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Abstract 

On September 28, 2018, a magnitude Mw 7.5 earthquake occurred at 75 km north from the city of Palu, Central 

Sulawesi, Indonesia. The earthquake induced catastrophic effects, such as a series of tsunamis, landslides, and 

liquefaction. It has been reported more than 70,000 damaged houses. In this event, significant permanent ground 

deformation was observed. In fact, the ruptured fault crosses the city of Palu. In this kind of disaster events, one of the 

earliest needs is the identification of collapsed buildings, which may contain survivors trapped inside. An automatic 

procedure for such purpose can be performed from a pair of satellite images taken before and after the event. The 

fundamental basis lies in the detection of changes between both images. However, before detecting changes, the pair of 

images must be perfectly aligned. In ordinary situations, aligning a pair of images, a pre-process termed image co-

registration, is a straightforward procedure. In general lines, first, some ground control points are identified, manually or 

automatically, in both images and, second, use them for mapping one image by some linear or polynomial 

transformation. Unfortunately, because image co-registration assumes smooth transformation, it did not work well for 

the case of the 2018 Sulawesi earthquake-tsunami. The complex ground deformations due to the fault line and the 

liquefaction could not be removed by linear/polynomial transformation. In this paper we report a novel procedure to 

identify the areas affected by the earthquake and tsunami. The method does not require image co-registration. It is based 

on the application of phase-correlation and sparse modeling. Consider the phase-correlation a function whose input is 

the two images and its output is a bi-dimensional array. On ideal conditions, phase-correlation exhibit a distinctive peak 

in areas without damage (no-change); otherwise, there is no such peak. In real scenarios, though, such a trend is difficult 

to identify in medium/low-resolution images. Therefore, statistical learning with sparsity, more precisely sparse logistic 

regression based on l1-regularization, is employed here to identify the significant components of the phase-correlation 

for the identification of collapsed buildings. The proposed framework was applied to optical and microwave images and 

the results achieved high accuracy.  
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1. Introduction

The identification of damage to the urban area in the aftermath of a large-scale disaster is an important task 

in emergency response and recovery activities [1-8]. Satellite remote sensing, because its wide coverage, is 

probably the only way to inspect the completely affected area produced by a large disaster. The most 

efficient method to identify damage is the comparison of a pair of images recorded before (pre-event) and 

after (post-event) the disaster in mention, an approach usually referred to as change detection. However, 

proper change detection analysis requires the two images to be perfectly aligned. Thus, a pre-process called 

image registration is always applied to the images in order to align one image with respect to the other.    

Most of the image registration algorithms have a step in common, namely, the search for common 

points in both the pre-event and the post-event images. Such points are referred to as ground control points 

(GCPs). There is a trade-off between the number of GCPs and the precision of the image registration. A 

larger number of GCPs require intense computation resources, whereas a low number of GCPs can 

compromise the precision of the image registration. Once the GCPs are selected, the offsets in each GCP are 

measured; then, one image is resampled to be aligned with the other. Common resampling techniques are 

similarity warping and polynomial warping [9]. It has been observed recently that standard image 

registration techniques cannot correct complex ground deformation induced by earthquakes of large 

magnitudes. Coseismic deformation near the fault line, liquefaction, and landslides are such examples.  

In this study, we identify the collapsed buildings due to the 2018 Mw 7.5 Sulawesi Indonesia 

earthquake-tsunami, where complex ground deformations were observed. Instead of using a significantly 

large amount of GCPs to reduce the effect of the complex deformations, we propose to eliminate the image 

registration processing from the processing chain for damage mapping. Hence, we introduce the use of phase 

correlation and the l1-regularized logistic regression classifier as a new alternative. The phase correlation is 

a bi-dimensional signal computed from a pair of images that shows a property that is independent of the 

offset between the images. However, previous studies have shown that only a few components of the phase 

correlation signal contain information regarding the degree of similarity between the pair of images. Thus, an 

efficient change detection model must be able to identify the relevant components of the phase correlation. 

We use the l1-regularized logistic regression classifier for this purpose because it produces a sparse model for 

classification [10].   

