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Abstract 

In Japan, telecommunication conduits protecting cables extend over about 620,000 km. When a large earthquake occurs, 

however, some conduits are broken, leading to cable damage. To protect cables efficiently, it is important to predict which 

pipelines are most susceptible to damage. 

At present, conduits' vulnerability is evaluated in terms of the peak ground velocity (PGV), joint type, length, and micro-

topography classification[1]. In addition, studies have evaluated vulnerability by adding parameters such as land assumed 

to be artificially flattened and equivalent predominant periods. According to this type of model, if countermeasures had 

been taken in preparation for the 2016 Kumamoto earthquake, 29% of conduit damage could have been prevented by 

taking countermeasures for the top 15% most vulnerable conduits. Nevertheless, there seems room for improving the 

accuracy[2]. 

In this study, to improve the accuracy of damage prediction for conduits, machine learning was used to develop a model 

on the basis of data with many parameters. A total of 25651 inspection results were used to examine the damage caused 

by the 2011 earthquake off the Pacific coast of Tohoku and the 2016 Kumamoto Earthquake. Of these, 337 instances had 

damage. The parameters in the learned data included earthquake data (PGV, PGA, IJ, etc.), ground data (micro-

topographic divisions, AVS30, etc.), and facility data (length, joint type, etc.). 

For learning, this study used a gradient-boosting decision tree: a supervised learning method known as a nonlinear model 

with comparatively easy accuracy. The model's area under the curve (AUC) by this method was 0.82. The results showed 

that 79% of damage could have been prevented if countermeasures had been applied for the top 15% most vulnerable 

conduits according to this index. Even with this method, however, when another earthquake was evaluated by a model 

learned on a different earthquake, the AUC dropped to 0.59, and the prediction accuracy greatly decreased. 

In the future, we will investigate why this model generally contributes to accuracy improvement and what kinds of 

variables specifically contribute to accuracy improvement. We will also aim to construct a generalizable prediction model 

that physically matches data. 

 Keywords: machine learning, gradient-boosting decision tree, telecommunication conduit, damage estimation 
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1. Introduction

There are many underground facilities to protect communication cables in Japanese telecommunication 

networks, as shown in Fig. 1. These telecommunication facilities have high reliability, and the basic policy is 

to keep using as many current facilities as possible without building new ones [1]. On the other hand, some 

conduits are damaged during earthquakes, which may damage important cables. Although cable damage can 

be prevented by applying a cable protection lining in advance [2], that is difficult to do for all such pipes, 

which have a total length of about 620,000 km. Therefore, it is important to grasp the locations where pipeline 

damage is likely to occur in an earthquake beforehand and apply countermeasures efficiently.  

A statistical method for predicting pipeline damage due to earthquakes was proposed by Shoji et al., and a 

method for predicting pipeline damage in Japan's Tohoku region was also proposed. This method statistically 

classified the susceptibility to damage according to the conduit type, length, and engineering geomorphic 

classification [3]. A similar method improved the accuracy by adding the equivalent predominant period to 

artificially flattened land in damage data from the 2016 Kumamoto earthquake, and then extracting the top 

15% from all pipelines with damage. About 30% of the pipelines could be extracted [4]. 

To further improve on those techniques, this paper examines a prediction model using machine learning. For 

example, Bagriacik et al. used four methods to predict damage to water pipes in the 2011 Christchurch, New 

Zealand earthquake [5]. Taki et al. estimated damage by using density ratio estimation, an unsupervised 

learning method, for gas pipes in the 2011 earthquake off the Pacific coast of Tohoku [6]. Arita and colleagues 

used four types of machine learning to predict damage to water and sewage systems in Sendai, Miyagi 

Prefecture, following the 2011 Tohoku earthquake [7]. On the other hand, there have been few cases of using 

machine learning for damage prediction with multiple types of earthquakes. 

In this paper, we apply machine learning to analyze data for communication pipelines damaged in the 2011 

Tohoku earthquake and the 2016 Kumamoto earthquake, and to verify the predictability. Specifically, we 

verify whether a model can be constructed using both datasets, and what kind of prediction is obtained if a 

model learned with one dataset is applied to the other earthquake. 

