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Abstract 

Fragility curves are practical tools for seismic risk and damage vulnerability assessments of structures. Developing 

analytical fragility functions based on time-history analysis (THA) of nonlinear structural models has received extensive 

attention and application during the last decade, thanks to the feasibility of faster and more complex numerical 

computations. However, despite the availability of novel methods for developing such functions, incremental dynamic 

analysis (IDA) has remained the primary technique used for this purpose. This paper critically reviews the IDA method 

and explores its shortcomings when used to develop seismic fragility function, in terms of collapse intensity measures 

(IM), dispersion of non-collapse engineering demand parameters (EDP) of individual IDA curves and ground motion 

record (GMR) scaling. Providing exceptional and specific recommendations to overcome these shortcomings, a grid 

analysis scheme (GAS) is developed for seismic fragility assessments of structures based on THA. The GAS technique 

begins with Cloud analysis and assessing the adequacy of sampled datapoints for representing structural collapse and 

considered performance levels. The THA realisations of the structural model is then continued and the general closed 

form solution to the analytical fragility function can be determined by as low as two additional specific THA per each 

selected GMR.  

Keywords: Analytical fragility function; Time-history analysis; Ground motion record scaling; Seismic data gridline 

1. Introduction

Seismic fragility analysis is a fundamental step in modern performance-based earthquake engineering (PBEE) 

[1]. The structural seismic fragility is defined in terms of the conditional probability (P) of exceeding a limit-

state (LS), for a given earthquake intensity measure (IM). The LS herein is a nominated structural response 

threshold in terms of an engineering demand parameter (EDP), e.g. deformation or force, to represent a 

predefined structural performance (i.e. a damage) level [2]. This analysis generates fragility curves, indicating 

structures’ seismic vulnerability, as the envelopes of failure probability increase with increasing IMs [3]. A 

fragility curve is shown in Fig.1 schematically. 

Fig. 1 – Schematic example of a fragility curve [2] 

Although fragility curves can be generated based on empirical seismic data [4] or experts’ opinion [5], 

analytical fragility functions [6] have become the primary tool for this purpose: 
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  𝑃[𝐿𝑆|𝐼𝑀] = 𝐺𝐸𝐷𝑃|𝐼𝑀,𝑁𝐶(𝐿𝑆|𝐼𝑀) ∙ 𝑃𝑁𝐶|𝐼𝑀 + 𝐺𝐸𝐷𝑃|𝐼𝑀,𝐶(𝐿𝑆|𝐼𝑀) ∙ 𝑃𝐶|𝐼𝑀 (1) 

where G(·) is the complementary cumulative density function (CDF) of the estimated EDPs (with respect to 

the specified LS) and PC|IM denotes the conditional collapse probability given IM. These functions rely on 

numerical simulation of structures subjected to earthquake loads. Various numerical techniques have been 

developed to establish the analytical fragility functions such as the capacity spectrum method [7], multiple 

stripe analysis [8], incremental dynamic analysis (IDA) [9] and Cloud analysis [10], Cloud to IDA (CIDA) 

[11], and extended Cloud analysis (ECA) [12]. The differences between these techniques are the integrity in 

simulation, efficiency of computation and versatility in application [2]. In terms of the integrity of simulation 

earthquake loads, methods which are established on the time-history analysis (THA) have gained more 

attention in the last decade, thanks to the feasibility of faster numerical computations. In this regard, the original 

Cloud analysis (addressed as OCA in the rest of this text) and the IDA are recognised as the basic and the most 

rigorous techniques, respectively.  

