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Abstract 

When performing soil dynamic analysis, viscous boundary connecting the free field and repeated boundary are often 

used as lateral boundary conditions. Eventually, traction force on the lateral boundary considering both soil and water 

was introduced. Analysis with proposed traction force was then performed to analyze a relatively small boundary, 

thereby showing results similar to a sufficiently large boundary. This paper aims to investigate the influence of traction 

force and to propose a viscous boundary in a two-layer system. In the horizontal direction, a viscous boundary was 

installed, which required traction force. Its two-phase formulation was conducted to simulate a 3D irregular ground. 

Irregular soil layer in both z- and y- directions was constructed. With traction force considered and not, clearly different 

responses were exhibited. Considering traction force negligible, the response of the building was affected. However, 

considering the viscous boundary, these responses were almost the same, thereby showing that it can be analyzed with a 

relatively small boundary. 
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1. Introduction 

When performing soil dynamic analysis, viscous boundary connecting the free field and repeated boundary 

are often used as lateral boundary conditions. However, in a 3D analysis of an irregular soil layer or 

tetrahedral element, the free ground on the side differs on all four outside fields and various measures are 

needed to reduce the influence of reflected waves from the free field. Among these measures are to consider 

the traction force of the lateral free ground [1, 2] and to formulate a two-phase analysis. In liquefaction 

analysis, a two-phase analysis of soil and water is performed. uU formulation [3] is used to solve the 

equations for water and soil motion and up formulation is used to formulate soil skeleton displacement and 

water pressure. Moreover, different boundaries should be handled. In this research, two-phase analysis is 

conducted using uU Formulation. The lateral viscous boundary formulation considering soil and water 

traction force for higher-order elements, such as tetrahedral elements, was also discussed. A dynamic 3D 

analysis with irregular soil layers was performed with its accuracy examined. 

 

2. Formulation of traction force applied to soil model side 

The traction force at the side boundary that must be considered in seismic response analysis is the surface 

force acting on the vertical section of the infinite horizontal soil (free ground). This surface force vertically 

acts when horizontal ground motions are applied and horizontally acts when vertical ground motions are 

applied. It is equal to the reaction force when the displacement is restrained. In this study, the traction force 

is calculated from the surface force. Eq. (1) is a uU Formulation that discretizes the two-phase governing 

equation of the soil skeleton and pore water shown by Zienkiewicz and Shiomi [3] and adds the boundary 

surface force. 

 𝐁𝑇

Ω

𝛔𝑑Ω + 𝐊𝟏𝐮 + 𝐊𝟐𝐔− 𝐂𝟐𝐔 + 𝐂𝟏𝐮 + 𝐌𝐬𝐮 −  𝐍𝑇

𝑆

𝒕𝑠𝑑𝑆 =
 

𝐟𝐬 

 

 
𝐊𝟐

𝐓𝐮 + 𝐊𝟑𝐔− 𝐂𝟐
𝑻𝐮 + 𝐂𝟑𝐔 + 𝐌𝐟𝐔 −  𝐍𝑇

𝑆

𝒕𝑓𝑑𝑆 = 𝐟𝐟 

 (1) 

Where B: strain displacement relation matrix, σ: stress matrix, K: stiffness matrix, C: damping matrix, M: 

mass matrix, u: displacement of soil skeleton, U: displacement of pore water, f: external force, t: boundary 

surface force, (•) indicates time derivative. Superscripts s and f denote soil skeleton and pore water, 

respectively. The surface force of the vertical section of the free ground is obtained from the free ground 

stress by Eq. (2). 

 𝐭𝐞 = 𝛔𝐞
𝑇  𝐧  (2) 

where σe: stress matrix on the free ground (value that balances with the seismic load), n: normal vector of the 

boundary, te: surface force of the boundary. In this study, the side viscous boundary element defines the 

element coordinate system for the boundary surface as shown in Fig. 1. In the element coordinate system, the 

outward normal direction of the boundary is z', the vertically upward direction is y', and the direction 

orthogonal to the plane formed by y 'and z' is x'. Assuming that the vertical upward direction of the global 

coordinate system is Z, y 'and  Z are the same direction. 
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Fig. 1 Definition of the coordinates of the boundary surface 

 

The z 'direction and direction of n are the same. In the element coordinate system, the surface force of Eq. 

(2) is expressed by Eq. (3). 

