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Abstract 

The ability to rapidly assess the condition of a structure in a manner which enables the accurate prediction of its remaining 

capacity has long been viewed as an essential goal in infrastructure management. Current practice emphasizes visual 

inspection, in which trained professionals perform routine surveys on structures to estimate their remaining capacity, and 

threshold-based monitoring, in which sensors are placed in key locations on structures to detect response behavior 

exceeding predetermined thresholds. Though these methods identify gross structural changes, their ability to rapidly and 

cost-effectively assess the detailed condition of the structure with respect to its future behavior is limited. Effective 

strategies for the prediction of future performance center on the identification of dynamic models from observed structural 

behavior, which is an open research problem.  

Bayesian inference techniques give a unique perspective on the identification of nonlinear structural systems as 

they quantify the inherent epistemic uncertainties that arise due to observations of the system which are both finite in 

length and limited in the information they contain regarding the states and parameters of interest. However, current 

applications of Bayesian inference to structural identification are ill-suited to the rapid identification of full-scale 

structural systems, either due to the simplification of the uncertainties, as with the Kalman filter family of methods, or 

the computational effort required to form accurate approximations, as with the particle filter family of methods. In this 

study, we investigate a third family of methods, referred to as variational inference, as an option for nonlinear structural 

identification. This optimization-based Bayesian inference approach has shown the potential in previous studies to 

provide detailed estimates of the stochastic models of large-scale nonlinear dynamic systems. We apply variational 

inference to a simulated nonlinear structural system incorporating Bouc-Wen elements subject to base excitation. 

Measurement noise and model uncertainties are incorporated in the analysis to assess the robustness of the approach. The 

results are then compared with those obtained through the unscented Kalman filter to demonstrate the performance of this 

new method in comparison with commonly used Bayesian identification approaches. The results from this study suggest 

distinct benefits in terms of the accuracy and robustness of the proposed approach in comparison with the unscented 

Kalman filter. 

Keywords: vibration-based monitoring; Bayesian identification; variational inference; unscented Kalman filter
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1. Introduction 

Bayesian inference methods have garnered great interest from the structural health monitoring community in 

recent years for their concise expression of the practical uncertainty inherent to structural systems and their 

ability to progressively update the dynamic models of these systems from noisy observations of the physical 

structure. Typically, the inference problem is approached either from an analytical perspective or a sampling 

perspective. Analytical techniques encompass the Kalman filter [1] and its various approximate forms for 

nonlinear inference, such as the extended (EKF) [2,3] and unscented (UKF) [4,5] adaptations. These methods 

have the benefit of computational speed, allowing for near real-time structural identification, but are limited 

in the assumptions used to generate their analytical framework. Sampling techniques, such as particle filters 

[6] or sequential Monte Carlo algorithms [7], remove the barriers imposed by this analytical framework, 

allowing for the accurate inference of complex nonlinear systems. However, this accuracy comes at the cost 

of increased computational time and limited scalability to larger systems. A more extensive summary of these 

perspectives and the various techniques which embody them can be found in [8]. 

 Herein we explore variational inference, a third perspective on Bayesian inference which has the 

potential to strike a balance between the computational speed, accuracy, and scalability of the other techniques. 

Variational inference uses optimization to approximate the inference of the hidden states, initial conditions, 

and physical parameters of a system, 𝒛 = 𝒛0:𝑇, from observations of its behavior, 𝒚 = 𝒚1:𝑇. The algorithm 

begins with the proposal of a distributional form, 𝑸, which serves as an approximation of the posterior density, 

𝑝(𝒛|𝒚). This distributional form, called the variational family or guide, represents a family of distributions 

whose members, 𝑞(𝒛) , can be specified by tuning the distributional parameters to different values. 

