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Abstract 

Over the past ten years, the amount of available strong-motion data in China mainland has increased significantly, 
prompting the need of automatic processing to extract the vast amount of information from such data sets. Meanwhile, 
the need for seismic analysis and earthquake disaster estimation during quaking demands even more reliable P-wave 
arrival detection and accurate P-wave arrival time picking. Here, we present a fully convolutional network (FCN) for P-
wave arrival detection and time picking onsets for China strong-motion Network. The FCN uses three-component 
seismic acceleration waveforms as input and generates probability distributions of P-wave arrival time as output. The 
FCN is trained and tested on the dataset (1708 events) selected from China Earthquake Network Center Catalog (CENC, 
2017). The trained network is tested against the short-term average/long-term average united Akaike Information 
Criterion (STA/LTA+AIC) method, the FCN has an advantage over the STA/LTA method, achieves 99.3% probability 
in P-wave arrival detection and 98.3% probability in P-wave arrival time picking within the residual error of 0.1s.  
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1. Introduction 

Accurate and rapid arrival time of seismic p phases are the essential factors in real-time seismology, 
especially the applications on estimating earthquake parameters rapidly and accurately on mitigating 
earthquake disaster during and after quaking. Meanwhile, continuous developments in data acquisition and 
storage have resulted in vast, unprecedented increases in the volume of available seismic data. For large-
scale datasets and the need for rapidly picking the arrival time of p phase on mitigating earthquake disaster, 
the traditionally manual picking methods are facing enormous challenges. In addition, the accuracy of 
manual picking incorporates the subjectivity of different analysts. Further development of reliable automated 
picking methods is therefore essential to assist seismologists in their efforts to process large-scale datasets.[25] 

Decades of research on reliable automatic phase picker have posed numerous methods on onsets, including: 
methods based on amplitude, standard deviation or energy; statistical methods and shallow neural 
networks[29]. The most commonly used method for automatic phase picker is still the short-term 
average/long-term average (STA/LTA) approach, which tracks the ratio of energy in short-term window/a 
long-term window and determines phase arrival time by threshold on the peak of the ratio.[1] Baer and 
Kradolfer[3] improved the STA/LTA by using the envelope as characteristic function. There are numerous 
other approaches, including those based on higher-order statistics[21][11][12], autoregressive methods[15,19,22], 
shallow neural networks[5,6,8,23,24,28], methods that use wave polarization[4,20], and methods that use pickers in 
tandem[17,25]. Although the automated methods on phase picking have been extensive, the automated picking 
algorithms cannot currently match the accuracy of an experienced analyst. 

In recent years, there has been truly astonishing progress within the field of artificial intelligence, most 
notably in the area of deep learning. Deep learning is a subdiscipline of machine learning that is based on 
training neural networks to learn generalized representations of extremely large data sets and has become 
state of the art in numerous domains of artificial intelligence, including computer vision, speech recognition  
and so on.[2,11,14] It has been recently introduced to seismology and has already shown considerable promise 
in performing various tasks including similarity-based earthquake detection and localization[18], generalized 
seismic phase detection[20,38], phase picking[29,37,39], first-motion polarity determination[20], detection of  events 
in laboratory experiments[26], and predicting aftershock spatial patterns[7]. Although multiple methods on 
deep learning algorithm having made remarkable progress in phase picking using the large scale in seismic 
data, the network architecture still need a change for definite problems based different datasets[9,32,33,34]. 

In this paper, we focus on the application of P-wave arrival detection and time picking based on Chinese 
strong-motion records in 3 components using convolutional neural algorithm. We design a deep neural 
network based the architecture of fully convolutional network (FCN) which trained to learn the probability 
distribution of P wave from the known earthquake waveforms using the probabilities of manual picks p 
arrival time. In order to weak the overfitting with the limitation of small datasets, we generate ~149,000 
normalized p-waveforms from 6776 three-component strong-motion records of 1798 earthquakes in Chinese 
Strong Motion Network through flipping and shuffling based the manual picks. We trained the FCN with 
~120,000 normalized p-waveforms and confirmed the architecture of FCN and with the ~120,000 
normalized p-waveforms from the validation dataset. And the trained network was tested on the testing 
dataset against with the STA/LTA+AIC method[35]. 

