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Abstract 

In case of seismic design of structures the deformability and damping of the soil layers should be considered, which can 

be performed in several ways. A simple spring-dashpot system (with constant characteristics) can be applicable in those 

cases, when the soil is infinite, but also for these cases neglecting the frequency dependency may cause significant 

errors.  To approximate the dynamic impedance function of a soil layer more complex models can be also applied, for 

example a layered cone model, echo constants to take into account the effect of the refracted waves or more complex 

lumped parameter models for the different excitations. 

2D (e.g. strip foundations) problems are considered. The depth of the soil above the rock is finite, while the horizontal 

dimensions can be infinite or finite. The rock under the soil is excited by earthquakes and the horizontal response of the 

structure is investigated. To consider the effect of a finite layer a new simple model based on a physical approach is 

given for the horizontal excitation of strip foundations. A physical representation and analytical solution is given for an 

infinite bar on elastic foundation connected parallelly to a mass-spring system. The advantage of using this model is that 

it contains only very few parameters and results in a 1D problem instead of a 2D one. Numerical verification is 

presented, and the parameter range is determined, where the application of the new model is recommended, since 

applying a simple spring-dashpot model results in significant errors. 
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1. Introduction 

In earthquake resistant design it’s important to consider the effect of soil-structure interaction (SSI). It can be 

modelled in several ways. The most accurate method is the so-called direct approach (Fig. 1 a), where the 

structure and a segment of the soil are modeled together. In this case the nonlinear properties of the soil can 

also be included in the computation, but the computation time and effort can be enormous. In linear cases the 

soil can be replaced by the system’s impedance function, which can be represented as frequency dependent 

spring and dashpot elements (Fig. 1 b). However, the practical use of springs and dashpots with frequency 

dependent characteristics is also difficult; therefore, for earthquake analysis different simplified models are 

used. The simplest model is a spring-dashpot system with constant characteristics (Fig. 1 c), this can be 

applicable in those cases, when the soil is infinite [1], but also in these cases neglecting the frequency 

dependency may cause significant errors [2,3]. When the vertical dimension of the soil is finite the error can 

be substantially higher [4,5].  

 

Fig. 1 – The modelling levels of soil effect: a) direct approach, b) impedance function, c) one, frequency 

independent spring and dashpot element for all directions, d) more complex lumped models 

To approximate the dynamic impedance function of a soil layer more complex models were also 

applied (Fig. 1 d). Meek and Wolf  used a layered cone model and developed echo constants to take into 

account the effect of the refracted waves [6]. Wolf also developed more complex lumped parameter models 

for the different excitations [6–11]. Saitoh also constructed a more complex lumped model with frequency 

independent parameters and suggested a new element type [12]. The more complex model is used, the better 

accuracy can be reached [3]. As a possible representation of the soil, an axially constrained bar is given in 

[9], however it is not given, how it is properly applicable to model the soil. 

2. Problem statement and approach 

A rigid object resting on the surface of the ground is investigated. The depth of the soil above the rock is 

finite and may vary with the horizontal coordinates, while the horizontal dimension is infinite. The rock 

under the soil is excited by earthquakes and the horizontal response of the structure is investigated.  

 Our aim is to give a simplified model (Fig. 2), which is based on the real physical behavior of a soil 

layer, its response is able to produce the phenomenon of cut-off frequency and radiation damping, and 

simple formulas can be used to calculate the model parameters. 
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The Rayleigh-Ritz method will be used to reach an approximate solution of the 2D problem (strip 

foundation on the top of a horizontally infinite vertically finite regular soil layer), and to derive a simplified 

(1D) model. The latter one will be analyzed by directly solving its differential equation (DE). Simple closed-

formed expressions are given to calculate the model parameters in case of the 2D problem, for regular soil 

layers. To analyze the dynamic effects and validate the model both the direct method (time-history analysis), 

and the harmonic analysis are applied. 

 

Fig. 2 – Example of 2D problem 

3. Horizontal excitation of rigid structures on a finite soil layer 

3.1 Model of regular soil layer with strip foundation 

To obtain a simplified model first the case, when there is no object on the soil is considered. Then it is 

extended, and an object with finite size is also taken into account. 

According to the Rayleigh-Ritz method the displacement field (for zero Poisson’s ratio, ν=0) can be 

assumed in the following form (Fig. 3): 
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where u(x,t) is the displacement function in the x direction, and h is the thickness of the soil layer. 

According to this, after straightforward mathematical manipulations we can obtain the total 

mechanical energy: 
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where G is the shear modulus ( 2

s
G v , vs is the shear wave velocity), ρ is the density of the soil layer. The 

differential equation of the problem can be derived mathematically as the Euler-Lagrange equation of the 

stationary condition (Π=stationary): 
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The DE of an axially constrained bar is 0EAu u u     , where EA  is the normal stiffness of the 

bar,  is the stiffness of the elastic foundation and  is the mass per unit length of the bar (Fig. 3). It may be 

observed that this equation is equivalent to the DE of the approximation of the 2D problem provided that: 
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Now we investigate the problem when there is an object on the top of the layer with a total mass of 

2m. When the size 2b is finite, Rayleigh’s method must be reconsidered. We assume that the displacement 

field is uniform with respect to x, under the object: 

 ( , z, ) ( , z, ) if 0 .u x t u b t x b    (5) 

Introducing Eq. (5) into the expression of the potential energy (Eq.(2)), and determining the Euler-

Lagrange equation, we obtain an axially constrained bar, however there is a replacement spring and mass at 

the end: 
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both are proportional to the size b. 

When the foundation size is small compared to the thickness of the soil layer (approximately b/h<5), 

the additional mass-spring system can be neglected. 