Optimization is then performed by finding the member of the variational family which is most similar to the 

true posterior as defined by the Kullback-Leibler (KL) divergence  

�̂� =  arg min
𝑞 ∈ 𝑸

KL(𝑞(𝒛) ||𝑝(𝒛|𝒚))

                                                             =  arg min
𝑞 ∈ 𝑸

 (𝔼𝑞(𝒛)[log 𝑞(𝒛)] − 𝔼𝑞(𝒛)[log 𝑝(𝐲, 𝐳)] + log 𝑝(𝐲)), (1)
 

a measure of the information lost by approximating 𝑝(𝒛|𝒚) with 𝑞(𝒛) [9]. Proposing a simple and flexible 

guide allows for efficient computation of a posterior approximation which is well representative of the true 

posterior. Variational inference therefore provides a counterpoint to other inference strategies; it is more 

computationally efficient than the sampling approaches and more flexible in its approximation of the true 

posterior than the analytical approaches [10]. 

Variational inference emerged as an alternative Bayesian inference strategy in the mid-90s as a result of 

the adaptation of mean-field theory from statistical physics [11–14], with the first comprehensive statement of 

the method introduced in [15]. The generalization of this method to arbitrary guides and large-scale data sets 

was initially hindered by the need to analytically develop optimization algorithms that depended explicitly on 

the selected guide [10]. As such, many early works focused on manually expanding the method to common 

probabilistic models [16–18]. The development of stochastic variational inference [19], which introduced 

stochastic optimization on mini-batches of data, and black-box variational inference [20], which introduced 

gradient optimization on Monte Carlo (MC) samples of previously intractable expectations, relieved these 

issues, allowing for scalable and flexible inference, respectively. Automatic differentiation variational 

inference (ADVI) represents the current state-of-the-art in variational inference, combining the stochastic and 

black-box techniques with distributional transformations to enable the automatic implementation of the method 

on a wide range of probabilistic models [21]. Variational inference has been used extensively in the fields of 

linguistics [22,23], image processing [24], and computational biology [25,26], among others, but has yet to be 

adapted for applications in structural health monitoring.     

In this paper, we apply ADVI to structural health monitoring through the identification of a dynamical 

model for a simulated, single degree-of-freedom Bouc-Wen system subject to base vibration. We compare the 

performance of this inference approach to the unscented Kalman filter (UKF) in terms of the accuracy of 
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identification, repeatability of the results given variations on the prior information, and robustness to 

measurement noise and process noise. By so doing, we demonstrate the performance and flexibility of ADVI 

in comparison with the UKF, and showcase its potential for applications in the modeling and monitoring of 

structural systems. 

2. Case Study – Single Degree-of-Freedom Bouc-Wen System 

We are interested in inferring the states, 𝝀 = [𝒙, �̇�, 𝒓], and the parameters, 𝜽 = [𝑐, 𝑘, 𝛽, 𝑛, 𝛾], for the Bouc-

Wen system 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑟(𝑡) = −𝑚�̈�𝑔(𝑡), (2) 

where the states 𝒙 and �̇� are descriptive of the physical displacement and velocity of the system, respectively, 

while the state 𝒓 describes the non-physical Bouc-Wen hysteretic component, the dynamics of which are 

expressed by 

�̇�(𝑡) = �̇�(𝑡) − 𝛽|�̇�(𝑡)||𝑟(𝑡)|𝑛−1𝑟(𝑡) − 𝛾�̇�(𝑡)|𝑟(𝑡)|𝑛. (3) 

The system is driven by a band-limited white noise (BLWN) base excitation sampled at 𝑓𝑠 = 128 Hz, as shown 

in Fig. 1(a). The selection of the BLWN excitation is made based on the indications of parameter identifiability 

from a Sobol’ sensitivity analysis [27]. The Sobol’ analysis shows that the response of the system to this signal 

is sensitive to variations in all parameters, though it is significantly more sensitive to the parameters 𝑐 and 𝑘. 

