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Abstract 

Earthquake loss estimation is a complex process where numerous variables contribute to the uncertainty of loss 

estimation. The variables include seismic source information such as location and magnitude of the earthquakes, the 

ground motion prediction equations used, the effect of site conditions and the impact of structural vulnerability. In 

addition, when loss estimation for multiple locations is required, the correlation of loss estimation between different 

locations is needed to aggregate the loss together. Research on loss correlation in the past has been focused on spatial 

correlation of ground motion rather than the loss due to the lack of a large amount of detailed loss information from a 

single event. This approach cannot account for the impact of structural vulnerability, which means that it can only 

assess the partial impact of spatial correlation of earthquake loss. In the insurance industry, for simplicity the correlation 

is sometimes assumed to be a constant, independent of distance between the two locations in consideration, which is not 

true based on theoretical analysis as well as actual loss experience. This paper analyzes the detailed loss information 

collected after the 2011 Tohoku Earthquake, and using an advanced algorithm called kriging, a distance-dependent 

formula for spatial correlation of earthquake loss is derived. According to the formula, the correlation decays 

exponentially over distance between the two locations. The shorter the distance, the higher the correlation. The derived 

formula is validated against the actual loss information and the validation showed excellent agreement between the 

derived results and the actual loss information. The distance dependent formula is then implemented in the earthquake 

loss estimation model for Japan. Based on the loss results for a typical exposure portfolio in Japan, compared against 

the approach that utilizes a constant for spatial correlation, the distance dependent loss correlation produces a loss 

estimate that can be 50% or more different for amounts whose return periods are higher than 100 years in Japan, which 

could have significant impact on capital requirement in the insurance and reinsurance industry.. 
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1. Introduction 

There are generally two approaches in estimating earthquake loss. One is deterministic and the other is 

probabilistic. Although both the mean and the standard deviation of the estimated loss are often provided 

even in the deterministic approach, loss uncertainty of the estimation is usually associated with the 

probabilistic approach when stochastic events are used. Uncertainty of the earthquake loss estimation is 

especially important in quantifying tail risk, when distribution of the loss estimation is used to estimate the 

tail risk of earthquake event loss. 

  

There are two types of uncertainty. One is epistemic and the other is aleatory [1]. As explained in detail in 

[1], epistemic uncertainty relates to the incompleteness of inputs, the variation of available data, and the 

limitation of the method and techniques used. There are a number of methods that can be used to describe 

this type of uncertainty in earthquake ground motion, such as the logic tree method [2], and the Gaussian 

copula approach [3,4]. Aleatory uncertainty is used to describe the systemic difference between estimation 

and actual loss. In other words, it is related to the method itself that does not include all the necessary 

parameters and components in the loss estimation. This type of uncertainty is often described using the mean 

and standard deviation of the estimated results, with different variations in the description detail [5]. It 

should be noted that in practice it is both difficult and unnecessary to clearly separate these two types of 

uncertainty and they can sometimes be described by the standard deviation of the final estimation. 

 

In a typical framework of earthquake loss estimation [6], uncertainty is inherent in every component in the 

framework, from event occurrence, ground motion attenuation, site effect, structural vulnerability, financial 

term application and the aggregation of earthquake loss estimation. In a typical scenario in earthquake loss 

estimation, exposure can be from many locations when each location could have multiple coverages, such as 

building, content and business interruption or time element coverages. When uncertainty is included in the 

loss estimation process, dependency of the loss estimation for each component, each coverage at many 

locations needs to be considered. Dependency describes the correlation between the loss estimation, and it is 

very important when the estimated loss needs to be aggregated together to derive the tail risk for the 

earthquake event impacting a large area. As in the case for uncertainty, dependency needs to be considered 

for all the components in the framework for earthquake loss estimation, as in ground motion estimation, 

structural vulnerability and others.  

 

An ideal approach to addressing the dependency is to use a nested approach that encompasses all the 

correlation effect in the loss estimation framework from earthquake occurrence to final loss aggregation as 

described in the framework process in [6], but most of the research results have been focused on ground 

motion correlation [1,7], partly because of the lack of actual loss information and the availability of a large 

amount of observed ground motion records in recent large earthquakes. The correlation of earthquake ground 

motion is affected by a few factors such as the earthquake source (magnitude and fault), attenuation 

(propagation path), the local site effect (soil layering and property), and the distance between locations. Of 

all the factors affecting the dependency or correlation, distance effect is the most important because distance 

correlation reduces dramatically as distance increases, therefore most of the correlation studies for 

earthquake ground motion have been focused on distance effect, that is, the spatial correlation effect of 

ground motion[1,7]. 