  𝑡𝑥 ′    𝑡𝑦 ′    𝑡𝑧 ′  
𝑇

=  𝜏𝑧 ′ 𝑥 ′    𝜏𝑧 ′𝑦 ′    𝜎𝑧 ′  
𝑇
  (3) 

The equivalent nodal force due to the surface force is calculated by dividing the area acted on the traction 

force by Eq. (4). The element shape is arbitrary and can support higher-order elements.  

 
𝐟e
′ =  𝐍𝑇

𝑆

𝐭𝐞𝑑𝑆 

  (4) 

where fe’: equivalent nodal force in the element coordinate system. 

Eq. (5) converts the equivalent nodal force from the element coordinate system to the global coordinate 

system. 

 
𝐟𝐞 = 𝐓𝑇𝐟𝑒

′  
  (5) 

where TT: coordinate transformation matrix. 

Since the traction force is obtained by converting the free field stress into a surface force, a stiffness matrix is 

not required. On the other hand, when assembling the whole stiffness matrix, the element stiffness matrix for 

the side viscous boundary elements should be constructed. The element stiffness matrix Ke’ in the element 

coordinate system is as follows. 

 

𝐊e
′ =  𝐍𝑇

𝑆

𝐃𝐁𝑑𝑆 

 (6) 

 

𝐃 =  

0 0 𝐷𝑧 ′ 𝑥 ′ 0
0 0 0 𝐷𝑧 ′ 𝑦 ′

𝐷𝑥 ′ 𝑥 ′ 𝐷𝑦 ′ 𝑦 ′ 0 0
  

 (7) 

 

𝐁 =

 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥′
0 0

0
𝜕𝑁𝑖

𝜕𝑦′ 0

0 0
𝜕𝑁𝑖

𝜕𝑥′

0 0
𝜕𝑁𝑖

𝜕𝑦′  
 
 
 
 
 
 
 
 

 

  (8) 
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To obtain the element stiffness determinant (9) in the global coordinate system, the element stiffness 

determinant (6) is multiplied by the coordinate transformation matrix. Here, Dx 'x' represents the component 

of D and N as a shape function. 

 
𝐊𝑒 = 𝐓𝑇𝐊𝐞

′ 𝐓 
 (9) 

Eq. (9) is defined in the coupled term between free field and boundary.  

 
𝐊 =  

0 𝐊𝑒

0 0
  

 (10) 

As shown in Eq. (10), the element stiffness matrix is asymmetric. If the stiffness matrix is symmetric, the 

force obtained from the displacement on the boundary side of the internal region acts on the free field side 

and Eq. (10) then becomes Eq. (11). This force should be essentially zero. However, the large mass of the 

free field makes the influence from the boundary negligible. 

 
𝐊 =  

0 𝐊𝑒

𝐊𝑒
𝑇 0

  

 (11) 

On the other hand, the formulation of pore water is as follows. 

 𝐭𝐞 = 𝐧𝑝  (12) 

where p is the excess pore water pressure. 

 𝑝 = −Q 𝑛𝑈𝑖,𝑖 +  𝛼 − 𝑛 𝑢𝑖,𝑖   (13) 

Q and a are  

 
1/𝑄 = 𝑛/𝐾𝑓 + (𝛼 − 𝑛)/𝐾𝑠 

 (14) 

 𝛼 = 1 − 𝐾𝑇/𝐾𝑠  (15) 

where KT, Ks, and Kf are the bulk modulus of the soil skeleton, soil particles, and pore water, respectively. 

The surface force for water pressure is as follows. 

 
 
𝑡𝑠

𝑡𝑓
 =  

− 𝛼 − 𝑛 𝑝
−𝑛𝑝

  

 (16) 

Where ts and tf are the surface forces of the soil and water relative to the pore water pressure, respectively. 

The transformation from the element coordinate system to the global coordinate system is similar to that of 

Eq. (5). Next, the element stiffness matrices Ke
s, Ke

f
, and Ke

sf for the soil skeleton, pore water, and soil-water 

coupling in the elemental coordinate system, respectively, are obtained following Eq. (17) to (19). Their 

equation expansion from the element stiffness matrix to the whole stiffness matrix is similar to Eq. (9) to 

(11). 

