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Abstract 
Nowadays, the city is bigger and bigger while earthquake is still a threat to the city buildings. However, most buildings 
except for few significant buildings don’t have the structural health monitoring system. The assessment of buildings in 
the city region often depends on the traditional vulnerability analysis so that the real vibration time-histories of most 
buildings are unknown to engineers. On account of acquiring the real response of large amounts of buildings, 
GroundEye is proposed as a building structure monitoring and damage evaluation system based on smartphone. It can 
collect the displacement and acceleration of the building structure and assess the health condition of the buildings. This 
system is divided into two parts as monitoring part and damage assessment part. In the monitoring part, this system is 
based on smartphone which is a kind of developing sensor. As a smartphone is a collection of different sensors such as 
accelerometer, gyroscope, GPS, camera, and there are more and more applications of using smartphone as sensor in 
structural health monitoring. In the practical engineering, the floor acceleration could be acquired by the built-in 
accelerometer of smartphone easily. Besides, the inter-story drift could be monitored by the camera of smartphones 
through image processing algorithms. In the damage assessment part, the monitoring data acquired by smartphones 
could be uploaded to the database. Then, the monitoring data will be analyzed through code and different digital signal 
processing methods. And the analysis results will classify the structure into different damage levels. Besides, algorithms 
of artificial intelligence will be used to do data mining, which will show the advantage of big data. As a result, the 
building damage caused by a seismic in a city region could be obtained through crowdsourcing. In this paper, the 
principle of this system is introduced, and inter-story is taken as an example among all the parameters. Due to the fact 
that smartphone is not popularized in monitoring, multiple-degree-of-freedom shear model is used to simulate a seismic 
strike on a virtual city. After this, the identified results are used to categorize 5 damage levels, and artificial neural 
network is used to find the minimum number of smartphone monitoring systems in different structure types. As a result, 
this system could realize quick building damage evaluation within the city region through crowdsourcing. 
Keywords: smartphone; damage evaluation; crowdsourcing; artificial neural network; city region. 
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1. Introduction 
Nowadays, the city is becoming bigger and bigger. Once an earthquake strikes a city, due to the lack of 
monitoring sensors, the building real status couldn’t be acquired in time. The most important factor is the 
high cost. Facing this problem, the usage of smartphone showed the possibility of low-cost monitoring, and 
smartphones had been used in seismic detection [1], pedestrian bridge vibration monitoring [2], cable force 
measurement [3]. Apart from these applications, smartphones have been verified in monitoring the building 
parameters, such as floor acceleration [4, 5, 6], inter-story drift [7], surface defects [8]. With the 
development of technology, the smartphone integrates different types of sensors which are continuously 
upgrading, and the smartphone has been popularised in the world. As a result, it is possibility to acquire large 
amounts data of buildings through smartphones. Once large amounts data are collected, the mathematical 
statistics, machine learning, deep learning and so on could be used to do data analysis.  

Although the smartphone can acquire different kinds of data, in this study, the inter-story drift is 
chosen as the damage index for buildings. Inter-story drift is an engineering parameter, which is often used 
to assess the building structure damage [9]. In this study, using inter-story drift as the damage index, 5 
building damage levels were categorised according to HAZUS [10].  

At present, the fact is that smartphone is still not popularized in monitoring, so large amounts data 
couldn’t be acquired. However, the scientific research about the city region damage need to be studied, such 
as building damage level among the city and the damage level statistics. In this study, in order to simulate the 
monitoring results during an earthquake, the multiple-degree-of-freedom (MDOF) shear model proposed by 
Lu [11, 12, 13] was used. Using this model, the nonlinear time-history analysis (NTHA) of thousands of 
different type building structures could be modelled during an earthquake. After the calculation, the max 
inter-story drift ratio (MIDR) could be stored.  

Nowadays, machine learning and deep learning is developing fast, which is widely used in many fields, 
such as automatic drive, image processing, recommender system. The core of machine learning are the 
algorithms which can be used to process large amounts data such as support vector machine (SVM), artificial 
neural network (ANN), naïve Bayes [14, 15]. In this study, ANN was used to train the model.  

 
 

Fig. 1 – Schematic diagram of GroundEye in this paper.  

In this paper, in order to introduce GroundEye, using smartphone to acquire inter-story drift is taken as 
an example. This paper is organised in the following sequence. First, the data acquisition using smartphones 
was introduced. Second, the virtual city was introduced, and the NTHA of the city buildings were calculated 
through MDOF shear model. In this process, the MIDR of all buildings could be identified. Third, these data 
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were processed through an ANN model to make a regression of 5 damage levels. At last, the sensor 
placement advices could be concluded. Schematic diagram of GroundEye in this paper is shown in Fig. 1.  