 

Since distance correlation impact is the most important factor in quantifying earthquake ground motion 

uncertainty, it can be easily deduced that it is also one of the most important factors in quantifying 

earthquake loss estimation uncertainty. As explained in the above, the ideal approach to quantifying the 

correlation effect is to use a nested approach to account for the impact from all the components in the 

earthquake loss estimation process, but this approach is infeasible in practice because of a number of reasons, 

such as the complexity of the quantification process, the unreal demand for computation power, and the lack 

of supporting data to better describe the distance dependency impact in all factors. Although the study on 

8b-0001 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 8b-0001 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

3 

ground motion distance correlation has been widely conducted and a number of interesting results have been 

published, it is only addressing its impact from ground motion, while the impact from all other components 

still remains unknown. To consider the overall impact of distance dependency in earthquake loss estimation 

considering all the factors, instead of using the nested convolution approach described above, this paper 

derives the actual distance correlation of earthquake loss based on the large amount of observed loss 

information from the March 11, 2011 Great East Japan Earthquake, and using this correlation coupled with 

the impact of structural vulnerability correlation to address the overall impact of distance dependence on 

earthquake loss estimation.          

2. Simulating Distance Dependency in Location Level Loss Estimation 

In the traditional framework for earthquake loss estimation of stochastic events [6], correlation has to be 

assumed when aggregating loss from different locations, and more often a constant is used without 

considering the impact of distance, and this constant of correlation is usually between 0.15-0.25, with bigger 

constant for smaller footprint of an earthquake. As demonstrated in following sections, this assumption is 

generally acceptable for large portfolio-level loss estimation when exposure is evenly distributed in space, 

but there are two major issues in this assumption. One is that this assumption does not work when the 

exposure has concentrations spatially, which is usually true because of the exposure concentration difference 

between urban and rural areas. The other issue is that this assumption does not work well when there are 

only a few locations in consideration where distance impact is more significant. Additionally, there is 

another major issue in implementing the distance correlation in loss aggregation within the traditional 

framework. In a traditional framework, loss aggregation has to be repeated multiple times from location 

coverage, location, account to portfolio level when correlation has to be assumed each time when 

aggregation happens. Because of the nonlinear behavior of most distribution assumptions, especially in the 

case of using a beta-function as the distribution function, distribution attributes do not follow the same 

pattern when aggregated at different levels considering the impact of distance dependency. To address this 

issue when implementing an improved algorithm to consider the effect of distance dependency, it is 

important to move the uncertainty simulation from portfolio level in a traditional framework to location level. 

When loss is simulated at location level considering the effect of distance dependency, aggregation can 

follow through to higher levels without further assumption of distribution at different levels. Therefore, our 

major objective is to simulate location level loss using marginal distribution with given location level spatial 

correlation. 

 

As explained in the previous section, to avoid the complex nested effect of correlation dependency, 

simulating loss directly based on the spatial correlation of actual loss data at location level is the most 

straightforward approach. At the location level, two additional layers need to be considered in additional to 

distance dependency. One is the correlation between structural vulnerability and the other is the correlation 

between different coverages at the same location, or in the case of location level simulation, within the same 

location grid, as shown in Fig. 1. 

 
Fig.1 Nested hierarchical correlation matrix at location level 
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As shown in Fig. 1, this is clearly a multivariate sampling example, and Gaussian copula model can be easily 

adapted to address this issue. The application of Gaussian copula model in addressing the spatial correlation 

of earthquake ground motion can be found in [2], and a similar approach can be used in simulating location 

level loss considering the distance dependency effect. There are two major challenges in applying this 

approach to simulate earthquake location loss for many locations with nested correlation effect of distance, 

structural vulnerability and location coverage dependency. They are addressed and explained separately 

below. 

