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Abstract 

Increasing urbanisation has magnified seismic risk in seismic zones. Rapid and accurate structural health monitoring 

(SHM) provides significant benefits of assessing damage state, safety in re-occupancy, and thus optimizing decision-

making for mitigation and recovery. Many SHM methods have shown their ability to track the change of nonlinear 

stiffness for damage identification in civil engineering. However, SHM and damage identification for pinched hysteretic 

systems can be problematic and subjective due to their highly nonlinear and time-varying behavior when damaged. This 

work compares the efficiency and robustness of a proven hysteresis loop analysis (HLA) method and 7 other SHM 

methods in identifying stiffness degradation for the pinched hysteretic behaviors, commonly observed in reinforced 

concrete structures.  

The performance of the 8 compared SHM methods are tested using a simulated 6-story numerical structure with pinching, 

yielding and degrading nonlinear behaviors, where the exact values are known in the presence of both noise-free and 10% 

root mean square (RMS) noise. Stiffness identification across two major earthquakes are conducted to compare the 

consistency and accuracy of all the 8 methods. All the 8 methods show a high accuracy of the identified stiffness changes 

with the average error of 0.4% across all 6 stories and 2 earthquakes in the noise-free case. The average identification 

error for HLA, CSW and MTD methods are still within 3% in the presence of 10% added noise, while other methods 

show significant errors of 10.5% with standard deviation (SD) of 13.6%.  

Robustness to the measurement sampling rate is also investigated over 50, 100, 250, 500 and 1000Hz. Results show a 

significant drop of the identification accuracy for 7 of the 8 methods when the sampling rate decrease from 100Hz to 

50Hz. However, the identification error for HLA is very robust with the mean error of 0.8% and SD of 0.5% at the 

sampling rate of 50Hz. The overall results clearly show the robustness, accuracy and automation of HLA over 7 other 

SHM methods in identifying nonlinear stiffness over multiple events, while other SHM methods may require a more 

skilled engineering analysis and input to improve its accuracy in the real application.  

Keywords: structural health monitoring; SHM; Hysteresis loop analysis; damage identification; pinched hysteresis 
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1. Introduction 

The primary purpose of structural health monitoring (SHM) methods is detecting the presence, location, and 

the severity of damage after major external loads [1]. SHM techniques fall into model-based and model-free 

methods [2]. In model-based methods, a computer model of the real structure is identified by comparing a 

simulated model and measured responses (e.g. [3-9]). Model-free methods depend only on the measured 

responses by sensors (e.g. [9-16]). The lack of trusted, accurate SHM methods led to significant disagreements 

about the level of damage and remaining lifetime of several structures in Christchurch, New Zealand after the 

events of 2010-2011, delaying repair and recovery [17]. 

Model-based methods can successfully assess damage when the adopted baseline model contains the 

observed dynamics of the real structure. However, there is always some uncertainty in selecting a baseline 

model and its dynamics, particularly for nonlinear cases. Any mismatch increases the risk of incorrect damage 

estimation for model-based methods, limiting their ability [9]. In addition, most model-based and many model-

free methods require human input to guide identification, limiting applicability after an event [15]. 

Reconstructed hysteresis loops have been already used as visual and quantitative indices for damage 

assessment [18-20]. Lately, a multiple linear regression approach has accurately identified linear and nonlinear 

structural stiffness from force-deformation loops across multiple events with inter-event consistency not 

displayed by other methods, which often does not even consider this consistency between events [10, 11, 14, 

21]. This hysteresis loop analysis (HLA) method is fully automated, unlike many SHM methods, and has been 

validated on full-scale and test structures [9, 12, 14, 16]. 

This study compares the capability of HLA to a wide range of different SHM methods for identifying 

the evolution of elastic stiffness for a numerical 6-story building with highly nonlinear pinching behavior under 

the September 2010 and February 2011 Christchurch earthquakes. HLA is compared to methods, including: 

the model-based Simple Adaptive Control Damage Detection (SACDD) [22], and the model-free Multivariate 

Adaptive Regression Splines (MARS) [23-25] and some Piecewise Linear Representation (PLR) based [26, 

27] methods. The comparisons presented are thus across leading recent methods, not previously examined, and 

focusing on model-free methods given their ability to capture highly nonlinear behavior. Robustness and 

accuracy are assessed across different sampling rates, and in the presence of noise. 