2. Data Acquisition 
With the development of image processing, there are lots of algorithms to recognize the feature points in a 
picture such as scale-invariant feature transform (SIFT) [16], speeded up robust features (SURF) [17] and 
binary robust invariant scalable keypoints (BRISK) [18]. After this, the detected feature points could be used 
in other process such as drawing point cloud and three-dimensional reconstruction. These feature points can 
also be used in displacement monitoring, and there are already many applications in structural health 
monitoring. Monitoring the mid-span displacement of bridge [19] and experiment frame structure vibration 
[20] are two common instances among the applications.  

As smartphone integrates camera, it’s possible to use it to capture pictures indoor and analyse them. In 
a common building, there are many markers on the ceiling such as fire sprinklers, suspended ceiling supports, 
fluorescent lamps, and smoke detectors as shown in Fig. 2(a). Because there are lots of markers exist on the 
ceiling, it could be easy to stick a smartphone to the floor with the front camera on to shoot video of the 
ceiling as shown in Fig. 2(b). When an earthquake strikes an area, the videos shot by the smartphone could 
determine the inter-story drift. Then, the image process algorithm like SURF could be used to determine the 
relative displacement.  

  
(a) (b) 

 
Fig. 2 – (a) Ceiling markers. (b) A schamatic of using smartphone to monitor inter-story drift. 

The inter-story drift could be identified through the following procedure. Before the smartphone 
installation, the scaling factor (SF), which is the ratio of physical length to the pixel length, should be 
calibrated. Then, a smartphone could be fixed to floor with front camera shooting video of the ceiling. In the 
image process, the first frame should be chosen as a reference, and relative displacements could be identified 
by subtract the feature points location in first frame. The region of interest (ROI) should be chosen carefully. 
As shown in Fig. 3 (a), it should guarantee that objects in one ROI should be on the same horizontal plane, 
under this condition, the scaling factor will be the same.  

In the verification test, experiments were conducted on a shaking table, and the results of three 
smartphones and a laser device sensor (LDS) are shown in Fig. 3 (b). As the monitoring results of three 
smartphones agree well with LDS, the feasibility of using smartphone to monitor inter-story drift has bee 
verified.  
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(a) (b) 

 
Fig. 3 – (a) The ROI selection and the detected feature points. (b) The results of different smartphones.  

After the experiment, it could be verified that smartphone type: HUAWEI Mate 10 Pro, iPhone 6 have 
a precision of 0.1664mm with distance 3000mm. This could satisfy the demand of inter-story drift 
monitoring. More details could be found in the paper [7].  

3. Nonlinear Time-History Analysis (NTHA) 
Due to the fact that smartphones have not been widely used in monitoring, the monitoring results should be 
simulated. In order to implement this task, the NTHA model proposed by Lu [11, 12, 13] was conducted to 
simulate the real earthquake response of buildings.  

First, the city data were collected before calculation. The building properties needed include 
construction year, floor number, structure type, area, longitude and latitude. These data were based on a real 
city in China, while part of the data, which were difficult to acquire, were generated randomly. For example, 
the areas of different buildings were generated with an uniform distribution. Therefore, the virtual city was 
based on a real city. There are 46188 buildings in total in this city. Besides, there are 19 structure types in 
this virtual city according to Table 5.1 in HAZUS [10], and they are listed in Table 1.  

Table 1 – Structure type list. 

No. Label Description 
1 S1L 

Steel Moment Frame 2 S1M 
3 S1H 
4 S2H Steel Braced Frame 
5 C1L 

Concrete Moment Frame 6 C1M 
7 C1H 
8 C2L 

Concrete Shear Walls 9 C2M 
10 C2H 
11 C3L 

Concrete Frame with Unreinforced Masonry Infill Walls 
12 C3M 
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13 C3H 
14 RM2L 

Reinforced Masonry Bearing Walls with Precast 
Concrete Diaphragms 15 RM2M 

16 RM2H 
17 URML 

Unreinforced Masonry Bearing Walls 
18 URMM 
19 MH Mobile Homes 

 
An earthquake was imported into this model, and the seismic wave was downloaded from PEER [21]. 

The information of the seismic wave is listed in Table 2.  

Table 2 – Seismic wave information. 

Earthquake Name Year Station Name Magnitude Mechanism 
Humbolt Bay 1937 Ferndale City Hall 5.8 Strike slip 

 
The seismic wave time history and elastic acceleration response spectra are shown in Fig. 4 (a) and (b) 

respectively.  

  
(a) (b) 

 
Fig. 4 – (a) Acceleration time history. (b) Elastic acceleration response spectra.  

In order to verify the model could be competent under different seismic wave intensity, the peak 
ground acceleration (PGA) was modified 20 times from 0.56 m/s2 to 11.11 m/s2. After the parameters 
imported into the model, the MIDR of each building could be identified. Then, the damage level of each 
building (no damage, slight, moderate, extensive, complete) was identified according to HAZUS [10].  

After the processes above, the monitoring results have been simulated through MDOF shear model. 
Then, these data could be gathered to be analyzed through an ANN model.  