Further indications of system identifiability are given in Fig. 1(b). This figure shows the response of the system 

given the parameters 𝑚 = 1 kg, 𝑐 = 0.3 Ns/m, 𝑘 = 9 N/m, 𝛽 = 2 m-2, 𝑛 = 2, 𝛾 = 1 m-2, which are selected 

as the ‘true’ parameter values for this case study. The response shows that at this input level the system is 

excited into its nonlinear range of response, and should therefore contain information concerning all parameters 

of interest.  

 

Fig. 1 – Base acceleration and structural responses used in this case study. (a) Base acceleration (b) Bouc-

Wen hysteresis (c) Noise-contaminated response acceleration 

Nondimensionalizing the equations of motion can ease the computation of the approximate posterior for 

many inference approaches, as it often puts the states and parameters on a similar scale and allows the inference 

algorithm to operate in a reduced space of potential solutions [27]. We therefore nondimensionalize Eqs. (2-

3) using the time scale 𝑡𝑐 = √𝑘 𝑚⁄ = 𝜔𝑛 and the length scale 𝑥𝑐 = 0.05 m, yielding  

�̈̅�(𝜏) + 2𝜉�̇̅�(𝜏) + �̅�(𝜏) = −
�̈�𝑔(𝜏 𝜔𝑛⁄ )

𝑥𝑐𝜔𝑛
2  (4) 

�̇̅�(𝜏) = �̇̅�(𝜏) − 𝛽𝑥𝑐
𝑛|�̇̅�(𝜏)||�̅�(𝜏)|𝑛−1�̅�(𝜏) − 𝛾𝑥𝑐

𝑛 �̇̅�(𝜏)|�̅�(𝜏)|𝑛. (5) 
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The problem is now transformed such that the states and parameters we wish to infer are �̅� = [𝒙, �̇�, �̅�] =

[𝒙1, 𝒙2, 𝒙3] and �̅� = [𝜉, 𝜔𝑛, 𝛽, 𝑛, 𝛾] = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5]. We will refer to these collectively as the hidden 

states of the system,  𝒛 = [�̅�, �̅�].  

Inference methods are typically structured to work with systems having discrete relationships among 

the states and observations. Though some methods have been designed to take advantage of continuous 

dynamical models, we have elected to use an Euler discretization scheme on Eqs. (4-5) to preserve the 

uniformity of the comparison between the UKF and variational inference methods. Likewise, in both cases we 

choose to observe the system acceleration, shown in Fig. 1(c), 

𝑦(𝜏) = −2𝜉�̇̅�(𝜏) − �̅�(𝜏). (6) 

In this case study, we explore the accuracy of the inference methods given model uncertainty and 

measurement error by adding zero-mean Gaussian distributed process noise and measurement noise to the state 

transition and observation equations. For a base exploration of the relative capabilities of the two methods, we 

impose process noises with standard deviations representing a 1%, 2%, and 2% root-mean-square signal-to-

noise ratio (RMS-SNR) on the displacement, velocity, and Bouc-Wen displacement, respectively. Note that 

this noise is imposed on the states according to 

𝑤𝑖~𝑁 (0, (√Δ𝜏 ∙ 𝑤RMS−SNR ∙ RMS(𝒙𝑖))
2
) . (7) 

The difference between the true response, which we refer to as the one containing process noise, and the model 

response can be seen in Fig. 1(b). We also impose a measurement noise with a standard deviation representing 

a 20% RMS-SNR on the acceleration, which can be described by the distribution 

𝑣~𝑁 (0, (𝑣RMS−SNR ∙ RMS(𝑦))
2
) . (8) 