    

(a) Single IDA (b) IDA curve fitting (c) Cloud of sampled data (d) Logistic regression 

Fig. 2 – Schematic data sampling and regression analysis for IDA and OCA methods [2] 

OCA and IDA have both similarities and differences, which can be used to distinguish their advantages 

and disadvantages. For example, both methods utilise a lognormal distribution for a sampled seismic dataset 

(IM–EDP) and give a closed-form solution to Eq. (1), as follows: 

 𝑃[𝐿𝑆|𝐼𝑀] = 𝛷𝐸𝐷𝑃|𝐼𝑀,𝑁𝐶
𝐶 (

log 𝐿𝑆−log 𝜂𝐸𝐷𝑃𝑁𝐶|𝐼𝑀

𝛽𝐸𝐷𝑃𝑁𝐶|𝐼𝑀
) ∙ (1 − 𝑃𝐶|𝐼𝑀) + 𝑃𝐶|𝐼𝑀 (2) 

where ΦC is the standardised Gaussian (normal) CDF of non-collapse sampled seismic dataset (IM–EDP)NC 

and η and β are respectively the median and standard deviation (from the median) of lognormal distribution 

(of this dataset). Comparatively, the most significant difference between the OCA and IDA methods is their 

computational efficiency. OCA can be conducted by performing as few as a single THA for each ground 

motion record (GMR) selected for the seismic fragility study. In other words, each IM–EDP datapoint (solid 

red circles) in Fig.2(c) represents a THA conducted using a GMR selected for the study. However, when using 

the IDA method, THA is conducted repeatedly, for different derivatives of a GMR, scaled linearly up until the 

identification of the minimum collapse intensity measure (IMC) for that GMR. Subsequently, a curve is 

generated by spline curve fitting to the sampled IM–EDP dataset for each GMR in the study (see Fig.2(a)). 

This also allows the generation of an empirical CDF using identified IMC via IDA, which a curve can be fitted 

to (see Fig.2(b)) for evaluation of PC|IM. 

This increases the computational costs dramatically since no definite provision can be set to ensure the 

identification of IMC for all GMRs in the study, using a limited number of THA. This difference between the 

two techniques implies a distinction in the parameter β as calculated by OCA and IDA, as the former gives it 

as a constant, while the latter determines it to be varying as a function of IM, i.e. βEDP|IM. This distinction has 

been found to be one source of inaccuracy of the OCA method when IM increases [12]. Additionally, despite 

the availability of GMR selection techniques for THA, such as conditional mean spectrum (CMS) [13] and 

conditional spectrum (CS) [14], the only current method to utilise with OCA is the conventional filtering 
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method. This is because, in the absence of scaled derivatives of selected GMRs in the OCA method, the 

sampled IM–EDP dataset becomes highly sensitive to the selection criteria, which can lead to the constant β 

parameter becoming even lower. However, adopting a filtering GMR selection can create other shortcomings 

such as an inappropriate cloud of IM–EDP dataset for the coverage of a performance LS. Such an observation, 

as shown schematically in Fig.2(c), simply indicates the inadequacy of sampled data for reflecting the seismic 

fragility of structures with respect to considered performance, LS. Moreover, the logistic regression, which is 

conducted to determine PC|IM in the OCA method, is extremely susceptible to the binary distribution of IMC 

and IMNC. For example, see Fig.2(d) and how PC|IM decreases as IM increases.  

Although it reveals that IDA is a more versatile method than OCA in terms of application, there are a 

couple of ambiguities with the application of IDA method [9]. IDA requires determination of the medians of 

sampled IM–EDP datapoints for individual GMRs, which are then averaged to evaluate η of the entire dataset. 

Within this process, the dispersion of IM–EDP datapoints with respect to the median fit of individual GMRs 

is eliminated. This elimination insets an unnecessary uncertainty, which is ignored in developing the analytical 

frailty function based on the IDA method. The other issue is the collapse criteria utilised by the IDA method. 

In general, for a given GMR, the occurrence of collapse during THA can be defined in several ways [15]. For 

IDA, these include reaching a local gradient of 20% of the elastic slope over the IDA curve, numerical non-

convergence, and setting an upper EDP bound. Numerical experiments show tracking the local gradient of 

IDA curves is not always feasible and/or valid for different structural models and pattern-timing of the scaled 

GMRs due to natural period elongation [2]. In addition, this theoretical collapse criterion has never been 

validated by experimental testing. Furthermore, there is ongoing research into overcoming the numerical non-

convergence issues under large displacements and corresponding deformations, [16] which questions the 

credibility of this assumption as a valid collapse criterion. Consequently, only the adoption of an EDP bound 

e.g., exceedance of a drift threshold, can be justified (based on theory, numerical study or experiment) as a 

collapse criterion for IDA.  