 

Fig. 3 – Simplified model of a soil layer with an object 

3.2 Solution of the model for harmonic excitation 

In case of an axially constrained bar, the response for harmonic excitation depends on the stiffness of the 

foundation, or for a given foundation on the frequency of the end displacement. The frequency which 

separates the two behavior is the so-called cut-off frequency (ωc) [13]. When the frequency of excitation is 

above the cut-off frequency,
c

  , the bar behaves similarly as a bar without foundation. When 
c

  the 

behavior changes considerably. For this case, even for a harmonic excitation, which is applied infinitely 

long, only a finite length of the bar will be affected. The phase angle and energy dissipation is also different 

in the two cases. For 
c

  the phase angle is 90  , and there is energy dissipation, while for 
c

  , 

0  , and there is no energy dissipation. Note that at 
c

   the response is singular. The analytical 

solution of the model can be given for harmonic force (Fig. 4 a) and base excitation (Fig. 4 b). Here only the 

steady-state solution is presented for ξ=0, the whole solution (including the transient solution) and its 

verification is given in [14]. 
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Fig. 4 – Analyzed cases 

For the first problem (Fig. 4 a) the steady-state solution is the following: 
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where  
c

   is the cut-off frequency, 
02 0

( )
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The natural frequency is as follows: 
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The last expression (Eq.(10)) was verified by a 2D finite element solution (Fig. 5), the maximum 

difference is 8%. Despite of the major simplifications the frequencies of the model (Eq. (10)) and that of the 

2D problem are close to each other. 

 

  numerical solution of 2D model   analytical solution of 1D model Eq. (10) 

Fig. 5 – Natural frequency of the simplified model (Eq. (10)) and 2D model  

(ρ=1800 kg/m3, vs=100 m/s, m=1800 t) 

The solution for base excitation (Fig. 4 b) was also derived, the result is: 
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Harmonic analysis is performed to compare the 2D and 1D models. The horizontal displacement is 

calculated for horizontal harmonic force excitation (Fig. 4 a). Fig. 6 shows the numerical solution of the 2D 

model (soil layer with strip foundation) and the analytical solution of the 1D model. It can be observed that 

the two solutions are close to each other in the proximity of the first eigenfrequency. 

 

 FE 2D model  present 1D model 

Fig. 6 – Steady-state solution of the different models (ξ=0)  

(h=50 m, ρ=1800 kg/m3, vs=100 m/s, m=1800 t, 2m=720 t, 2b=20 m) 

In reality besides the radiation damping the soil also has damping (ξ≠0). In this case the analytical 

solution is not presented here, only numerical solution is performed. The impedance function of a damped, 

axially constrained infinite bar is given in [15]. In case of an SDOF system the maximum value of the 

amplification factor (which is maximum of the inverse impedance divided by the static stiffness) is 1/2ξ, 

however in infinite systems, where the radiation damping plays an important role, this value is significantly 

smaller. For an axially constrained infinite bar it is 1/(2ξ)0.5 [15]. In case of our model, which is an axially 

constrained infinite bar connected parallelly to a mass-spring system, is between these two values. The 

comparison of the 2D and 1D models for ξ=5% is given in Fig. 7, here numerical harmonic analysis was 

performed for both cases. 

In this case the functions are even closer to each other than without damping, because the higher 

modes are not dominant.  
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 FE 2D model  present 1D model 

Fig. 7 – Steady-state solution of the different models (ξ=0.05)  

(h=50 m, ρ=1800 kg/m3, vs=100 m/s, m=1800 t, 2m=720 t, 2b=20 m) 

3.3 Numerical example 

As a numerical example a time-history analysis is performed for a real earthquake record [16]. First the 

system has no damping (ξ=0), then it is set to ξ=5%. The 2D model is excited at the bottom of the soil layer. 

The horizontal displacements are shown in Fig. 8 when ξ=0, and in Fig. 9 when ξ=5%. In both cases 

the results of the displacements of the 2D and 1D models are very close to each other.  

 

 2D model  1D model 

Fig. 8 – Solution of the different models for an earthquake record ([50] record no. 32) (ξ=0) 

(h=50 m, ρ=1800 kg/m3, vs=100 m/s, m=1800 t, 2m=720 t, 2b=20 m)  
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 2D model  1D model 

Fig. 9 – Solution of the different models for an earthquake record ([50] record no. 32) (ξ=0.05) 

(h=50 m, ρ=1800 kg/m3, vs=100 m/s, m=1800 t, 2m=720 t, 2b=20 m)  

4. Conclusions 

A rigid structure resting on a finite depth soil layer was investigated. The size of the object resting on the soil 

influences the behavior of the layer. When the structure is long in one direction the 2D problem can be 

reasonably well modelled by an axially constrained bar, where the bar stiffness ( EA ), mass per unit length 

(  ) and the coefficient of elastic foundation ( ) depend on the soil parameters and on the stiffness of the 

soil layer. In the model a spring (k0) and a concentrated mass (m0) must be taken into account, which depend 

on the size of the foundation. The model parameters can be calculated with simple, closed-formed formulas 

(Eqs. (4), (6) and (7)), which are based on analytical derivation. The concentrated mass can be interpreted as 

the soil which directly moves together with the object. The recommended model can be considered as two 

sub models connected parallelly: a spring-mass system and an axially constrained infinite bar (Fig. 10).  

 

Fig. 10 – Simplified model of the soil 

The presented model takes into account two resonant points between the rigid structure and the 

supporting soil, the first natural frequency and the cut-off frequency. In the 2D solution there are further 

resonance points, since in the soil layer higher modes can develop. These might be taken into account by the 

combination (serial or parallel) of our simple model, however this is not the task of this paper. 
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