Small variations of the prior distributions used to inform these inference methods can lead to large 

changes in the identified states. We therefore evaluate the robustness of the UKF and variational inference 

methods by proposing 50 distributions on the prior assumptions for the parameters which are representative of 

likely assumptions that an experimentalist might make in defining the problem. This evaluation is done by first 

selecting a Latin Hypercube Sample (LHS) of the means of the prior distributions. For both algorithms we 

represent the parameters 𝜔𝑛, 𝛽, and 𝛾 as lognormally distributed and use LHS to select their means from the 

ranges ln (𝜔𝑛)𝜖[0,2.3], ln (𝛽) ∈ [0,3.2], and ln (𝛾) ∈ [0,3.2]. As the UKF assumes all states are Gaussian 

distributed, we log-transform the parameters themselves and perform the inverse transform on the inferred 

values to discern the identified parameters. Variational inference is more flexible and the lognormal 

distributions on these parameters can be used directly. The priors on the parameters 𝜉  and 𝑛  are treated 

differently between the UKF and variational inference algorithms to take advantage of the additional flexibility 

of variational inference. For the UKF these parameter priors are represented by lognormal distributions with 

means selected from the ranges ln (𝜉)𝜖[−2.3,0]  and ln (𝑛)𝜖[0.7,1.8] . For variational inference, we take 

advantage of the clear domains of these parameters (𝜉𝜖[0,1] and 𝑛𝜖[1,6]) and represent their prior distributions 

as uniform on a subset of that domain. The left edge of the distribution is held constant for each case at 0 for 

𝜉 and 2 for 𝑛. The right edge is varied according to the same LHS as was used to define the mean of the UKF 

implementation of these parameters, yielding a range of  𝜉𝜖[0.1,1] and 𝑛𝜖[2,6]. After establishing the means 

of these distributions through LHS, the variance for each prior is hand-selected to represent the uncertainty 

level a typical experimentalist might assign to the parameter before identification of the system. Prior 

distributions on the dynamic states are uniformly set as 𝑥𝑖(0)~𝑁(0, 0.252) for each inference trial on the 

parameter priors, as the system is known to be at rest prior to excitation. The identification trials resulting from 

these prior distributions will be analyzed in detail in Section 4. 
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3. Methodology and Implementation 

The objective of Bayesian inference for system identification is to discern the hidden states, 𝒛 = 𝒛0:𝑇, of a 

dynamical system from noisy observations of its behavior, 𝒚 = 𝒚1:𝑇, where the form of the system model is 

known to be a sufficient, but imperfect, representation of the physical system. Systems of this nature are 

typically described by a Markovian transmission probability 𝑝(𝒛𝑡|𝒛𝑡−1) and an emission probability 𝑝(𝒚𝑡|𝒛𝑡). 

We can therefore discern the posterior probability 𝑝(𝒛|𝒚) by using either a batch method, which infers the 

posterior from all data points simultaneously 

𝑝(𝐳0:𝑇|𝐲1:𝑇) =
∏ 𝑝(𝐲𝑡+1|𝐳𝑡+1)∏ 𝑝(𝐳𝑡+1|𝐳𝑡)

𝑇−1
𝑡=0

𝑇−1
𝑡=0 𝑝(𝐳0)

𝑝(𝐲1:𝑇)
, (9) 

or a filtering method, which recursively constructs the posterior by forming a prediction of the current state 

with the Chapman-Kolmogorov equation,  

𝑝(𝐳𝑡+1|𝐲1:𝑡) = ∫𝑝(𝐳𝑡+1|𝐳𝑡)𝑝(𝐳𝑡|𝐲1:𝑡) 𝑑𝐳𝑡 , (10) 

and correcting that prediction with Bayes’ Theorem,  

𝑝(𝐳𝑡+1|𝐲1:t+1) =
𝑝(𝐲𝑡+1|𝐳𝑡+1)𝑝(𝐳𝑡+1|𝐲1:𝑡)

𝑝(𝐲𝑡+1|𝐲1:𝑡)
. (11) 

The UKF is a well-recognized filtering method which has been used to successfully identify the dynamic 

states and parameters of a variety of nonlinear structural systems, including the Bouc-Wen system which is 

the focus of this study [28,29]. Variational inference, in contrast, traditionally operates in batch form. The 

details of these inference approaches are discussed in the following sections.  