This paper proposes a grid analysis scheme (GAS) for seismic fragility analysis in order to overcome 

the aforementioned shortcomings of OCA and IDA. The GAS method can be conducted using as few as three 

THA realisations of a numerical or analytical structural model for each selected GMR for the study. An 

important advantage of the GAS technique which makes it appealing for PBEE is that it is correlated to 

predefined seismic damage and structural performance levels under investigation. This correlation is initially 

triggered by application of OCA and is preserved stepwise through the GAS process. It is worth noting that 

the GAS technique has substantial differences from the existing ECA and CIDA methods, despite all using 

OCA in the first step, which makes it a novel technique with distinct advantages over these methods. In the 

following, the GAS technique concept and its formulation for developing seismic fragility analysis is detailed. 

2. Grid Analysis Scheme Methodology 

2.1 Grid of structural performance  

The OCA is a key THA–based method for seismic fragility analysis and is an opening to PBEE. Following the 

completion of OCA, η and β can be determined through a linear regression in logarithmic space for sampled 

(IM–EDP)NC datapoints, and PC|IM is evaluated through logistic regression of sampled IMC–IMNC. In other 

words, it is assumed the sampled (IM–EDP)NC datapoints are distributed lognormally [6] while a binary 

function holds the distribution of sampled IMC–IMNC [17]. At this stage, and before proceeding to develope 

the closed-form solution (i.e. Eq. (2)), it is crucially important to examine the adequacy of sampled datasets in 

terms of representing the considered structural performance levels. A tool for such an examination can be a 

grid of structural performance LS lines as shown in Fig.3. This can be generated by plotting the EDP upper 

bound corresponding to structural collapse (i.e. EDP = C) as well as all other EDP bounds corresponding to 

considered structural performance levels (i.e. EDP = LS) for seismic fragility analysis. Note that in addition to 

collapse, only a single performance level is considered in Fig.3, which divides the sampling space into the 

linear (EDPs < LS), nonlinear (LS ≤ EDPs < C) and collapse responses (EDPs ≥ C). All EDPs ≥ C are also 

mapped on the EDP = C line for the purpose of illustration. Moreover, the IM levels corresponding to EDP = 
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LS (i.e. IMLS) and EDP = C (i.e. IMC) should be determined using the ηEDP|IM function and plotted in the 

sampling space.  

 

Fig. 3 – A grid of structural performance (schematic) 

Subsequently, the sampling space is subdivided into n2 new subspaces (i.e. 1–9 in Fig.3), where n is the 

number of considered performance levels plus two. This new subdivided space allows to determine if the 

sampled dataset is adequate for fragility analysis with respect to considered structural performance levels and 

collapse. For example, to generate reliable seismic fragility curves based on OCA, the sampled datapoints 

should cover different EDP subspaces evenly. However, this is not possible to guarantee a priori due to GMR 

randomness issues, unless GMRs are selected quite subjectively. Also, the datapoints could be ideally 

distributed in the subspaces 1 (linear EDPs), 5 (nonlinear EDPs) and 9 (collapse cases), in the vicinity of 

estimated ηEDP|IM, although this is quite unlikely due to structural nonlinear behaviour and period elongation 

issues. Under these circumstances, a solution can be to introduce extra GMRs for the OCA, particularly when 

instable logistic regression issues occur. However, this is again subjective and can give biased fragility results. 

The substitute solution, herein, is walking toward an alternative fragility analysis method using scaled 

derivatives of originally selected GMRs. In this case, the fundamental question becomes how to scale the 

GMRs. This is described in the next section.   

2.2 Information-based GMR scaling 

Four information-based approaches have been proposed by Sfahani [2] for scaling selected GMRs based on 

initial OCA results. These are briefly described in the following. 