2. Fundamental basis

2.1 The phase correlation 

Consider that the bi-dimensional discrete functions 𝑓(𝑛1, 𝑛2) and 𝑔(𝑛1, 𝑛2) represent the pre-event and post-

event images respectively, and are defined as: 

𝑓(𝑛1, 𝑛2) = 𝑓(𝑥, 𝑦)|𝑥=𝑛1𝑇1,𝑦=𝑛2𝑇2

𝑔(𝑛1, 𝑛2) = 𝑓(𝑥 − 𝑥0𝑇1, 𝑦 − 𝑦0𝑇2)|𝑥=𝑛1𝑇1,𝑦=𝑛2𝑇2
(1) 

where 𝑛1 and 𝑛2 denotes the discrete domains, 𝑇1 and 𝑇2 denotes the pixel resolution in the horizontal and

vertical axis, and 𝑥0𝑇1.and 𝑦0𝑇1 denotes the offset between the images in the 𝑥 and 𝑦 axis. The normalized

cross power spectrum is defined as: 

𝑅(𝑢, 𝑣) =
𝐹(𝑢, 𝑣)𝐺(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝐹(𝑢, 𝑣)𝐺(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅|
= 𝑒𝑗(𝑢𝑥0+𝑣𝑦0) (2) 

where 𝐹(𝑢, 𝑣) and 𝐺(𝑢, 𝑣) denotes the discrete Fourier transform of 𝑓(𝑛1, 𝑛2) and 𝑔(𝑛1, 𝑛2), respectively.

The phase correlation is referred as the inverse discrete Fourier transform of 𝑅. The phase correlation has the 

following properties: (i) If 𝑓 and 𝑔 are identical images, then the phase correlation is a unit pulse with the 

peak centered; (ii) if 𝑔 is identical to 𝑓  but circular-shifted by integer values 𝑥0  and 𝑦0 , then the phase

correlation is a unit pulse with a peak value located at a position (𝑥0, 𝑦0) with respect of the center; (iii) if 𝑔
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is identical to 𝑓 but circular-shifted by non-integer values 𝑥0 and 𝑦0, then the phase correlation no longer

shows a unit pulse, but rather a peak whose shape consists of more than one component; (iv) if 𝑓 and 𝑔 are 

different images, then the phase correlation does not exhibit any peak.  

In real practice, the evaluation of phase correlation is more subtle. Two images recorded in the same 

area but on different dates are not precisely identical. Although they exhibit a high degree of similarity, 

seasonal changes on vegetation or the presence of cars only in one image are examples of subtle differences 

between the referred images. Fig. 1a shows the visible bands of two images taken at an urban area that did 

not experience any damage. As can be observed, the images are not completely identical. The phase 

correlation computed for each pair of bands is depicted in Fig. 2a. Note that although the peak is observed, 

there is background noise in the signal. On the other hand, areas affected by an arbitrary large scale disaster 

will exhibit a high degree of dissimilarity; however, there is some degree of similarity represented by non-

collapsed buildings. Fig. 1b shows a pair of images taken before (top) and after (bottom) a tsunami arrived. It 

is observed a great amount of debris and some of the buildings were washed away. Nevertheless, it is also 

observed that some buildings remain non-collapsed. The phase correlation computed for this case (Fig. 2b) 

does not exhibit a clear peak and the level of background noise is larger than that computed from the case of 

the non-damaged urban area (Fig. 2a).  

(a) (b) 

Fig. 1 – Examples of visible spectral bands taken at urban areas. (a) Non-damaged urban area. (b) Tsunami 

affected urban area. 

(a) 

(b) 

Fig. 2 – Phase correlation computed in urban areas. (a) The non-damaged urban area shown in Fig. 1a. (b) 

The tsunami affected urban area shown in Fig. 1b. 
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2.2 The l1-regularized logistic regression classifier [10]  

A classifier is a function that assigns a sample 𝑖 certain label/class 𝑧𝑖  by using as input a set of features 

arranged in a vector 𝑟𝑖. Here, we use a binary class 𝑧𝑖 ∈ {−1,1}, where the label -1 indicates that the sample 

represents a damaged area, and the label 1 indicates the sample represents a non-damaged area. As the name 

of the section suggests, we use the logistic regression function: 

 𝑃𝑟(𝑧𝑖 = 1|𝑟𝑖) =
𝑒𝑥𝑝(𝛽0 + 𝛽𝑇𝑟𝑖)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽𝑇𝑟𝑖)
 (3) 

where 𝛽𝑇  is a vector of regression coefficients, 𝛽0  is an intercept term, and 𝑃𝑟(𝑧𝑖 = 1|𝑟𝑖)  denotes the 

probability that 𝑧𝑖 = 1. If 𝑃𝑟(𝑧𝑖 = 1|𝑟𝑖) ≥ 0.5, then it is assumed 𝑧𝑖 = 1; otherwise 𝑧𝑖 = −1. In order to use 

Eq. (3), the parameters 𝛽0 and 𝛽𝑇 need to be tuned, a process often referred to as model calibration.  