3.1 Unscented Kalman Filter 

Kalman filters provide an analytical solution to Eqs. (10-11) given that the system is linear and that the 

parameters describing the model uncertainty and measurement uncertainty are normally distributed [1]. The 

UKF expands the Kalman filter to deal with nonlinear systems by forming an approximation of the posterior 

from the statistics of a set of deterministically selected sigma points, 𝓧(𝑡), which are passed through the 

nonlinear system equations [5].  

The filter first requires the definition of the prior distribution on the hidden states, 𝐳0~𝑁(𝛍0, 𝐏0), and 

the nonlinear transmission and emission probabilities on those states, which for our case can be expressed as  

  [

𝑥1

𝑥2
𝑥3

�̅�

]

𝜏+1

= [

𝑥1

𝑥2
𝑥3

�̅�

]

𝜏

+ ∆𝜏

[
 
 
 
 

𝑥2

−2𝜃1𝑥2 − 𝑥3 −
�̈�𝑔(𝜏 𝜃2⁄ )

𝑥𝑐𝜃2

𝑥2 − 𝜃3𝑥𝑐
𝜃4|𝑥2||𝑥3|

𝜃4−1𝑥3 − 𝛾𝑥𝑐
𝜃4𝑥2|𝑥3|

𝜃4

𝟎 ]
 
 
 
 

𝜏

+ [

𝑤1

𝑤2
𝑤3

𝟎

]

𝜏

(12) 

𝐲𝜏+1 = −2𝜃1,𝜏+1𝑥2,𝜏+1 − 𝑥3,𝜏+1 + 𝑣𝜏+1. (13) 

Each filter iteration then begins with the determination of a weighted set of sigma points which are selected to 

describe the distribution of the states, 𝒛𝜏. The selection of sigma points can be accomplished in a number of 

ways to emphasize different aspects of the generating distribution. The sigma point set used herein is 

constructed using an augmented system state, 𝐳𝜏
𝑎 = [𝐳𝜏 𝐰𝜏 𝐯𝜏]𝑇 , such that 𝓧(𝜏) =

[𝓧(𝐳𝜏) 𝓧(𝐰𝜏) 𝓧(𝐯𝜏)]𝑇 , as described in [28]. These sigma points are then propagated through the state 

transition model given by Eq. (12) to estimate 𝑝(𝐳𝜏+1|𝐲1:𝜏), which is the predicted distribution of the states 

given prior information about the system and its measurement. Next, the predicted state distribution is 

projected through the observation function by Eq. ( 13 ) to estimate the distribution on the predicted 

6b-0007 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 6b-0007 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

6 

measurement. This distribution is then compared with the true measurement to generate the intermediate 

posterior distribution on the hidden states, 𝑝(𝒛𝜏+1|𝐲1:τ+1). For a more comprehensive explanation of the UKF 

algorithm, the reader is referred to [30]. 

3.2 Automatic Differentiation Variational Inference 

ADVI automates variational inference by transforming the problem into a domain compatible with a 

generalized solution approach. The procedure for this method can be understood in terms of the four steps 

given in Fig. 2.  

 

Fig. 2 – Key steps of the ADVI algorithm 

In the first step, defining problem domain, we make explicit our understanding of the stochastic 

dynamical system by defining the prior distributions on the hidden states, the transmission probabilities, and 

the emission probabilities. For this case study, the prior distributions on the dynamical states are specified as 

𝑥𝑖(0)~𝑁(0, 0.252)  and the prior distributions on the parameters are given by 𝜉~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜇𝜉) , 

𝜔𝑛~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜔𝑛
, 𝜎𝜔𝑛

2 ),  𝛽~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝛽 , 𝜎𝛽
2),  𝑛~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝜇𝑛) , and 𝛾~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝛾, 𝜎𝛾

2) . 