2.2.1 Stripe scaling approach 

Stripe scaling approach (SSCA) involves scaling a GMR to a specific IM level. A stripe of EDPs can be 

achieved in case all selected GMRs are scaled to a given IM level. This IM level can be determined to represent 

a specific structural performance level as follows 

 𝐼𝑀𝑆𝑆𝐶𝐴 = √
𝐿𝑆

𝑎

𝑏
 (3) 

where LS is the numerical EDP value representing the considered performance level, and a and b are the 

intercept and slope of linear median fit (ηEDP|IM) in logarithmic space, respectively (see Fig.4(a)).  
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(a) Stripe scaling approach (SSCA) (b) Transition scaling approach (TSCA) 

  

(c) Mapping scaling approach (MSCA) (d) Percentile scaling approach (PSCA) 

Fig. 4 – Information-based GMR scaling approaches [2] 

2.2.2 Transition scaling approach 

An IM–EDP datapoint can be shifted toward a specific performance spot in the sampling logarithmic space. 

This is called transition scaling approach (TSCA), which is schematically shown in Fig.4(b). The scale factor 

(SF) for the GMRi can be determined as follows  

 𝑆𝐹𝑇𝑆𝐶𝐴 = √(
𝐼𝑀𝐿𝑆

𝐼𝑀𝑖
)

2
+ (

𝐿𝑆

𝐸𝐷𝑃𝑖
)

2
 (4) 

where IMi and EDPi correspond to the IM–EDP response obtained by GMRi, and LS and IMLS are numerical 

values representing the considered performance level. 

2.2.3 Mapping scaling approach 

GMRs can be mapped to meet a structural performance level (see Fig.4(c)). This is called the mapping scaling 

approach (MSCA), which is similar to SSCA. However, the obtained EDP is used to calculate SF for GMRi. 

The SF can be simply determined as follows 

 𝑆𝐹𝑀𝑆𝐶𝐴 =
𝐿𝑆

𝐸𝐷𝑃𝑖
 (5) 

where EDPi corresponds to the response obtained by GMRi, and LS is the numerical values representing the 

considered performance level. 

2.2.4 Percentile scaling approach 

The closed-form solution to the analytical fragility function (i.e. Eq. (2)) utilises the median (i.e. 50% 

probability) of distribution of IM–EDP datapoints (i.e. ηEDP|IM) to evaluate a different confidence bound of 
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seismic fragility, through which the corresponding percentile pth can be utilised (see Fig.4(d)). The percentile 

scaling approach (PSCA) is to scale the original GMRs to the sorted IMs which cover a specific structural 

performance level. To this end, the IM percentile for GMRi, for a given performance level can be approximated 

as follows 

 𝐼𝑀𝑃𝑆𝐶𝐴 = √
𝐼𝑀𝑖

𝑏∙𝐿𝑆

𝐸𝐷𝑃𝑖

𝑏

 (6) 

where IMi and EDPi correspond to the IM–EDP response obtained by GMRi, LS is the numerical value 

representing the considered performance level and b is the slope of median fit (ηEDP|IM) in logarithmic space. 

2.3 GAS technique–Stage 1 

The number of THA required for seismic fragility analysis by the GAS technique is correlated with PBEE and 

the number of considered structural performance levels. In this regard, the suggested number of THA to be 

conducted for each selected GMR is n+2, where n is the number of performance levels. In this paper, in order 

to simply and clearly put the new GAS method forward, only a single performance level has been considered 

in addition to the collapse threshold. A more comprehensive and expanded GAS methodology with the 

inclusion of multiple structural performance levels will be described in future publications. 