 

The first challenge is the impact of a large number of locations. When Gaussian copula model is used to 

sample multivariate random variables that have known marginal distributions (beta-function distribution in 

our case) with given correlation structures, we need to first sample a multivariate normal random variable, 

and then transform it into a mathematical way to construct the desired marginal distributions. When the 

dimension of multivariate variable is low, samples can be drawn directly using this approach. However, 

when the dimension is high such as in the case of earthquake loss estimation when the number of locations 

can be easily over a few millions, computation demand increases at the order of N3, where N is the number 

of locations. It is computationally impossible to directly sample the location level loss at millions of 

locations using the Gaussian copula model, and in this case, we need to find a way to effectively address this 

issue. We have proposed to generate samples from a small number of locations and use the location-level 

loss in these locations to interpolate the losses at much greater number of locations based on the spatial 

Kriging interpolation method [8]. Kriging belongs to the family of linear least squares estimation algorithms. 

The aim of kriging is to interpolate/estimate the value of an unknown real-value function f at a location x∗ , 

given the known values of the function at some other locations x1, . . . , xn. A kriging estimator is said to be 

linear because the predicted value is a linear combination that may be written as: 

 

                                                                (1) 

 

The weights wis are solutions of a system of linear equations which are obtained by assuming that f is a 

sample-path of a random process F(x), which is a Gaussian process in our case. More detailed 

implementation of a kriging approach can be found in [8]. 

 

The second challenge is nested effect of both structural vulnerability and location coverage. As shown in Fig. 

1, we have other correlations (structural vulnerability and location coverage) nested with spatial correlation. 

Given that location coverage is always at the same location for the same building, it is acceptable to assume 

that they are completely dependent. Therefore, in our research we only need to consider vulnerability 

correlation that reflect the correlation between buildings with different building characteristics. There are 

typically over 20 basic vulnerability curves for any given earthquake event. This additional nested layer of 

correlation makes the ultimate correlation matrix (considering both distance and vulnerability) between 

location losses much bigger. For example, if we only look at a 20× 20 grid with only spatial correlation 

considered, we will have a 400× 400 spatial correlation matrix for the 400 grid points. However, if add in 20 

basic vulnerability curves, we ultimately have an 8000× 8000 huge correlation matrix for all combinations of 

distance and vulnerability types. To solve this technical issue, we need to introduce the Kronecter product 

representation of nested correlation matrices. With the Kronecker product representation of the huge ultimate 

matrix combing both spatial and vulnerability correlation matrix, instead of sampling for the Np × Np huge 

matrix (N is the number of locations and p is the number of vulnerability curves), we only need to sample for 

the N×N spatial correlation matrix and the p×p vulnerability matrix separately, and then a Kronecker product 

of the these two returns the sampling results with decomposition for the huge product matrix. For a short 

introduction of the Kronecker product representation, please refer to 

http://en.wikipedia.org/wiki/Kronecker_product for details.  Considering the O(n3) computational complexity 

of Cholesky decomposition, the speed improvement is huge after the decomposition. 
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3. Distance Dependency based on Actual Loss Data 

Due to the lack of a large amount of detailed earthquake loss information from a single earthquake event, 

little progress has been made on studying distance correlation of earthquake loss. The earthquake catastrophe 

risk management company RMS has derived an empirical table for earthquake loss correlation over distance 

as shown in Table 1, which was subsequently applied in estimating earthquake loss for the insurance industry 

[9].  

 

Table 1 Correlation coefficient of earthquake loss over distance 

 
 

After the March 11, 2011 Great East Japan Earthquake, a big amount of loss data has been obtained, and this 

provides us with a unique opportunity to revisit the issue of distance dependency of earthquake loss. For this 

event, we have collected loss data from more than 580,000 locations, and they are distributed all over the 

northern part of Japan, as shown in Fig. 2. 

 

 
Fig. 2 Earthquake loss information from the March 11, 2011 event in Japan 
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Using the information from Table 1 and Fig. 2, we can derive a formula that describes the distance 

dependency as shown in Fig. 3.  

 

 
Fig. 3 Distance dependency of earthquake loss 

 

The curve in Fig. 3 can be expressed in the following equation where the coefficient λ is 0.05.  

 

                                                 (2) 

where x1 and x2 are two locations under consideration. 

 

Now that we have the distance dependency formula as expressed in Eq. (2) and Fig. 3, we need to verify if 

kriging approach works well. We first generate a 10,000 grid footprint for an earthquake, and select a 200 

points sub-grid from this 10,000 grids. Gaussian copula is applied at the 200 points sub-grid level, and then 

kriging is applied to all other grid points. Finally we normalize the sampled results so that variance is similar 

at every grid point.  In order to verify if this approach works, we randomly selected 1000 points from the true 

sampled results without kriging and compare the kriging results against the true sampled results, as shown in 

Fig. 4.  