The transition probabilities among the states can then be defined as 

𝑝(𝑥1(𝜏 + 1)|�̅�(𝜏), �̅�) = 𝑁(𝑥1(𝜏 + 1) | 𝑥1(𝜏) + Δ𝜏 ∙ 𝑥2(𝜏), 𝑤1
2 ) 

𝑝(𝑥2(𝜏 + 1)|�̅�(𝜏), �̅�) = 𝑁 (𝑥2(𝜏 + 1) | 𝑥2(𝜏) + Δ𝜏 ( −2𝜃1𝑥2(𝜏) − 𝑥3(𝜏) −
�̈�𝑔(𝜏 𝜃2⁄ )

𝑥𝑐𝜃2
) ,𝑤2

2) 

𝑝(𝑥3(𝜏 + 1)|�̅�(𝜏), �̅�) =

𝑁 (𝑥3(𝜏 + 1) | 𝑥3(𝜏) + Δ𝜏 (𝑥2(𝜏) − 𝜃3𝑥𝑐
𝜃4|𝑥2(𝜏)||𝑥3(𝜏)|

𝜃4−1𝑥3(𝜏) − 𝛾𝑥𝑐
𝜃4𝑥2(𝜏)|𝑥3(𝜏)|

𝜃4) ,𝑤3
2) , (14)

 

and the emission probability between the states and the observations can be defined as 

𝑝(𝑦(𝜏 + 1)|�̅�(𝜏 + 1),  �̅�) = 𝑁(𝑦(𝜏 + 1) |  − 2𝜃1𝑥2(𝜏 + 1) − 𝑥3(𝜏 + 1), 𝑣2). (15) 

Given these probabilities, we can express the joint probability of the hidden states and observations as 

𝑝(𝐲, �̅�, �̅�) = ∏ 𝑝(𝐲𝜏+1|�̅�𝜏+1, �̅�)∏ 𝑝(�̅�𝜏+1|�̅�𝜏, �̅�)
Τ−1

𝜏=0

Τ−1

𝜏=0
∏ 𝑝(x𝑖(0))

3

𝑖=1
∏ 𝑝(𝜃𝑖)

5

𝑖=1
. (16) 

To automate the solution approach, the prior distributions on the hidden parameters �̅� are transformed to have 

support on the Euclidean space ℝ𝐾. The joint density is then expressed in terms of transformed parameters 

𝜻 = 𝑇(�̅�), such that 

𝑝(𝐲, �̅�, 𝛇) = 𝑝 (𝐲, �̅�, 𝑇−1(𝜻)) |det 𝐽𝑇−1(𝜻)|, (17) 

where 𝑇(∙) is a one-to-one differentiable function which transforms �̅� to have full support in ℝ𝐾. 

In the second step, proposing a variational family, we specify the form of the approximate posterior 

model that we believe will adequately represent the system. As we have transformed the hidden states and 

parameters to have support in ℝ𝐾, the Gaussian distribution is a simple choice for the variational family. We 

represent the approximate posterior of the displacement, velocity, and Bouc-Wen displacement of the system 

to be mutually independent and capture the Markovian transitions within each state through a tri-diagonal 

covariance matrix. This yields the variational families of  

𝑞(�̅�; 𝝓�̅�) = 𝑁(�̅�|𝝁�̅�, 𝐋�̅�𝐋�̅�
𝑻) (18) 
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which are parameterized by the variational parameters 𝝓�̅� = (𝝁�̅�, 𝐋�̅�), where 𝐋�̅� is a lower triangular matrix 

with non-zero elements only on the two primary diagonals. These variational parameters are unconstrained in 

ℝ3(3Τ−1). Likewise, we propose a Gaussian variational family on the hidden parameters which expresses their 

mutual independence through a diagonal covariance matrix, yielding  

𝑞(𝜻; 𝝓𝜻) = 𝑁 (𝜻|𝝁𝜻, diag (exp(𝝆𝜻)
2
)) (19) 

which is parameterized by 𝝓𝜻 = (𝝁𝜻,𝟏, … , 𝝁𝜻,𝑲, 𝝆𝜻,𝟏, … , 𝝆𝜻,𝑲) and produces a set of variational parameters 

which are unconstrained in ℝ2𝐾. The full model then requires optimization on ℝ3(3Τ−1)+2𝐾.  