2. SHM methods 

2.1 Numerical model 

Fig. 1 shows the 6-story numerical structure with highly nonlinear pinching behavior simulated by a slip-lock 

Baber-Noori model [28, 29]. Table 1 provides the mechanical properties.  

 

 

Fig. 1 – Schematic images depicting numerical building and Baber-Noori pinched hysteretic model. 
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Table 1 – Mechanical properties of the numerical structure. 

Story  1 2 3 4 5 6 

Mass [kg] 200 250 250 275 285 285 

Initial stiffness [KN/m] 450 350 300 400 500 600 

Damping ratio [%] 5% for the first two modes 

𝐝𝐲 [m] 0.010 0.015 0.015 0.010 0.005 0.002 
 

 

The dynamic equation of motion for the structure under a seismic excitation can be formulated: 

𝐹(𝑡) =  −𝑀𝐼�̈�𝑔(𝑡) − 𝑀�̈�(𝑡) − 𝐶�̇�(𝑡) (1) 

 

where 𝑀 and 𝐶 are the mass and damping matrices, �̇� and �̈� are vectors of structural velocity and acceleration, 

and �̈�𝑔 is the input seismic acceleration. 𝐹(𝑡) is the nonlinear restoring force vector, which is decoupled to the 

inter-story restoring force, 𝑓(𝑡), for each degree of freedom/floor, 𝑖: 

𝑓𝑖(𝑡) =  ∑ 𝐹𝑗(𝑡)

𝑛𝑠𝑡𝑜𝑟𝑦

𝑗=𝑖

 (2) 

 

where 𝑛𝑠𝑡𝑜𝑟𝑦 is the number of stories, and 𝑓(𝑡) is defined [28, 29] : 

𝑓(𝑡) =  𝛼𝐾0𝑥 + (1 − 𝛼)𝐾0𝑧  (3) 

 

where 𝐾0 and 𝛼 are the initial elastic stiffness and post-yielding ratio, respectively. The relationship between 

the inter-story-displacement, 𝑥, and hysteretic displacement, 𝑧, can be obtained for each story [28-30]: 

�̇�

�̇�
= ℎ(𝑧) ×

𝐴 −  𝜈(𝛽𝑠𝑔𝑛(�̇�𝑧) +  𝛾)|𝑧|𝑛

𝜂
 (4) 

 

where 𝐴, 𝛽 , 𝑛 and 𝛾  are the dimensionless shape parameters of hysteretic loops, 𝑠𝑖𝑔𝑛(�̇�𝑧) is the signum 

function of the product of �̇� and 𝑧. The parameters 𝜂 and 𝜈 are the stiffness and strength degradation functions: 

𝜂(𝑡) = 1 + 𝛿𝜂𝜀(𝑡) (5) 

𝜐(𝑡) = 1 +  𝛿𝜐𝜀(𝑡) (6) 

𝜀(𝑡) = (1 − 𝛼)
𝐾𝑒

𝑚
 ∫ 𝑧(𝜏)�̇�(𝑡)𝑑𝜏

𝑡

0

 (7) 

 

where 𝜀(𝑡) is the total dissipated energy, and the constants 𝛿𝜂 and 𝛿𝜐 determine the rate of strength and stifness 

degradation. The term ℎ(𝑧) in Equation (4) is the pinching function, defined: 

ℎ(𝑧) = 1 −  𝜉1𝑒
−(

𝑧𝑠𝑖𝑔𝑛(�̇�)−𝑞𝑧𝑢
𝜉2

)
2

 
(8) 

 

where the pinching initiation parameter, 𝑞, is a constant, 𝑠𝑖𝑔𝑛(�̇�) is the signum function of �̇�, and the ultimate 

value of 𝑧, given by 𝑧𝑢, is defined: 
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𝑧𝑢(𝑡) =  √
1

𝜐(𝛽 + 𝛾)

𝑛

 (9) 

𝜉1(𝑡) =  𝜉0(1 − 𝑒−𝑝𝜀(𝑡)) (10) 

𝜉2(𝑡) = (𝜓 + 𝛿𝜓𝜀) × (𝜆 + 𝜉1) (11) 

 

where  𝜉0 is the measure of total slip, 𝑝 controls the pinching slope, 𝜓 is a constant contributing to the pinching 

magnitude, 𝛿𝜓 is a constant controlling the pinching rate, and 𝜆 is a small constant controlling the variation of 

parameters 𝜉1 and 𝜉2 [30]. The constant shape parameters are defined: 𝐴 = 1, 𝛽 = 0.5, 𝛾 = 0.5, 𝜈 = 1 and 

𝑛 = 2 [31]. The other Bouc-Wen-Baber-Noori (BWBN) model parameters are summarised in Table 2. 