 
𝐊e

𝑠 = − 𝛼 − 𝑛 2  𝐍𝐓𝐃𝐟𝐁
𝑆

𝑑𝑆 

 (17) 

 
𝐊e

𝑓
= −𝑛2  𝐍𝐓𝐃𝐟𝐁

𝑆

𝑑𝑆 

 (18) 
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𝐊e

𝑠𝑓
= − 𝛼 − 𝑛 𝑛 𝐍𝐓𝐃𝐟𝐁

𝑆

𝑑𝑆 

 (19) 

 
𝐃𝒇 =  

0 0 0 0
0 0 0 0
𝑄 𝑄 0 0

  

 (20) 

 

3. Analysis conditions  

3.1 Analysis mesh 

Figure 2 shows the analysis mesh with higher elements (10-node tetrahedron and 15-node pentahedron). An 

inclined ground is assumed for the embankment structures. In mesh (a), there is a large analysis area in the 

horizontal direction and free ground with sufficiently large mass connected to both sides to consider the 

influence of the wave propagation boundary. In mesh (b), there is a smaller analysis area and viscous 

boundaries connected to both sides. In mesh (c) there is a 10-meter extension of mesh (b) on all sides with 

the same layer. Table 1 shows the material constants used in the analysis. Impulse waves were input to the 

lower part of the ground. The transfer function with the upper center of the embankment marked red point in 

the Fig. 2 was then examined. The ground is first subjected to single-phase and two-phase analysis as linear 

analysis followed by liquefaction analysis using seismic waves as the non-linear analysis. 

 

(a) Large mesh 

  

(b) Small mesh 
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(c) Mesh obtained by extending a small mesh by 10 m in all directions 

Fig. 2 Analysis meshes used in his study 

Table 1 Material constants 

Embankment Surface
Sand

layer 1

Sand

layer 2

Bed

rock

Density of soil particle r s (Mg/m
3
) － － 2.65 － 2.65

Density of water r f  (Mg/m
3
) － － 1.0 － 1.0

Porosity n － － 0.4081 － 0.3939

Wet density r  (Mg/m
3
) 1.8 1.98 1.98 1.98

Shear stiffness G (kPa) 45000 112600 112600 112600 180000

Reffernce  stress s ref  (kPa) 18.0 49.0 49.0 49.0 －

Coefficient of restraint pressure dependent n 0.5 0.5 0.5 0.5 －

Poisson ratio n 0.33 0.33 0.33 0.48 0.48

Cohesion c (kPa) 10.0 10.0 10.0 10.0 －

Shear resistance angle f  (deg.) 36.0 36.0 36.0 36.0 －

Soil particle bulk modulus K s =1.0×10
41 

(kPa),  Water bulk modulus K f =2.2×10
6 

(kPa),

Permeability k =1×10
-8 

(m/s)  

3.2 Viscous boundary model 

In the case of a 3D model with a viscous boundary shown in Fig. 3, free grounds were created on all sides of 

the mesh in Fig. 2 with the same shape as the boundary. Corner free grounds between the sides were also set. 

The mass of the side free ground was 103 times the mass of the inner area and that of the corner free ground 

was 106 times the mass of the inner area. 

   

Fig. 3 3D model with viscous boundary 
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4. Analysis results: Impulse response 

4.1 Single-phase analysis, linear response for ground 

a) Comparison of viscous boundaries and rigidly connected internal area and free ground  

In a rigid connection (tied), the nodes at the same position in the internal area and free ground have the same 

displacement. Fig. 4(a) and 4(b) show the transfer function of the analysis result of Fig. 2(a) and 2(b) mesh, 

respectively. This is the Fourier spectrum ratio of the response acceleration at the center of the embankment 

top (red point in Fig. 2(a)) for the input wave. Input motion is only in the X-direction for all analyses. In the 

case of a relatively large mesh in Fig. 4(a), a slight difference is observed around 7 Hz, however, both results 

are nearly similar. On the other hand, as shown in Fig. 4(b), the viscous boundary and rigid connection 

response differed greatly at around 10 Hz. Thus, with relatively larger mesh, there is minimal effect on its 

surrounding free ground even with a rigid connection. 
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(a) Fig. 2(a) mesh 
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(b) Fig. 2(b) mesh 

Fig. 4 Transfer function response from single -phase analysis 

 

b) Internal area and free ground connected with a viscous boundary 

Figure 5 shows the transfer function obtained from calculations to compare the differences between a large 

mesh (Fig. 2 (a)) and small mesh (Fig. 2 (b)) with viscous boundaries. The response of the small and large 

meshes tend to be equivalent, if not completely identical. 
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Fig. 5 Transfer function response of a large and small mesh with viscous boundaries using single-

phase analysis 

 

c) Traction force 

Figure 6 shows a comparison when traction force is not considered (No traction) and when traction force is 

considered (Cal. Traction). The behavior significantly differed at 1 and 10 Hz for both cases. Therefore, 

traction force should be considered to discuss the surface response with a viscous boundary. 
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Fig. 6 Transfer function response with traction force considered and not using single-phase 

analysis 

 