In the third step, specifying the loss function, we set up our optimization problem. Ideally, we would 

minimize the difference between the true and approximate posteriors using the KL divergence given in Eq. 

(1). However, the KL divergence explicitly depends on the model evidence 𝑝(𝐲1:𝑇) which we do not know. 

Instead, we maximize the evidence lower bound (ELBO) 

            ELBO(𝑞) = 𝔼𝑞(𝒛)[log 𝑝(𝐲|𝐳)] + 𝔼𝑞(𝒛)[log 𝑝(𝐳)] − 𝔼𝑞(𝒛)[log 𝑞(𝒛)]

= 𝔼𝑞(𝒛)[log 𝑝(𝐲|𝐳)] − KL(𝑞(𝒛) ||𝑝(𝒛)), (20)
 

which is equivalent to the negative of the KL divergence, Eq. (1), plus log 𝑝(𝐲). The ELBO can be understood 

from its two components to strike a balance between encouraging densities which fit to the observed data and 

encouraging densities which stay close to the prior. When this balance is achieved, the optimal density will 

express the behavior of the true system without overfitting to the limited data set used for optimization. For 

our problem, the ELBO can be expressed as 

ELBO(𝑞) = 𝔼𝑞(�̅�,𝜻;𝝓) [log 𝑝 (𝐲, �̅�, 𝑇−1(𝜻)) + log|det 𝐽𝑇−1(𝜃)|] − 𝔼𝑞(�̅�,𝜻;𝝓)[log 𝑞(�̅�, 𝜻; 𝝓)]. (21) 

In the final step, performing stochastic optimization, our goal is to use a noisy estimate of the gradient 

of the ELBO to walk toward locally optimal values of the hidden states. However, it is difficult to take the 

gradient of the ELBO directly, as the ELBO involves an intractable expectation. To resolve this issue and 

allow for the use of automatic differentiation to evaluate the gradient, we introduce an additional 

transformation on the parameters, referred to as elliptical standardization. This transformation can be expressed 

as 𝜂�̅� = 𝑆𝝓�̅�
(�̅�) = 𝐋�̅�

−1(�̅� − 𝝁�̅�)  for the states and  𝜂𝜻 = 𝑆𝝓𝜻
(𝜻) = diag(exp(𝝆𝜻))

−1(𝜻 − 𝝁𝜻)  for the 

parameters, yielding a modified ELBO  

ELBO(𝑞) = 𝔼𝑁(𝜼;𝟎,𝑰) [log 𝑝 (𝐲, 𝑆𝝓�̅�

−1(𝜂�̅�), 𝑇
−1 (𝑆𝝓𝜻

−1(𝜂𝜻))) + log |det 𝐽𝑇−1 (𝑆𝝓𝜻

−1(𝜂𝜻))|]

−𝔼𝑞(�̅�,𝜻;𝝓)[log 𝑞(�̅�, 𝜻;𝝓)], (22)

 

which allows us to use Monte Carlo methods (typically with only 1 sample) to obtain a noisy approximation 

of the ELBO for the automatic evaluation of the gradient. Stochastic optimization can then be performed using 

a number of algorithms. In this study, we implement ADVI using the ADAM stochastic optimization algorithm 

as part of the python library pyTorch [31]. For further information about variational inference and ADVI, the 

reader is referred to [10,21]. 