 

 
Fig. 4 Comparison of truly sampled results against simulated ones using kriging approach 
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The error distribution of truly sampled against simulated is shown in Fig. 5.  

 

 
Fig. 5 Histogram of error distribution 

 

As can be seen from both Fig. 4 and Fig. 5, the kriging approach works well in interpolating sampled results 

at grid points not sampled using the Gaussian copula approach. 

4. Impact of Distance Dependency on Earthquake Loss Estimation 

We plan to use two examples to study the impact of distance dependency in earthquake loss estimation. As 

explained in previous sections, distance dependency impacts the estimate of variance or standard deviation, 

thus affecting the estimate of tail risk for an earthquake event. As known in the insurance industry, tail risk is 

very important in risk quantification, risk management and capital allocation, it is essential to accurately 

estimate the mean as well as the variance or standard deviation to better quantify the distribution of 

earthquake loss estimate. 

 

The first example is a hypothetical portfolio with different types of exposure distribution or concentration, as 

shown schematically in Fig. 6. 

 

 
Fig. 6 Three types of exposure distribution where the blue points are exposure locations and the circle is 

earthquake footprint 
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In this example, the footprint diameter is 400km, and all exposure locations are within the footprint. There 

are 20,000 locations which are all within the footprint. We compared the standard deviation between the 

constant assumption (0.2) and our kriging approach using distance dependent correlation, as shown in Table 

2. 

 

Table 2 Comparison of standard deviation for ground-up loss 

 
 

As can be seen from Table 2, constant correlation assumption generally reduces the standard deviation, thus 

resulting a tail risk smaller than that from the distance dependent correlation. It should also be pointed out 

that for exposure evenly distributed within the footprint, as in Type 1, there is little difference between 

constant correlation and distance dependent correlation. 

 

Additional study demonstrated that when the footprint is much smaller than the exposure coverage area size, 

the resulting standard deviation of distance dependent correlation will be much smaller compared against 

that from the constant correlation assumption. In other words, the constant dependency assumption 

overestimates the tail risk. 

 

The second example is based on the study of an actual portfolio. This is a residential portfolio in Japan. The 

first case is the nationwide residential portfolio in Japan, as shown in Fig. 7(a). The Probable Maximum Loss 

(PML) comparison between distance dependent correlation and constant correlation (different levels of 

constant assumption) is shown in Fig 7(b).  

 

   
Fig. 7(a) Distribution of nationwide exposure             (b) PML comparison ratio against distance dependent 

 

As can be seen in Fig. 7, depending on the return periods, the difference can be very small at around 75-year 

return period, but a few times different at return periods above 500 years according to different assumption 

of constant correlation. 
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The second case is if we only look at a portfolio with exposure in Tokyo, the comparison is shown in Fig. 8. 

 

    
Fig. 8(a) Distribution of exposure in Tokyo             (b) PML comparison ratio against distance dependent 

 

As can be seen from Fig. 8, when only exposure in Tokyo is considered, much variation is seen for PMLs at 

smaller return periods when they are less than 30 years or so. Therefore, the effect of distance dependent 

correlation is much relied upon the distribution of exposure and its comparable area size against earthquake 

footprint size. A general trend is that when exposure distribution size is much bigger than typical earthquake 

footprint, bigger difference is seen at higher return periods, and when exposure area is comparable or smaller 

than a typical earthquake footprint, bigger variation is observed for PMLs at smaller return periods. The 

impact can be as big as a few times different to little or small difference at return periods closer to 100-year 

return periods. 

5. Concluding Remarks 

Distance dependent correlation is very important in studying the uncertainty and tail risk of earthquake loss 

estimation. Through directly sampling loss at location level based on the distance dependent attribute derived 

from actual earthquake loss information, this paper proposed an efficient algorithm using kriging technique 

for a large amount of locations for actual earthquake loss estimation. Simulation errors were used to validate 

the proposed approach and actual portfolios in Japan were used to study the impact of distance dependency. 

The results showed that distance dependency can have significant effect on PML estimation at various return 

periods for different portfolios with variable exposure area sizes. The constant dependency assumption can 

over- or under-estimate earthquake tail risk depending on the exposure distribution as well as the PML return 

periods.  
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