The model calibration is performed using a set of samples from which their class/label are known in 

advance. The model calibration is based on the following optimization problem: 

 min
𝛽0,𝛽

{𝐶∑ log (1 + 𝑒𝑥𝑝(−𝑧𝑖(𝛽0 + 𝛽𝑇𝑟𝑖)))

𝑁

𝑖=1

+ ‖𝛽‖1} (4) 

where ‖∙‖1 denotes the l1-norm. The use of l1-norm yields sparse solutions. A sparse solution refers to a 

solution in which the vector 𝛽 has relatively few non-zero components. The parameter 𝐶 is associated with 

the sparse level (i.e., the percentage of zero components of the vector B) of the solution. A low 𝐶-value will 

yield a high level of sparsity, whereas a large 𝐶-value produces a low level of sparsity.   

 

 

Fig. 3 – Location of the study area. (a) location of the Sulawesi island (red rectangle) within Indonesia (green 

polygons). (b) Location of the study area (red rectangle) within the Sulawesi island. (c) Planet image 

recorded after the 2018 Sulawesi Indonesia earthquake-tsunami in the study area. 
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Fig. 4 – complex ground deformation at the central coast of the city of Palu, Sulawesi. (a) Coseismic 

displacement (yellow arrows) around the Palu-Koro fault line (dashed red line). (b) Liquefaction. 

3. The 2018 Sulawesi Indonesia earthquake-tsunami

On 28 September 2018, an earthquake of moment magnitude (Mw) of 7.5 occurred 75 km north of the city of 

Palu, Central Sulawesi, Indonesia. The earthquake is associated with an active strike-slip fault called Palu-

Koro [11]. Important secondary effects of this earthquake are a tsunami, landslides, and liquefaction. 

Overall, as of 25 October 2018, this earthquake left approximately 68,451 damaged houses, 2081 casualties, 

and 4438 injured people [12]. The urban areas most affected were located in the city of Palu and its 

surroundings, but also it was the area that experienced the complex ground deformation. Fig. 4a depicts the 

coseismic displacement as yellow arrows near the central area of the coast of Palu city. The red dashed line 

shows the location of the fault line. It can be observed that each side of the fault line exhibit a different trend 

on the coseismic displacement. Fig. 4b shows a liquefaction area, another source of complex local ground 

deformation. Because the liquefaction area is significantly large, it is cataloged as a landslide for some 

studies. It has been recently pointed out that communal irrigation had a significant impact on this 

phenomenon [13].  

3.1 Damaged mapping procedure in urban footprints 

In order to prepare a large scale damage mapping due to the earthquake, visual and near-infrared (VNIR) 

spectral bands of 3-m resolution are used. Planet provided the images under an early disaster response 

framework [14]. Figure 3c shows the post-event image recorded on 2 October 2018. Also, a second image 

recorded in 18 September 2018 is used as a pre-event image. Note that both images are not co-registered. 

Damage identification is strictly applied to urban areas (Fig. 6a). Hence, the urban footprint was first mapped 

using eleven Sentinel-2 imagery recorded during 2018, but before the occurrence of the earthquake [15]. The 

resulted urban footprint map is a grid of 10 × 10 -m
2
 resolution. Then, for each grid-cell, the phase 

correlation is computed using the pre- and post-event Planet images. The phase correlation is computed 

using a Planet sub-images of 21 × 21-pixels closest to the grid-cell. Recall that each image has four spectral 

bands (red, green, blue, and near-infrared), and thus, the phase correlation is computed four times.  

The l1-regularized logistic regression is used to classify whether a grid-cell is damaged or not. The 

feature vector 𝑟𝑖 showed in Eq. (3) is constructed from the phase correlation in the following manner: First,

the phase correlation is computed. As referred above, the sub-images of size 21 × 21 are used to compute 

the phase correlation; therefore, the phase correlation has the same size. Second, The location of the 

maximum value of the phase correlation is identified. Third, a sub-matrix of the phase correlation with size 

11 × 11, and with the maximum phase correlation value at the center, is used as a feature. Each phase 

correlation sub-matrix contributes with 11 × 11 = 121 features. Hence, a sample/grid-cell has 484 features 

(4 spectral bands), which are stored in the vector 𝑟𝑖.
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(a) (b) (c) 

Fig. 5 – Sparsity analysis. (a) Relationship between the parameter C and the level of sparsity. (b) 

Relationship of the parameter C and the accuracy score of the predictions. (c) Coefficients of vector B 

arranged in a matrix format computed with C=0.00222.  

Fig. 6 – Predictions of damaged (red pixels) and non-damaged (yellow pixels) in urban footprint areas. (a) 

Complete study area. (b) Pre-event high-resolution image of a non-inspected area. (c) Post-event high-

resolution image of the same area shown in (b). (d) Predicted damage using the proposed method on 

medium-resolution VNIR images.  