The first stage of GAS method is comprised of the classification and scaling of the IM–EDP datapoints 

sampled by OCA. Note that a grid of structural performance has already been generated in Fig.3, but a more 

detailed data classification needs to be conducted to scale each GMR individually. Additionally, the linear 

(1,4,7), nonlinear (2,5,8) and collapse (3,6,9) subspaces have been outlined (see Fig.3). It is worth reiterating 

that subspaces 1, 5 and 9 are on the mainstream. Further, the datapoints in subspaces 7 and 3 are classified as 

outliers and they are removed from the seismic fragility analysis. Identification and treatment of outliers in a 

regression analysis can be carried out in several ways [18]. In this situation, the treatment is based on the 

justification that the GMRs in subspace 7 produce linear responses while their IM levels are greater than IMC 

and, the GMRs in subspace 3 produce collapse responses while their IM levels are lower than IMLS. In general, 

the IM–EDP datapoints to the right of ηEDP|IM line are stronger GMRs than those to the left of this line. This 

can be simply justified based on comparison of EDPs determined by these GMRs with the EDPs approximated 

via ηEDP|IM, for the same IM levels. As such, subspaces 4 and 2 are classified as the weak and strong GMRs, 

respectively. These GMRs are also deviated from ηEDP|IM to some extent but they are maintained for the rest of 

analysis, since they can be brought back to the mainstream. Finally, datapoints in subspaces 8 and 6 are the 

most inelastic GMRs. Although it seems these GMRs display similar deviations to those in subspaces 4 and 2, 

the fact that subspaces 8 and 6 are not linear means that they cannot be treated in the same manner. However, 

these GMRs can remain in the analysis with some provisions.  

The aim of the GAS technique in Stage 1 is to generate a pair of (IM-EDP)NC datapoints. As previously 

discussed, the dispersion of these datapoints is ignored for individual GMRs in the IDA method. In the GAS 

methodology, this dispersion is eliminated from the analysis by using only a pair of (IM-EDP)NC datapoints 

from linear regression in the logarithmic space. Consequently, as such a dispersion and related uncertainties 

are not generated, the complications from this can be disregarded. The proposed layout for GMR scaling at 

GAS–Stage 1 is illustrated in Fig.5. This layout targets the considered structural performance level by sampling 

additional IM-EDP datapoints in the vicinity of corresponding LS. For this purpose, the weak GMRs in 

subspace 1 (GMR1W) and the strong ones in subspace 5 (GMR5S) are sorted using PSCA to their corresponding 

percentiles on the EDP = LS line, using Eq. (6). Other GMRs in these subspaces (i.e. GMR1S and GMR5W) are 

striped to the IMLS level by SSCA, using Eq. (3). Then, the GMRs in the subspaces 4 and 2 are mapped to the 

EDP = LS line (MSCA) and those in subspace 8 are shifted to the intersection of this line with IMLS (TSCA) 

using Eq. (5) and Eq. (4), respectively. 
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Fig. 5 – GMR scaling layout at Stage 1 of GAS technique (schematic) 

Due to being collapse cases, the EDPs achieved by GMRs in subspaces 6 and 9 can be unrealistic, so 

they are mapped on the EDP = C line in Fig.5. There is no chance to sample a pair of (IM-EDP)NC for these 

GMRs at Stage 1 and therefore, GMR6 and GMR9 are inevitably scaled down to IMLS and IMC, respectively, 

awaiting for a pair of (IM-EDP)NC to be achieved at Stage 2. 

2.4 GAS technique–Stage 2 

The aim of the GAS technique at Stage 2 is to sample the IMC levels of GMRs. Note that Stage 1 aimed to 

generate a pair of (IM–EDP)NC datapoints. Similar to stage one, it is first necessary to classify the dataset 

sampled in the former stage. Considering the assumptions of this study, nine feasible cases to be sampled by 

GAS–Stage 1 are summarised in Table 1. The GAS–Stage 2 treats each case separately. 

Table 1 – Classification of sampled IM–EDP dataset; linear (L), nonlinear (N) and collapse (C) cases 

Case 1 2 3 4 5 6 7 8 9 

OCA L L L N N N C C C 

GAS–Stage 1 L N C L N C L N C 

 

Case 1: 

Although all linear datapoints are scaled up at GAS–Stage 1 to sample a nonlinear or collapse response, 

some GMRs may result in a second linear response. In this case, the GMR is scaled to the IM level at EDP = 

C for THA at GAS–Stage 2. If the slope of the linear regression by this pair of linear datapoints (bi) was lower 

than the slope of existing line’s (bη), the GMR is scaled to the IM levels extrapolated by ηEDP|IM at EDP = C. 