Table 2 – BWBN model parameters for the numerical structure. 

Story 𝜶 𝒑 𝒒 𝝀 𝝍 𝝃𝟎 𝜹𝝍 𝜹𝜼 𝜹𝝊 

1 - 5 0.2 0.2 0.01 0.05 0.1 0.95 0.001 0.001 0.001 

6 0.2 0.2 0.01 0.01 0.1 0.95 0.005 0.001 0.001 
 

 

The instantaneous tangent stiffness, 𝐾(𝑡) , can be obtained by differentiating Equation (3) for the 

restoring force, 𝑓(𝑡), with respect to 𝑥 yielding: 

𝐾(𝑡) =
𝑑𝑓

𝑑𝑥
=  𝛼𝐾0 + (1 − 𝛼)𝐾0

𝑑𝑧

𝑑𝑥
  (12) 

 

Substituting Equation (4), noting 
�̇�

�̇�
=

𝑑𝑧

𝑑𝑡
𝑑𝑥

𝑑𝑡

 =
𝑑𝑧

𝑑𝑥
, into Equation (12) yields: 

𝐾(𝑡) =
𝑑𝑓

𝑑𝑥
=  𝛼𝐾0 + (1 − 𝛼)𝐾0ℎ(𝑧) ×

𝐴 −  𝜈(𝛽𝑠𝑔𝑛(�̇�𝑧) +  𝛾)|𝑧|𝑛

𝜂
 (13) 

 

The maximum value 𝑧𝑚𝑎𝑥 can be found by setting Equation (4) to zero, yielding: 

𝑧𝑚𝑎𝑥(𝑡) =  √
1

(𝛽 + 𝛾)

𝑛

 (14) 

 

where 𝑧𝑚𝑎𝑥  represents the start of purely plastic deformation, and is equal to the yield displacement 𝑑𝑦 

(𝑧𝑚𝑎𝑥 = 𝑑𝑦). Thus, the Equation (13) can be rewritten, considering these values of the shape parameters: 

𝐾(𝑡) =
𝑑𝑓

𝑑𝑥
=  𝛼𝐾0 + (1 − 𝛼)𝐾0ℎ(𝑧)  ×  

1 −  0.5 𝜐(𝑠𝑔𝑛(�̇�𝑧) +  1) |
𝑧

𝑑𝑦
|

𝑛

𝜂
 

(15) 

 

The elastic stiffness, 𝐾𝑒(𝑡), can be estimated by setting  ℎ(𝑧) = 1 and 𝑧 = 0 in Equation (15) [30]: 

𝐾𝑒(𝑡) = 𝛼𝐾0 + (1 − 𝛼)𝐾0  
1

𝜂
 (16) 
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2.2 Input events and comparison points 

The 6-story numerical structure is subjected to two successive earthquakes shown in Fig. 2. All four major 

events in the Christchurch earthquake series of 2010-11 were followed within 40-180 minutes by an aftershock 

of similar magnitude [32, 33]. This comparison also tests method robustness across events. 

 

Fig. 2 – Christchurch earthquakes of September 2010 and February 2011. 

 

Fig. 3 – Four stages for comparing elastic stifnesses evolution over the two earthquakes. 

 

In particular, to compare SHM methods, the estimated elastic stiffness is compared with the true values 

at four specific stages defined in Fig. 3. Stages I and III assess initial estimates at the beginning of two major 

events. Stages II and III assess robustness and accuracy across events. Finally, Stages II and IV assess accuracy 

over a single major event. 

 

2.3 HLA method 

The model-free, mechanics-relevant HLA SHM method is given in detail in [11, 12]. HLA uses regression and 

a hypothesis test to assess linear and plastic stiffness evolution over time from measured structural responses. 

The reconstructed hysteresis loop displays the structural load-deformation relationship changing with time due 

to structural damage. Hence, structural stiffness degradation can be identified from the significant half cycles. 

HLA is computationally straightforward and wholly automated, with no human input required. Therefore, 

SHM results can be available immediately after an earthquake or any other event [9, 11, 12, 14]. 
 

2.4 SACDD method 

SACDD method was proposed for detecting damage in a bilinear chain-like building. It is a model-based 

method using Simple Adaptive Control (SAC) to estimate restoring forces arising from inter-story stiffness. 