The building damage inventory provided by the Copernicus Emergency Management Service [16] is 

employed in the model calibration process. The damage inventory was performed by visual inspection of 

optical imagery of 0.5-m resolution. Buildings classified as destroyed and non-damaged are used to classify 
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the grid-cells to damaged-based changed (𝑧𝑖 = 1) and non-changed (𝑧𝑖 = −1) areas, respectively. The model 

calibration is performed using Eq. (4) from a range of values for the 𝐶 parameter. The relationship between 

every coefficient 𝛽𝑖 and 𝐶 is shown at the top of Fig. 5a, often referred to as coefficients path figure. Note 

that as 𝐶  approaches to zero, most of the components of 𝛽𝑖  equals zero. On the other hand, when 𝐶 

approaches to one, all the coefficients of 𝛽𝑖 differ from zero. The relationship between the percentage of non-

zero components of 𝛽 and 𝐶 is illustrated at the bottom of Fig. 5a. The performance of the classifier in terms 

of accuracy under a range of 𝐶-values is shown in Fig. 5b; where the percentage of correctly classified 

samples from the building damage inventory is used as a score. The 10-fold cross-validation is used to 

compute the score. Namely, the damage inventory is randomly divided into 10-subsets, from which nine 

subsets are used for model calibration (training data), and the remaining subset is used to compute the score 

(testing data). This process is repeated ten times, each using a different subset as testing data. From Fig. 5b, 

the blue points denote the averaged score and the bar denotes the limits of the averaged score plus/minus the 

standard deviation. Observe that for 𝐶  values lower than or equal 0.0004, the score is 50%. Then, the 

accuracy increases at a high rate until about 𝐶 = 0.002. For 𝐶 -values greater than 0.002, the score remains 

almost unchanged. Thus, we use a 𝐶 = 0.002 as the optimal value because it yields the lowest number of 

non-zero components of 𝛽 with the highest accuracy. Fig. 5c shows the coefficients of 𝛽𝑖 re-arranged as four 

matrices of 11 × 11, which are associated with the phase correlation sub-matrices used to construct the 

feature vector 𝑟𝑖 . Note that (i) only 22 components of 𝛽 are non-zero, (ii) they include the components 

associated to the center of each submatrix (i.e., the maximum value of the phase correlation), and (iii) the 

other components are located closest to the location of the center of a submatrix.  

3.2 Results 

Once the l1-regularized logistic regression was calibrated, it was applied to the study area shown in Fig. 3c. 

The changes between the pre-event and post-event Planet images are shown in Fig. 6a. The yellow pixels 

denote grid-cells where no changes are detected, whereas the red pixels denote grid-cells where changes are 

detected. Considering that the acquisition dates of the images differ only two weeks, we can assume that 

most of the observed changes are associated with the occurrence of the earthquake-tsunami. Fig. 6a shows 

closer looks of high-resolution optical images at specific areas that suffered tsunami and liquefaction 

damage. Our results, computed from medium resolution (3-m) images, are consistent with high-resolution 

(0.5-m) post-event images. However, because these areas were dramatically affected, it was included in the 

damage inventory that was used for model calibration. The true relevance of this semi-automatic damage 

mapping procedure is that is can search for much larger areas without human effort. For instance, Fig.6b-d 

shows a tsunami-affected area that was not reported in the damage inventory but reported in our results. Fig. 

6b and 6c show the pre-event and post-event high-resolution optical imagery. Fig. 6c shows the post-event 

Planet image of the same area, and at the top is shown our results. The location of fig. 6b-d is shown in fig. 

6a as a cyan rectangle. It is worth to point out the limitations of the results as well. For instance, the white 

rectangle at the top of Fig. 6a shows a large area classified as changed; however, it was the result of the 

presence of clouds in the pre-event image rather than damage due to the earthquake-tsunami.  

4. Conclusions 

In this paper, we report a procedure to identify changes between a pair of images to identify the effects of a 

large scale disaster. The procedure does not require the images to be co-registered, a process that requires 

significant runtime and it is very challenging when complex local ground deformations exist in the area of 

interest. The method proposed the use of phase correlation as a feature signal because it exhibits a clear peak 

if the images are very similar; otherwise, no peak is observed. In order to identify the components of the 

phase correlation signal that makeup such a peak, the l1-regularized logistic regression is employed. The 

proposed procedure was applied to a pair of visual and near-infrared spectral bands images with 3-m 

resolution. The images were acquired before and after the occurrence of the 2018 Sulawesi Indonesia 

earthquake-tsunami, with a time-baseline of about two weeks. Thus, most of the detected changes are 

associated with the earthquake-tsunami effects. Our results show an agreement of 85% with a building 
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damage inventory. Therefore, the results indicate that it is possible to identify changes between images that 

are not co-registered. Furthermore, we showed that the proposed method could be used to complement 

damage inventory based on human visual inspection.  
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