4.2 Two-phase analysis, linear response for ground 

a) Internal area and free ground connected by viscous boundaries 

In the two-phase analysis, the response tendency did not differ much from the single-phase analysis. Figure 7 

shows the transfer function of the analysis result. Comparing the mesh connected at the viscous boundary of 

a large mesh (Fig. 2 (a)) and small mesh (Fig. 2 (b)), minimal differences can be observed. 
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Fig. 7 Transfer function response of large and small mesh connected at a viscous boundary 

using two-phase analysis 
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b) Shear stiffness of liquefied layer and non-liquefied layer  

From Section 4.1, a relatively good solution can be obtained for both single-phase and two-phase analysis by 

analyzing with a small mesh and viscous boundary while considering the traction force. Therefore, in 

liquefication analysis, the ground stiffness could be extremely reduced. Here, the shear stiffness of the 

liquefied layer was set at 1/10 and that of a non-liquified layer was set at 1/2 of the original shear stiffness. 

Figure 8 shows their transfer function result. There is no significant difference when analyzing with a small 

mesh and large mesh. The mesh of Fig. 2(b) has its viscous boundary set near the area with oblique soil. In 

Fig. 2(a), several meters of stratified ground is provided where the stratum and viscous boundary is set. 

Therefore, a similar analysis was performed on the 10-m stratified ground from a small mesh in Fig. 2(c). 

Figure 9 shows the analytical results. The difference between large mesh and small mesh is smaller than in 

Fig. 8. Therefore, the number of meshes should be reduced in performing 3D analysis. However, meshes are 

more accurate with a slightly stratified ground formed from a diagonal ground. 
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Fig. 8 Transfer function response of liquefied and non-liquefied layers using two-phase analysis 
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Fig. 9 Transfer function response 

 

c) Difference between tetrahedral mesh and hexahedral mesh 

In Section 4.1, a mesh based on tetrahedral elements was used because of its diagonal ground. However, in 

the finite element method, hexahedral elements (Fig. 10) are often used. Here, we will examine the 

differences between meshes with these elements. Figure 11 shows the analysis results where using 

tetrahedral element (Tetra10), which is a higher-order element, yielded almost the same results of a 

hexahedral element (Hex8). 
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Fig. 10 Hexahedral element mesh 

 

Fig. 11 Transfer function response of a mesh with tetrahedral (Teta10) and hexahedral (8) 

elements 

5. Analysis results: Earthquake motion response 

5.1 Analysis conditions 

Liquefaction analysis using seismic motion was performed. The data in Table 1 is used for the 

ground properties. Sand layer 1 was used as the liquefied layer. Figure 12 shows the liquefaction 

strength curve in comparison with the data obtained by Toyoura sand. The soil constitutive equation 

used the YT model [4]. RL20 resistance strength is 0.2. Figure 13 shows the input ground motion of 

2E. 
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Fig. 12 Liquefaction strength curve 
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Fig. 13 Input ground motion 

5.1 Analysis results 

Figure 14 shows the Fourier spectrum ratio of the input acceleration and acceleration response 

applied with the Parzen window (0.2 Hz) at the center of the embankment top. A good response can 

be observed until 7 Hz. The largest difference can be observed around 8 Hz. Thus, if the ground 

liquefies, the frequency will be low and the effect of mesh difference is considerably small. Figure 

15 shows the contour of the excess pore water pressure ratio of the central section of the mesh in 

Fig. 2(c) at 50 s where the shallower liquefied layer was completely liquefied. 
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Fig. 14 Fourier spectrum ratio of the input acceleration and acceleration response 
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Fig. 15 Contour of excess pore water pressure ratio of the central mesh section at 50 s 

6. Conclusion 

In the study, the linear impulse response and transfer function of single-phase and the two-phase systems 

were analyzed. The seismic motion analysis of the two-phase system was also examined. Different boundary 

conditions were compared. The following findings were obtained: 

1. When rigidly connecting the internal area and free field, accuracy deteriorates unless a sufficiently large 

mesh is set. 

2. By adding the traction force, a similar response can be obtained from both large mesh and small mesh. 

3. With irregular ground layer and free ground connected by a viscous boundary, the accuracy can be 

improved by setting the horizontal ground about 10 m from the irregular ground. 

4. The analysis results for higher-order tetrahedral and hexahedral elements were almost the same. 
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5. Nonlinear liquefaction analysis showed similar results from a large mesh and a viscous boundary in a 

relatively small area. 
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