The input is structural accelerations, and the outputs are inter-story displacements and restoring forces, which 

can be used to reconstruct responses and time-varying stiffnesses [22]. 
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2.5 MARS method 

MARS is a model-free regression method, which does make no assumptions regarding the relationship between 

independent and dependent variables. Instead, segments are derived directly from data in regression process. 

Thus, MARS is an automated SHM method with continuous models and derivatives [23, 24]. In this paper, the 

earth package written in RStudio for the MARS algorithm is employed [34]. 

 

2.6 PLR-based methods 

Piecewise Linear Representation (PLR) techniques are model-free methods, where a half cycle, of length N, 

is approximated by K linear segments whose slopes represent stiffness [27]. Most PLR algorithms can be 

classified into one of the three main categories [26]: 1- Sliding Window (SW), 2- Top-Down (TD) and 3- 

Bottom-Up (BU). The pseudocodes for these algorithms are available in [26]. This paper includes modified 

versions of SW and TD methods called 4- Constrained sliding Window (CSW) and 5- Modified Top-down 

(MTD), respectively. 

Although PLR-based methods work relatively well on smooth and noise-free half-cycles, they can 

fragment, especially for small half-cycles, in the presence of noise and need one or more user-specified 

thresholds to be tuned [26, 27]. Thus, PLR-based algorithm results can be sensitive to thresholds, and cannot 

be readily automated. 

 

2.6.1 The SW method 

The SW method is attractive for its simplicity. In this method, the length of a linear segment increases until 

the regression error exceeds a user specified bound. This process repeats with the next sample not included in 

the newly fitted segment [26]. The standard error, 𝑆𝐸, is the regression process error with a threshold of 𝑆𝐸 =
10 in this work. PLR utilised in SW (BU and TD as well) can produce a disjointed model, depending on the 

residual error threshold chosen. 

 

2.6.2 The CSW method 

In this method, the first point of the first linear segment is (0,0), from which the slope of the best line fit to the 

data points creates the first linear segment. For the second segment, the line is constrained to cross the last 

point of the previous fitted segment. This process repeats for the next segments until the half-cycle 

reconstruction is complete. This modification leads to a smoother model. Like the SW method, the standard 

error 𝑆𝐸 = 10 is the threshold for terminating the regression process. 

 

2.6.3 The BU method 

This algorithm begins from the tiniest possible segments. The algorithm then iteratively merges adjacent 

segments until a stopping criteria is met [26]. The terminating criteria is a threshold of 𝑆𝐸 = 10. 

 

2.6.4 The TD method 

In this method, a half-cycle is recursively divided into left and right segments until a stopping criteria is met. 

This algorithm splits the half-cycle where the standard error is a minimum. Both segments are then checked to 

see if the standard error is less than the defined threshold. If not, the TD algorithm recursively keeps splitting 

the subsequences until all created segments have a standard error below the chosen threshold of 𝑆𝐸 = 10 [26]. 

 

2.6.4 The MTD method 

The user-specified threshold has significant impact on PLR-based method performance. The threshold value 

is selected by trial and error, and is not necessarily optimal for all methods and situations [26, 27]. In this 

paper, the MTD method is proposed to address this issue.  
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In the MTD method, each half-cycle is checked to see if it can be represented just by a single linear 

segment or not. If the R-squared 𝑅2 value of this linear segment is above a user selected minimum value, it 

can be modelled by one segment. Otherwise, the half-cycle must be further divided. In this study, the R-squared 

threshold is 𝑅2 = 0.99 for noise-free conditions and 𝑅2 = 0.95 for noisy cases. These values usually remain 

unchanged and avoid overfitting. 

Since structural hysteresis loops have a range of known fundamental patterns, the maximum number of 

breakpoints can be estimated as (7 =  23 − 1) for half-cycles with pinched nonlinear behavior. The best 

locations of these breakpoints are obtained by the recursive approach employed in the TD algorithm. Usually, 

larger half-cycles need more linear segments (or breakpoints) for better approximation, while the smaller ones 

need fewer segments or even only one. Therefore, extra breakpoints must be pruned to prevent overfitting. For 

pruning, small segments are merged with adjacent segments, based on reducing standard error. In this research, 

the minimum length of the segments is limited to 3 samples. 