Otherwise, the linear regression found using the Case 1 datapoints is used to extrapolate the IM level at EDP 

= C. Then, if the new THA at GAS–Stage 2 did not sample a collapse response, all three sampled IM-EDP 

datapoints are utilised to determine the median of individual GMRs. IMC is approximated by extrapolation at 

EDP = C but using the larger pair of sampled datapoints. The reason for these provisions is that a pair of linear 

datapoints is not adequate for an accurate extrapolation and, therefore it is necessary to be conservative in 

identifying the lowest IMC for a GMR. 

Case 2: 

This case is more straightforward. Similar to Case 1, for the THA at GAS–Stage 2, GMRs are scaled to 

the IM levels extrapolated at EDP = C however, it uses the sampled pair of datapoints. This is because these 

datapoints indicate the scaling approach at GAS–Stage1 was successful and therefore this pair can be reliably 
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used for extrapolation. Similar to Case 1, if a collapse response was not sampled at GAS–Stage 2, the three 

IM-EDP datapoints can be used to determine the median of individual GMRs, and IMC can be approximated 

by extrapolation at EDP = C using the pair of nonlinear datapoints. 

Case 3: 

In this circumstance, the GMRs are treated similarly to GAS–Stage 1 but, are scaled to a lower IM level 

at GAS–Stage 2. In this regard, GMR1W and GMR4 (see Fig.5) are striped to the IMLS level using SSCA (Eq. 

(3)) and GMR1S is sorted on the EDP = LS line using PSCA (Eq. (6)). An undesirable outcome in this case is 

sampling a second collapse response for these GMRs at GAS–Stage 2. This necessitates continuing THA for 

these GMRs by another SF, such as mapping the strong and weak GMRs to their corresponding IM and EDP 

levels on the ηEDP|IM line. The IMC in this case is the lower of all identified collapse responses.  

Case 4: 

This case is treated identically to Case 2. 

Case 5: 

This case is treated identically to Case 1. 

Case 6: 

This case may look similar to Case 3 but it should be noted that nonlinear datapoints at GAS–Stage 1 

were scaled down to lower IM levels. As such, the occurrence of Case 6 can be interpreted as an error within 

the THA or the numerical/analytical model developed for the analysis. Alternatively, if there is enough 

confidence about the THA and model being used, a lower subjective SF can be utilised for these GMRs at 

GAS–Stage 1 

Case 7: 

In this case, the newly sampled linear datapoint can be treated similar to GMRs in subspace 4 at GAS–

Stage 1, noting that the IM level determined at GAS–Stage 2 cannot be bigger than the IMC identified for the 

GMR using OCA. If this is an issue, the provisions advised for Case 3 can be adopted.  

Case 8: 

This case is similar to Case 7, where the newly sampled nonlinear datapoint can be treated similarly to 

GMRs in subspaces 2 or 8 at GAS–Stage 1, depending on the IM level. GMRs can be scaled down confidently.   

Case 9: 

Finally, this is an undesirable case which indicates the THA must be repeated for these GMRs with more 

than one SF, up until sampling a pair of (IM–EDP)NC. If this case occurred for GMRs in the subspace 9, the 

GMRs can be scaled down to the IMLS (see Fig.5), and then the advised provisions for Cases 7 or 8 can be 

adopted as required. Otherwise, a lower subjective SF should be utilised. The IMC for these GMRs is taken as 

the lowest of all identified collapse responses.  

