller than that from 

seawater to dry bedrock. What’s more, viscous damping caused by phase-to-phase relative motion results in 

faster attenuation. At the interface between seawater and saturated bedrock, the liquid phase displacement of 

the saturated bedrock is larger than the solid phase displacement, and the waveform is more complicated. 
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(a) Normal component of displacement at B1 (B2) (b) Normal component of displacement at C1 (C2)

(c) Normal component of displacement at D1 (D2) (d) Normal component of displacement at E1 (E2)

 

Fig.11 Normal component of displacement on interface in seawater- saturated bedrock system for P wave 

incidence 

Figure 11 shows the normal displacement at the interface. 1NU  is the normal displacement of seawater 

at the interface, 2NU  is the normal displacement of the saturated bedrock at the interface. 
 1=N NiU U  (17a) 

 2 ( ) = − +N Nk Nk NkU U u u  (17b) 

It can be seen from the figure that 1NU  and 2NU  at the same position on the interface are completely 

coincident, which satisfies the continuous condition of normal displacement at the interface (10g). 

In summary, the effectiveness of the proposed method is verified by comparison with existing results 

and by confirmation of the interface continuous conditions. 

4. Conclusion 

This paper proposes a decoupling simulation technique for near-field fluctuations of seismoacoustic 

scattering in the sea area when a seismic wave is incident, including free field calculation (providing input 

for the scattering problem), unified computational framework of fluid-structure interaction in the internal 

domain, and artificial boundary conditions. The decoupling technology was realized by programming. The 

responses of the seabed-bedrock sea basin and seawater-saturated sea basin model under vertical incidence of 

P-wave were analyzed. The effectiveness of the method is verified by comparison with existing results and 

confirmation of continuous conditions at the interface. This method uses concentrated mass explicit finite 

element and local transmission artificial boundary, avoids solving large equations, facilitates parallel 

calculations, has high efficiency, and is suitable for simulation of large-scale marine seismoacoustic 

scattering problems. 
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