 

2.7 Analyses 

The robustness and accuracy of these SHM methods to sampling rates and sensor noise is investigated 

separately. To investigate the sampling rate effect, measured accelerations are assumed to be noise-free and 

measured at the rates of: 1000, 500, 250, 100, and 50 Hz. To assess robustness to noise, 10% root mean square 

(RMS) noise is added to simulated measurements sampled at 250 Hz [15]. Because of the random nature of 

noise, each method is run 20 times and the average results are reported in a Monte Carlo approach similar to 

[15, 21, 35]. Accuracy of methods is assessed at the Stages I-IV depicted in Fig. 3. 

3. Results and Discussions 

3.1 Sampling rate 

Table 3 shows mean value of the absolute error over all 6 stories in identifying elastic stiffness for each method 

at different sampling rates without noise. The highest mean errors are at a sampling rate of 50 Hz. HLA, BU, 

TD, and MTD mean errors are less than 1% for all sampling rates. MARS and CSW mean error reaches this 

level over 100 Hz, whereas SW needs 250 Hz to reach this precision.  

Table 4 shows the maximum absolute error over all 6 stories, which more clearly presents the weakness 

of different methods. Excluding HLA and MTD methods, the maximum errors for all methods are above 5% 

at 50 Hz. Over 100 Hz, sampling rate impact on the maximum error of the HLA, MARS, TD, and MTD 

methods is negligible. HLA error is consistently low over all sampling rates. 

  Table 3 – Mean absolute error and SD for elastic stiffness over all 6 stories for each 

method (Noise=0); reported in percent. 

 

 50 Hz 100 Hz 250 Hz 500 Hz 1000 Hz 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

SACDD Failed Failed Failed Failed Failed Failed 0.16 0.22 0.20 0.26 

MARS 2.70 4.67 0.54 0.78 0.65 0.92 0.65 0.89 0.51 0.73 

SW 3.64 3.56 1.21 0.97 0.76 1.13 0.62 0.63 0.46 0.68 

CSW 1.36 1.62 0.61 0.80 0.57 0.93 0.33 0.31 0.36 0.30 

BU 0.55 0.48 0.39 0.51 0.34 0.29 0.32 0.44 0.32 0.39 

TD 0.66 1.01 0.44 0.39 0.40 0.35 0.35 0.29 0.34 0.29 

MTD 0.66 0.80 0.36 0.41 0.31 0.34 0.27 0.30 0.39 0.42 

HLA 0.81 0.47 0.66 0.42 0.62 0.37 0.61 0.37 0.72 0.51 
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Table 4 – Maximum absolute error for elastic stiffness over all 6 stories for each method (Noise=0) 

; reported in percent. 

50 Hz 100 Hz 250 Hz 500 Hz 1000 Hz 

SACDD Failed Failed Failed 0.71 1.04 

MARS 20.75 2.54 2.78 2.41 2.23 

SW 11.26 2.88 5.40 2.10 3.17 

CSW 7.54 2.72 4.51 0.95 0.95 

BU 5.93 2.28 1.03 2.10 1.30 

TD 5.04 1.26 1.07 0.88 0.86 

MTD 3.26 1.30 1.30 1.01 1.42 

HLA 2.08 1.70 1.85 1.80 2.02 

The model-based SACDD failed to converge in estimating structural elastic stiffness for the sampling 

rates below 500 Hz. This failure is mainly because of the control algorithm used in the construction of SACDD. 

Thus, SACDD, as a model-based SHM approach, is the least robust method to sampling rate. 

The results show the modifications applied to SW and TD in this paper (the CSW and MTD methods) enhanced 

their performance, as seen in Table 4. In particular, at 50 Hz, while the maximum errors of SW and TD are 

11.26% and 5.04%, those of CSW and MTD are 7.54% and 3.26%, respectively. However, this improvement 

is not sufficient to outperform HLA. 

3.2 Sensor noise 

Table 5 compares methods with 10% added RMS noise and without noise at a realistic to low sampling rate of 

250 Hz. As expected, noise diminishes the accuracy of all methods. Again, SACDD failed to converge with 

10% added noise at 250 Hz. TD is the least robust method to noise with the maximum error of 49.72% with 

noise. However, the modified version of TD, MTD, works better in noisy conditions. Excluding HLA, all other 

methods have maximum errors higher than 10% with noise, which makes them unreliable. The mean error of 

HLA only increased 1.09% to 1.71% by adding 10% noise, with a 3.90% maximum error. Therefore, HLA is 

highly robust to sensor noise and better than the other methods presented here in estimating elastic stiffnesses 

in the presence of noise. 