2.5 Seismic fragility analysis by GAS technique  

The stepwise process for performing seismic fragility analysis based on the GAS technique is illustrated in 

Fig.6. The analysis can be conducted once as long as n+2 IM–EDP datapoints were sampled for each selected 

GMR. Note that to determine the intercept ai and slope bi of linear regression for an individual GMR in 

logarithmic scale, at least one pair of these datapoints must be a non-collapse case. Otherwise the analysis is 

continued at GAS–Stage 2 until this result is achieved. The lognormal median, ηEDP,NC|IM, and standard 

deviation, βEDP,NC|IM, of the distribution of the entire dataset can be determined as they are for IDA, using 

following equations 
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Fig. 6 –Seismic fragility analysis based on GAS technique 
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 𝜂𝐸𝐷𝑃𝑁𝐶|𝐼𝑀 = 𝜂𝑎𝑖
 𝐼𝑀𝜇𝑏𝑖  (7) 

 𝛽𝐸𝐷𝑃𝑁𝐶|𝐼𝑀 = √𝜎𝑙𝑜𝑔 𝑎𝑖

2 + 𝜎𝑏𝑖

2  (log 𝐼𝑀)2 + 2 𝜌 𝜎𝑏𝑖 𝜎𝑙𝑜𝑔 𝑎𝑖
 (log 𝐼𝑀) (8) 

where η, μ, σ2 and ρ are the median, mean, variance and coefficient of correlation of the ai and bi determined 

for different GMRi. Additionally, the PC|IM can be determined by fitting a curve to the CDF of all IMCi values 

sampled for different GMRi using the maximum likelihood technique (MLE) [8]. Subsequently, to determine 

the closed-form solution of analytical seismic fragility function based on the GAS technique, Eq. (7), Eq. (8) 

and PC|IM can be substituted into Eq. (2).  

3. Discussion and Future Work 

An OpenSees–MATLAB implementation of the proposed algorithm for the GAS technique will soon be 

available to download. A case study for numerical validation of this technique for seismic fragility analysis is 

also in progress and will be reported upon completion. In addition to these projects, an expanded GAS 

technique for inclusion of multiple structural performance levels in seismic fragility analysis is under 

development by the authors and will be published in future. Note that the closed–form solution obtained for 

fragility function in this paper (based on the present GAS technique) can also be utilised for the same purpose. 

However, as identified earlier, the reliability of resulting fragility curves become unclear when the dataset is 

not sampled to represent all performance levels.  

Sampling extra datapoints for additional structural performance levels increases the number of required 

THA and thus the computational cost. Nevertheless, it is the versatility of the GAS methodology which 

motivates its application for seismic fragility analysis. Moreover, this increase is limited to one extra THA for 

each additional performance LS, per selected GMR, minimising the computational cost. Further studies which 

can be conducted in conjunction with the GAS technique are an analysis of sensitivity to GMR selection 

methods and ranking of different IMs and EDPs for GMR scaling. Additionally, assessing the sensitivity of 

seismic fragility results to uncertainties within the nominated LS bounds for GAS technique would be 

beneficial.  

4. Conclusion 

Seismic fragility analysis is as essential requirement for long-term performance prediction of structures. In this 

paper, the existing OCA and IDA methods have been reviewed critically and a novel analytical technique, 

called GAS, was proposed which eliminates the shortcomings of these methods. In particular the development 

of the GAS methodology has led to the following findings: 

• The GAS technique is entirely correlated with the considered structural performance levels by 

sampling a dataset which well represents these levels, as well as structural collapse. This is done 

by approving the quality of the sampled dataset against the gridlines of PBEE. 

• The GAS technique utilises non-subjective and specific GMR scaling approaches which treats 

each selected GMR individually. These approaches target the considered structural performance 

levels. 

• Seismic fragility analysis based on the GAS technique can be conducted using as low as n+2 

THA for each selected GMR, where n is the number of performance levels considered. The two 

additional THA are for the linear and collapse responses (one each) in the sampled dataset.   

• The median of seismic responses for individual GMRs can be determined by using only a pair 

of (IM-EDP)NC datapoints in the GAS technique. This eliminates the generation of dispersion 

by these datapoints, decreases the uncertainties and elaborates the efficiency of computation by 

this technique.   
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• The GAS technique also eliminates the spline curve fitting process by using a pair of (IM-

EDP)NC datapoints and recognises a sole collapse criterion, the EDP upper bound, for all 

selected GMRs.  

• Using the GAS technique allows the determination of an IMC level for all GMRs which can be 

used to generate a CDF with a fitted curve and eliminates the necessity of logistic regression. 
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