Fig. 1 Underground facilities for Japanese telecommunication 
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2. Method

2.1. Dataset 

The target of analysis in this study was conduit damage data confirmed by inspection after the 2011 Tohoku 

earthquake and the 2016 Kumamoto earthquake. Communication pipelines are inspected in the case of conduits 

belonging to telecommunication buildings in municipalities where seismic motion with a Japanese seismic 

intensity of at least 6 was observed and the road surface was deformed. For the 2011 Tohoku earthquake, areas 

that were off-limits because of the nuclear accident were not inspected, and inundated areas considered to have 

been affected by the tsunami were also excluded from the data. The total number of records was 25651, with 

337 indicating internal damage. Of these, 18600 were from the Tohoku earthquake, and 7051 were from the 

Kumamoto earthquake. 

Pipeline damage was first confirmed in terms of whether a specified mandrel did not pass inspection; when 

it passed, it was considered sound. In cases of failure, a pipe camera was used to visually check the failure 

point. Then, in cases of bending, breaking, separation, sediment inflow, flattening, and so on, the damage was 

considered due to an earthquake. In contrast, when rust or artificial scars were visually confirmed, no 

earthquake damage was assumed. The presence of earthquake damage was used as an objective variable. Fig. 

2shows an example of such damage. 

Table 1 lists the parameters used as explanatory variables. Of the ground and landform information, the 

elevations and inclination angles from a 250-m mesh were obtained from Japan's National Land Numerical 

Information download service [8]. As for the engineering geomorphic classification, the data was used for 

places estimated to have been artificially flattened according to the J-SHIS map by the National Research 

Institute for Earth Science and Disaster Resilience (NIED) [9]. The basic natural period of the ground was 

obtained by two methods. Following Senna et al., one method was based on the horizontal-to-vertical (H/V) 

spectrum as calculated from microtremor observations [10] and determined for each engineering geomorphic 

classification [11]. The other method integrated bore data into the first method. The average shear-wave 

velocity (AVS30) was taken from the J-SHIS map and integrated with the bore data [12]. The records for peak 

ground acceleration (PGA), peak ground velocity (PGV), spectral intensity (SI), and Japanese seismic intensity 

were interpolated by kriging from observations by NIED's K-NET and KiK-NET seismograph networks, the 

Japan Meteorological Agency (JMA), and municipal seismic intensity meters [13]. The converted 

displacement was calculated as PGV2/PGA. The ground strain was calculated in two ways: by using the 

pseudo-effective strain γ′eff = 0.4 × PGV/AVS30 [14], and by following a high-pressure gas conduit aseismic 

design guideline [15].  

As noted above, the AVS30 was calculated by integration with bore data. Because the scale of the numerical 

data differed greatly, the data was standardized to have an average of 0 and a variance of 1. For categorical 

variables, one-hot encoding was performed by converting each category value to 0 or 1 as a parameter. 

Fig. 2 An example  of damage 
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Table 1 Overview of parameters 

Division Item Description Type of value 

Conduit 
information 

Conduit type Type (joint type) of representative conduit in span Category 

Length Length of span Value (m) 

Number of conduits Number of conduits in span Integer 

Age Years since construction Integer (y) 
Presence of shallowly 
buried conduit 

Whether span includes shallow buried part Boolean value 

Protected length Length of conduit protected with concrete Value (m) 

Land and ground 
conditions 

Basic natural period 
(integrated / method of  
Senna et al.) 