2. Data Processing and Augmentation 

The dataset used in training the FCN is manually picked catalog of 1708 events containing 6776 exceeding 
5-second P-wave seismograms in three components located throughout the China mainland (Fig.1). The 
events occurred between October 2007 to December 2017 and were recorded by the strong-motion 
acceleration stations with the sampling frequency of 200Hz. The magnitude of the events range from 1.1 to 
8.0. The magnitudes are local magnitude ML for events with M < 4.5 and surface wave magnitude MW for 
lager events. Here we denote both types of magnitudes simply by M. The strong-motion P-wave 
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seismograms consist of high and low signal-to-noise ratio (SNR) records, and with the range from 1.29 to 
15500 (Fig.2). The SNR is calculated by the ratio of standard deviations of the five seconds following and 
the five seconds preceding the P arrival which picked by manual. 

 

Fig 1. Distribution of epicenters and stations  

 

Fig 2. Distribution of magnitude and SNR 

Manual picking P-wave arrival time picking are converted to the probability distribution of P-wave arrival as 
a Gaussian function with zero mean and a standard deviation of 0.1s (Fig.3d). The probability distribution of 
P-wave arrival as a Gaussian function allows the algorithm to reduce the errors and biases by manual picks. 
And according the peak and corresponding peak in the trace, the network can obtain an accurate and reliable 
result in P-wave arrival detection and time picking. The P-wave seismograms in three components and 
probability distribution of P-wave arrival are split into training, validation and testing dataset with the ratio 
of 8:1:1 by stratified sampling based on SNR.  

The fully convolutional network for P-wave arrival time picking need an extremely large number of 
examples to prevent overfitting using the training dataset and enhance generalization. Our dataset is 
relatively small. To overcome the limitations with a small dataset, we adapt shuffle and flipping the P-wave 
seismograms to expand the number and quality of the data from data augmentation. The time window size of 
input for FCN is 20s. The time window moves 11 times within the time step of 1s from 15 second before P-
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wave arrival time in the trace and clipping the trace within random time step from 0 to 1 second basing on 
the beginning of time window. And the clipping trace was rotated 180 degree vertically in each component. 
Then the above 20-second trace was normalized by subtracting the mean of each component in the current 
time window trace, and dividing the subtraction of maximum and mean amplitude of each component time 
window trace (Fig 3a – d). After above data processing and augmentation, we finally expand the training, 
validation, testing datasets as the number of 119,174, 14,894, 14,916.  

 

Fig 3. The example of input data and manual picking P-wave time.  

3. Method 

The fully convolutional network architecture (Fig.4) for P-wave arrival detection and time picking consists 
of an input layer with 20-second 3-component normalized P-wave seismograms (4001 samples), 2 resample 
stage, 3 down-sampling stage and 3 up-sampling stage. Inside each down-sampling stage process, the stage 
consists of convolution, leaky rectified linear units (Leaky RELU) and batch normalization (BN). Inside each 
up-sampling stage process, the stage goes through an extra max-pooling after the convolution layer. The 
resample stage is designed to extract and shrink the useful information from several components (channels) 
into one component (channel). The down-sampling stage process is designed to extract and shrink the useful 
information from P-wave seismograms to a few neurons. The up-sampling stage process expands and 
converts this information into probability of distribution of P-wave arrival time. The convolution kernel size 
is 10 points and convolution step is 4 points. The max-pooling kernel size is 2 points and step is 2 points. 
Therefore, the down-sampling and up-sampling stage’s step is 8 points.  