4. Results and Discussion  

As discussed in Section 2, our goal in this case study is to infer the hidden states 𝒛 = [�̅�, �̅�]  of the 

nondimensionalized Bouc-Wen system from noisy observations of its response to a BLWN base excitation. 50 

identification trials are conducted with the UKF and variational inference methods in order to evaluate both 

the accuracy and the robustness of the identification. Final identified parameters from each approach are used 

to re-simulate the response of the Bouc-Wen system. The identification trials which result in the minimum 
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RMS error on the states are shown in Fig. 3 in terms of the prior and posterior distributions on the parameters. 

The results show that the variational inference algorithm (Fig. 3(f-j)) yields a more confident and accurate 

posterior distributions on the parameters, particularly for the nonlinear parameters of 𝛽, 𝑛, and 𝛾.  

The increased accuracy of the posterior means for the variational inference case do not translate to a 

significantly improved estimate of the states, as demonstrated in Fig. 4. This figure shows the true response of 

the Bouc-Wen system in comparison with model responses which are re-simulated from the posterior modes 

given for the UKF and variational inference methods in Fig. 3. The results confirm those of the Sobol 

sensitivity analysis at the beginning of this study, which indicated that the response of the system is much less 

sensitive to variations in the nonlinear parameters than variations in the linear parameters. It appears that if the 

linear parameters are identified with reasonable accuracy, several locally optimal solutions for the nonlinear 

parameters exist which can enhance the similarity of the identified system to the true response. 

 
Fig. 3 - Priors and posteriors of the minimum RMS error identification trials. (a-e) UKF identification trials 

(f-j) variational inference identification trials 
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Fig. 4 - Comparison of the true system response with model responses re-simulated from the minimum RMS 

error identification trials 

   

We further the comparison between the UKF and variational inference methods by analyzing their 

relative accuracy over all 50 identification trials, as shown in Fig. 5 and Fig. 6. Fig. 5 gives the distribution of 

posterior means for the identification trials. The most prominent feature of these data is the change in the spread 

of posterior means from the linear parameters 𝜉 and 𝜔𝑛 to the nonlinear parameters 𝛽, 𝑛, and 𝛾, regardless of 

the inference approach used to identify them. This result once again confirms limited sensitivity of the system 

response to the nonlinear parameters relative to the linear parameters. Comparing the two inferences methods, 

we see that for all parameters the variational inference method exhibits a much smaller spread in identified 

values, which is focused on the true value of the parameters. Looking at the nonlinear parameters specifically, 

we see that even though there is a greater spread of the variational inference posteriors they are still fairly well 

concentrated when compared with the UKF posteriors, which exhibit significant concentrations of outliers.  

To understand what these variations in the posterior mean for the quality of the inferred model, we turn 

to Fig. 6, which provides a case-by-case comparison of the RMS error in the states which have been re-

simulated with parameters set to the posterior modes of either the UKF or variational inference identification 

trial. The data clearly show that regardless of variations in the parameters, the variational inference method 

consistently provides a low-error response with respect to the true states. The UKF is able to match this 

performance for the majority of the identification trials, but experiences larger variations in error due to the 

outlying parameter cases shown in Fig. 5. These results suggest that even though the posteriors may not 

precisely match the true parameters, the variational inference approach is more adept at consistently finding 

parameter combinations which locally minimize the error between the true response and the re-simulated 

model.  

5. Conclusions 

In this case study we compare the ability of the UKF and variational inference methods to identify the hidden 

states and parameters of a simulated single degree-of-freedom Bouc-Wen system excited by a BLWN base 

motion. 50 identification trials were performed to analyze the relative accuracy and robustness of the two 

methods. The results indicate that variational inference consistently provides low-error models of the system 

in comparison with the UKF method. However, the robustness of this method does come at the cost of some 

increased computational time. Whereas the UKF executes on the order of seconds, variational inference 

requires execution times on the order of hours. As this issue is addressed in future implementations of 

variational inference, it will become an even more valuable option for structural health monitoring 

applications.  
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Fig. 5 - Distribution of the posterior means on the parameters for all 50 identification trials 

 

 

Fig. 6 - Comparison of the RMS error on the states for the 50 identification trials 
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