4. Artificial Neural Network (ANN) Model 
In this study, an ANN model was built according to the city parameter characteristics. Assume all the 
buildings in this city experienced the same earthquake. One earthquake with a certain PGA was an 
independent model, so there were 20 models in total.  

Among all the building property parameters: construction year, floor number, structure type, area, 
fundamental frequency and code type, 6 parameters were used as input. At the same time, 5 damage levels 
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were chosen as output, which were no damage, slight, moderate, extensive and complete. Based on the 
experience, the designed model had two hidden layers in the model [14], and each layer has 9 units. The 
number of units were chosen as the sum of 2/3 of input units’ number and output units’ number [15]. In the 
hidden layers, the rectified linear unit (ReLU) was chosen as activation function.  

Given the building structure parameters, the goal of this model is to identify which damage level the 
building is. Because there are 5 damage levels in this model, this problem is multiclass classification. The 
output layer has 5 units and a sigmoid activation function, and the optimizer is root mean square (RMS) 
propagation. In order to evaluate the performance, record ‘accuracy’ and ‘mean square error’ (Loss) value in 
the training history. The structure of designed ANN model is shown in Fig. 5.  

 
 

Fig. 5 – The designed ANN model. 

Draw two pictures (loss-epoch and accuracy-epoch) to view the loss and accuracy variance history to 
prevent overfitting. For each model, 1000 epoch was set firstly, and the batch size was set 1000.  

5. Conclusion 
When large amounts of monitoring data are collected, lots of things could be done just analysing big data. In 
this study, the minimum number of buildings with installed monitoring system was studied. There are all 
46188 buildings in the virtual city. These specimens were categorised into training set and test set. This 
problem will change into finding a smallest number of training set with relatively high accuracy. As a result, 
the training set percentage was changed many times to ensure the test accuracy over 95%. After trail and 
error, the minimum value of training set percentage was identified.  

An example of training history is shown in Fig. 6. It could be concluded that the loss starts to converge 
after epoch 500. Because training loss and test loss continues decreasing, and training accuracy and test 
accuracy continues increasing, the model is not overfitting. 
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(a) Traning loss and test loss history. (b) Accuracy history.  

 
Fig. 6 – Training history of PGA =10m/s2, training set proportion = 3%, epoch = 1000.  

The results of 20 experiments are collected in Table 3.  

Table 3 – The size, accuracy and loss of each test in the last epoch. 

PGA (m/s2) Training Set 
Percentage (%) 

Building 
Number 

Training 
Accuracy 

Training 
Loss 

Test 
Accuracy Test Loss 

0.56  3 1385 1.000  0.000  1.000  0.000  
1.11  3 1385 0.978  0.009  0.973  0.010  
1.67  3 1385 0.981  0.007  0.978  0.008  
2.22  1 461 0.976  0.013  0.957  0.020  
2.78  4 1847 0.982  0.006  0.974  0.008  
3.33  4 1847 0.982  0.011  0.981  0.012  
3.89  2 923 0.990  0.004  0.990  0.004  
4.44  2 923 0.996  0.002  0.996  0.002  
5.00  2 923 0.990  0.007  0.980  0.010  
5.56  2 923 0.979  0.009  0.979  0.009  
6.11  2 923 0.969  0.018  0.968  0.019  
6.67  4 1847 0.975  0.010  0.970  0.012  
7.22  4 1847 0.968  0.013  0.960  0.016  
7.78  3 1385 0.958  0.020  0.951  0.022  
8.33  2 923 0.989  0.010  0.981  0.013  
8.89  4 1847 0.959  0.017  0.952  0.019  
9.44  3 1385 0.978  0.011  0.976  0.012  
10.00  2 923 0.981  0.010  0.973  0.012  
10.56  2 923 0.985  0.006  0.977  0.009  
11.11  2 923 0.983  0.008  0.978  0.010  

 
A conclusion could be drawn that the minimum number of 4% of all buildings in the city, which is 

1847 out of 46188 buildings, could predict the whole city building damage levels with accuracy higher than 
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95% within one earthquake. In other words, about 98 buildings at least in one building structure type should 
have monitoring system, then the damage level of whole city buildings could be predicted.  

In this model, only the building parameters and the damage levels were needed, the parameter of 
earthquake did not involve in the calculation. It could be seen, once an earthquake strikes an area, if the 
earthquake intensity within the city is the same, part of the monitoring data could predict the whole city 
buildings’ damage level.  

However, the earthquake waves are not the same with different soil conditions, so the buildings in the 
city experience different earthquake. As a result, it needs further research on adding earthquake parameters 
to the model.  

All in all, GroundEye system utilizes smartphones as sensors to monitor the building vibration, which 
will be potential to acquire large amounts data. Then, these data could be analyzed through data processing 
method such as machine learning. Therefore, it will be possible for quick building damage assessment within 
city region via crowdsourcing.  
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