The outputs of FCN architecture for P-wave arrival detection and time picking are probability distribution of 
P-wave seismograms. The loss function is defined using mean square error (MSE) between the true 
probability distribution (p(x)) and predicted distribution (q(x)): 

     (1) 

where m represents the size of batch. The loss function measures the divergence between the two probability 
distribution. We convert the problems of P-wave arrival time picking as edge segmentation and we consider 
the MSE can be more sensitive for the divergence between the two probability distribution than cross 
entropy function. Therefore, we use MSE as loss function instead of cross entropy function.  

Fig5 shows that the training and validation process. The FCN is trained by the loss function of MSE and 
AdamOptimizer with 0.001 learning rate. The loss function declines rapidly and the accuracy achieves 88% 
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through 2 epoch iterations on the training dataset. Through about 2000 epoch iterations, the rate of loss 
function verges to zero and the accuracy verges to 98% on the training and validation datasets. And we 
choose the 3042th checkpoint randomly to evaluate the performance of FCN on P-wave arrival time picking 
using the testing dataset. 

 

Fig4. The fully convolutional network architecture  

 

Fig5. The training and validation progress  

4. Results 

The evaluation parameters: precision, recall, accuracy, mean (μ|t|) and standard deviation (ϭ|t|) of time 
residuals between manual picks and the FCN picks are applied to test the performance of FCN on P-wave 
arrival detection and time picking using the testing datasets. 

      (2) 

     (3) 

     (4) 

Where Tp is the number of true positives, FP is the number of false positives, FN is the number of false 
negatives. The precision, recall and accuracy are calculated by the number of true positives, false positives 
and false negatives. The positives are the reliable results which peaks of probabilities are larger than 0.5 as 
the reliable detection on P-wave arrival detection. The true positives are accurate results on P-wave arrival 
time picking as the time residuals within 0.1 second and the false positive are inaccurate results. The FCN 
pick is defined by the corresponding peak in the trace. The false negatives are the unreliable results which 
peaks of probabilities are less than 0.5. The mean (μ|t|) and standard deviation (ϭ|t|) of time residuals 
between manual picks and the FCN picks are calculated based the positives.  
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Fig6. The examples of FCN in the test dataset.  

Fig6 a – c are the examples of true positives, false positives and false negatives picked by the FCN from the 
testing dataset. The examples of true positives and false positives show that the FCN has the reliable 
performance on P-wave detection with the strict peak threshold of 0.5. The examples of true positives show 
that the FCN has an accurate performance on picking P-wave arrival time within the time residuals of 0.1 
second. Meanwhile, the SNR of true positives examples have the wide broad range from high to low SNR. 
And most of the false positives and false negatives are low SNR data. Table 1 is the performance of 
evaluation parameters using the testing datasets. The train FCN is tested against the short-term average/long-
term average united Akaike Information Criterion (STA/LTA+AIC) method through the evaluation 
parameters.  

Table 1 Evaluation parameters on the testing dataset 

Evaluation parameters FCN STA/LTA-AIC 

Accuracy 0.976 0.738 

Recall 0.993 0.969 

Precision 0.983 0.762 

μ|t|(s) 0.026 0.252 

ϭ|t|(s) 0.084 0.797 
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The FCN achieves 0.976 accuracy, 0.993 recall, 0.983 precision, 0.026 second mean (μ|t|) and 0.084 second 
standard deviation (ϭ|t|) of time residuals on the testing dataset. Each of the accuracy, recall and precision is 
larger than STA/LTA+AIC method and each of the time residuals’ mean (μ|t|) and standard deviation (ϭ|t|) 
is less than STA/LTA+AIC method. The evaluation parameters recall means that the performance of FCN on 
P-wave arrival time detection. The evaluation parameters Precision, mean (μ|t|) and standard deviation (ϭ|t|) 
mean that the performance of FCN on P-wave arrival time picking among the detection results. The accuracy 
can represent the performance of FCN on P-wave arrival detection and time picking. The larger value of 
recall, precision and accuracy mean that the method have better performance on P-wave arrival detection and 
P-wave arrival time picking using the datasets. The less value of the time residuals’ mean (μ|t|) and standard 
deviation (ϭ|t|) show that the method has a more stable performance on P-wave arrival time picking using 
the testing dataset. This means that the FCN have a stable on P-wave detection and an accurate performance 
on P-wave arrival time picking using the testing datasets.  