Natural period of ground 
(derived two ways) 

Value (s) 

Average elevation 

Values in 250-m mesh obtained from National 
Land Numerical Information 

Value (m) Highest elevation 

Lowest elevation 

Average angle 

Value (°) Maximum angle 

Minimum angle 
Engineering geomorphic  
classification 
(artificial  
flat terrain) 

Classification from J-SHIS data for artificially 
embanked sites 

Category 

AVS30 
(integrated / J-SHIS) 

Average shear-wave velocity 30 m underground 
(derived two ways) 

Value (m/s) 

Seismic-wave 
parameters 

PGA Peak ground acceleration Value (cm/s2) 

PGV Peak ground velocity Value (cm/s) 

SI Spectral intensity Value (cm/s) 

Converted displacement Displacement estimated from PGV and PGA Value (cm) 
Ground strain 
(method of Yamazaki 
 et al. / gas method) 

Strain in surface layer Value 

Equivalent predominant  
frequency 

Earthquake frequency  Value (Hz) 

Japanese seismic intensity Seismic intensity scale used in Japan Value 

Maintenance hole 
information 

Age Years since construction Integer (y) 

Unique design Whether special construction method was used Category 

Size number 
Size of maintenance hole (minimum 1, maximum 
8) 

Integer 

Maintenance hole type Materials constituting maintenance hole Category 

Number of covers Number of covers on maintenance hole Integer 

Maintenance hole shape Whether shape diverges Category 

Pooled water Amount of water at maintenance hole Category (3 steps) 

Spring water Existence of spring at maintenance hole Boolean value 

Stored gas Detection of harmful gas Boolean value 

H2S Detection of hydrogen sulfide Boolean value 

Cables 
Number of optical cables Number of optical cables in span Integer 

Number of metal cables Number of metal cables in span Integer 
Total number of cables Total number of all cables in span Integer 
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2.2. Machine learning approach 

 In this study, we performed regression analysis using gradient boosting and constructed a prediction model. 

Boosting is a method of calculating a final predicted value by combining predictions from a series of weak 

classifiers. Here, a decision tree was used as the weak classifier. Let 𝒙𝑖 ∈ ℝ𝑚 be the feature values for data

item i among n inputs, and let 𝑦𝑖 ∈ ℝ be its label. Here, m represents the number of features, as listed in Table

1, and n = 25651 is the total number of records. The decision rule 𝑓(𝒙𝑖) can be expressed as the following:

𝑓(𝒙𝑖) =  ∑ 𝑤𝑗𝐼(𝒙𝑖 ∈ 𝑅𝑗)

𝑇

𝑗＝1

, (1) 

given a region Rj that is represented by the terminal vertex of the tree and does not overlap with X, and a value 

wj assigned to each region. Here, T is the number of leaves in the tree, and I is the indicator function, which 

returns 1 if 𝒙𝑖 ∈ 𝑅𝑗 and 0 otherwise. By combining such decision trees, the predicted value �̂�𝑖 for i is expressed

as the following:  

𝑦�̂� = 𝜙(𝒙𝑖) = ∑ 𝑓𝑘(𝒙𝑖)

𝐾

𝑘=1

. (2) 

In this case, K is the number of additive functions to predict the output. Boosting determines the next decision 

tree according to the one created in the previous step. Therefore, when determining the t-th decision tree, it is 

necessary to minimize an objective function ℒ: 

ℒ (𝑡)(𝑓𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦�̂�
(𝑡−1)

+ 𝑓𝑡(𝒙𝑖)) + Ω(𝑓𝑡)

𝑛

𝑖=1

, (3) 

where 𝑙(𝑎, 𝑏) is a loss function between a and b, and Ω(𝑓𝑡) is a penalty term for the complexity of the t-th tree

structure: 

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆‖𝒘‖2 . (4) 

Here, the coefficient γ is a penalty for the tree size, and λ is a coefficient for the value returned by the decision 

tree. Gradient boosting thus refers to the method of minimizing this objective function by the steepest-descent 

method.  

In this study, we used the XGBoost library, specifically a package in R, to calculate the probability for binary 

classification. The data was divided into portions of 80% for learning and adjustment and 20% for evaluation. 

Note here that, in the former portion, 3/4 was used for learning and 1/4 was used for adjustment. In other words, 

of the entire data, 60% was used for learning and 20% was used for adjustment. Through the learning and 

adjustment process, a receiver operating characteristic (ROC) curve was created. The model was then tuned to 

maximize the area under the curve (AUC). Finally, the tuned model was applied on the evaluation data to 

generate predictions. Figure 1 shows an overview of the data division, learning, adjustment, and evaluation. 

As a result of the adjustment, the maximum tree depth was set to 7, γ was set to 0.77, and λ was set to 4.5. 

In addition, note that learning and adjustment were performed only for the 2011 Tohoku earthquake data. 

Then, the 2016 Kumamoto earthquake data was used as test data for prediction through the same process 

described above, except for the division of the data. 
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Entire data

All data: 25651 

Damaged: 337
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Data

Learning

data
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Damaged: 270

All data: 5129 

Damaged: 67

20%

80% Learning

data

60%

Tuning

data

20%

All data: 15391 

Damaged: 202

All data: 5131 

Damaged: 68

Supervised 

learning

Tuning

Model

Application Results

Fig. 3  Data division and model creation flow (data listed in terms of spans) 

3. Results

3.1. Model construction results for all data 

This section describes the results of applying the created model on the evaluation data. Figure 2 shows the 

distribution of the estimated damage probabilities via a histogram, and Fig. 3 shows the ROC curve. The AUC 

was 0.82, with a false positive rate of about 15% and a true positive rate of about 70%. We can conclude that 

data items with higher susceptibility were actually affected. 

Next, we consider the feature gain to examine the contributions of the variables. Here, the feature gain is 

the sum of the loss reduction values resulting from each tree's branching. It is an index indicating how 

important each variable was in the progress of learning. Fig. 6 shows the top variables in terms of feature gain. 

The top variables included many seismic indices such as the seismic intensity, PGA, and PGV, which does not 

differ much from existing knowledge. On the other hand, as a pipe type, vinyl pipe with an adhesive splice 

was also among the top variables, suggesting that vinyl pipe might be more susceptible to damage than other 

pipe types are. In addition, the state of the maintenance hole, the cable information, and other factors were not 

among the top variables, and their influence may be relatively small. Finally, note that there are many seismic 

motion indices, and the feature gain may have been dispersed. Selection of variables is thus likely to be 

important.  
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Fig. 6 Top variables for feature gain 

3.2. Testing Kumamoto earthquake with model created from Tohoku earthquake 

 Next, we created a model by using the 2011 Tohoku earthquake data as training data. Figure 5 shows the 

ROC curve during learning and the predicted ROC curve for the 2016 Kumamoto earthquake. The AUC in (a) 

was 0.81, whereas that in (b) was significantly reduced to 0.59. This is probably because the Tohoku 

earthquake was a trench-type earthquake with short-period shaking of a long duration, while the Kumamoto 

earthquake was caused by an inland-type fault. Hence, the two earthquakes had ground motions with 

significantly different features, such as the ground motion having a peak period in the case of the Tohoku and 

Kumamoto earthquake. This suggests that it is difficult to apply a model learned from only a single earthquake 

directly to another earthquake. 
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Fig. 7 ROC curves for model learned from 2011 Tohoku earthquake data 

4. Conclusion

In this paper, a model was created using gradient boosting and evaluated on communication pipeline damage 

data from the 2011 Tohoku earthquake and 2016 Kumamoto earthquake. The following conclusions were 

obtained by examining the model. 

1. When a damage prediction model was created by mixing data from both earthquakes and applied to test

data, it had good prediction performance, with an AUC of 0.81.

2. The results suggested that the measured Japanese seismic intensity is the most important parameter in

the mixed data, and that the span length, pipe type, and basic natural period are important except for

seismic motion. This is because the parameters used in the current statistical method do not contradict

the trends for those parameters, while conversely, information on connection maintenance holes and

cables may not have a significant effect.

3. When a model was created using only the Tohoku earthquake data and applied to the Kumamoto

earthquake, the prediction accuracy for the Kumamoto earthquake was greatly reduced, with an AUC

of only about 0.59. This suggests that it is difficult to predict other earthquakes with a model based on

a single earthquake.

In the future, we will continue studies using more data and studies for each parameter, such as the pipe type, 

to improve the damage prediction accuracy. In addition, by investigating the contributions of different 

variables, we want to construct a physical calculation model and clarify the characteristics of pipelines that are 

easily damaged. 
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