Fig7 is the accuracy between FCN and STA/LTA+AIC method with different SNR using the testing dataset. 
The testing dataset was divided as the criterion of logarithm SNR. The accuracy between FCN and 
STA/LTA+AIC method increase with the increase of logarithm. When the logarithm SNR is larger than 1.0, 
the accuracy of FCN has a stable and effective performance. However, the logarithm SNR is larger than 3.0, 
the accuracy of STA/LTA+AIC method has a stable and effective performance. And under the threshold of 
logarithm SNR 3.5, the accuracy of FCN is larger than STA/LTA+AIC method. These shows that the FCN 
performs more stably and effectively than STA/LTA+AIC in low SNR data.  

 
Fig7 The accuracy between FCN and STA/LTA+AIC method with different SNR 

5. Discussion and conclusion 

The trained FCN for P-wave arrival detection and time picking with nearly 120,000 normalized waveforms 
which were expanded from approximately 6700 three-component strong-motion records of 1708 earthquakes 
basing on China Earthquake Network Center Catalog during the period of 10/2007 ~ 12/2017. 
According to the performance of FCN using the training and validation datasets, the 3064th 
checkpoint was choosing to test the performance of FCN on the P-wave arrival detection and time 
picking using the testing dataset. The trained network achieves 97.8% accuracy on P-wave arrival 
time picking as manual picks within the time error of 0.1s and has 0.7% chance to miss the 
earthquake waveforms. The time residuals’ mean and standard deviation of FCN picks on positives 
results shows that the performance of FCN is stable on P-wave arrival time picking.  

Basing on evaluation parameters: accuracy, precision, recall, time residuals’ mean and standard 
deviation using the testing datasets, the FCN has a more stable performance on P-wave arrival 
detection and more accurate performance on P-wave arrival time picking than STA/LTA+AIC 
method. According to the accuracy between FCN and STA/LTA+AIC method with different SNR, 
the SNR sections which are more stable and accurate performance on P-wave arrival detection and 
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time picking of FCN and STA/LTA+AIC method was obtained in details. The FCN outperforms 
than STA/LTA+AIC with the SNR sections from 0.5 to 3.5 in logarithm. And most of the false 
positives and false negatives examples are low SNR data also promote this. Meanwhile, the FCN 
performs as the same as the STA/LTA+AIC method on P-wave arrival detection and time picking 
when the value of SNR is larger than 3.5 in logarithm. The FCN is more suitable than 
STA/LTA+AIC method in low SNR data. 

Through analyzing vast false positives and negatives waveforms predicted by the FCN, there are 
approximately 60% waveforms are high noise level data which it is hard to pick the accurate P-
wave arrival time. And approximately 30% waveforms which exists small continuous shaking 
before the catalog’s earthquakes. These data are low SNR data in the performance of SNR. 
Meanwhile, there are about 10% waveforms are high SNR data. A small part of them are inaccurate 
manual picks. And the others may be solved by increasing the quality of the waveforms.  

Although the FCN model provide an effective method for P-wave arrival detection and time picking, 
the FCN still exits the risk of overfitting and weak generalization by the limited variations using the 
input data. These problems are huge challenges for the application of FCN in the aspect of P-wave 
arrival detection and time picking. Nonetheless, the problems can be avoided by adapting the 
following measures: redesigning the architecture of network, import the new strong-motion records, 
short the time step of moving the time window, importing random noise (recorded noise) and so on. 
Our future work will focus on improving the FCN for testing the FCN on the strong-motion 
network. 
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