Table 5 – Maximum and mean absolute errors for elastic stiffness over all 6 stories for each method 

(Noise=0 and 10% Sampling rate = 250 Hz); reported in percent. 

250 Hz 

0 % 10 % 

Mean Max SD Mean Max SD 

SADD Failed Failed Failed Failed Failed Failed 

MARS 0.65 2.78 0.92 4.08 16.57 3.96 

SW 0.76 5.40 1.13 4.80 13.29 4.00 

CSW 0.57 4.51 0.93 2.99 13.76 3.28 

BU 0.34 1.03 0.29 4.75 19.74 4.46 

TD 0.40 1.07 0.35 10.52 49.72 13.63 

MTD 0.31 1.30% 0.34 2.92 10.51 2.54 

HLA 0.62 1.8 0.37 1.71 3.90 1.10 
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Fig. 4 – Estimated elastic stiffness of the first story for each method  ( Noise = 10% and sampling 

rate = 250 Hz). 

.
8b-0024

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 8b-0024 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

10 

Fig. 4 compares the performance of HLA with the other methods in estimating the trajectory of elastic 

stiffness for the first floor in the noisy condition. Apart from SACDD failing, the identified stiffnesses at Stages 

II and III are almost equal for all methods. MARS is successful at Stages I and IV, but the error of these 

methods is significant in the middle stages, though errors at Stage I are smaller compared to Stages II, III, and 

IV. Moreover, MARS and MTD worked slightly better than HLA at Stage I, but not enough to ensure better

accuracy later or to be meaningful in decision-making, as Stage I is the before event value.

According to the results, SACDD was the most unreliable method for SHM in this highly nonlinear 

structure with pinching behavior. SACDD is a model-based SHM technique [22]. Although model-based 

methods have been studied widely in civil engineering, selecting a suitable baseline model has remained a 

crucial issue. Model-based methods usually perform successfully only if the employed numerical model 

matches actual structure responses [9, 10, 16].  

Thus, model-free SHM algorithms can have significant advantages over traditional model-based 

techniques, particularly in highly nonlinear cases like pinching behaviors. SW, CSW, BU, TD, and MTD are 

all model-free piecewise linear representation (PLR) algorithms [26]. They are supervised segmenting 

processes, where users are always required to tune some parameters, usually an error threshold [26, 27]. In 

SW, CSW, BU, and TD, the standard error 𝑆𝐸 = 10 is set. More optimal values may exist for any given case, 

but determining them requires human input and external knowledge for each structure, so they are not general 

or automated; and their accuracy is too sensitive to the level of sensor noise. 

MTD is the modified version of TD. However, there are three thresholds to tune in MTD. The 𝑅2

threshold helps the algorithm to avoid overfitting issues in small half-cycles. Second, the maximum number 

of linear segments required for representing each half-cycle must be defined for MTD, usually by observing 

the shape of hysteresis loops, thus requiring human input. Third, the minimum sample length of a segment is 

set to 3. These modifications made MTD more robust to sampling rate and noise compared to the other PLR 

algorithms. However, again, these values are based on human input and render the algorithm less general. 

In MARS, no parameters need to be adjusted by the user. All breakpoints and linear segments are 

determined automatically [23-25]. However, results show MARS could not match HLA in identifying elastic 

stiffness. Hence, though MARS can be general, it lacks accuracy. 

HLA requires no human inputs and determines the evolution of elastic stiffness over time from the 

measured responses automatically. Results show HLA is very robust to sampling rate and sensor noise. 

Although the sampling rate influence on the HLA accuracy is investigated for the first time in this paper, HLA 

performance for noisy and real-world conditions has been proven numerically and experimentally [9, 12-16]. 

A single test structure with a full range of nonlinearity should be employed to test the robustness of the 

methods and validate these simulated-based results over all methods. HLA is already well-proven for full-scale 

and scaled test structures on several studies [9, 12, 14, 16]. Thus, its generalisability is known. In this paper, 

the simulated case study highlights its relative capability and its significant robustness across a range of 

sampling rates in particular. 

5. Conclusions

In this paper, one model-based SHM method and six model-free methods are employed for challenging the 

model-free HLA method to identify elastic stiffness evolution. For this purpose, a simulated highly nonlinear 

pinched hysteretic structure is subjected to two major earthquakes to investigate their robustness, consistency 

and accuracy. Identified stiffness values are compared to simulated known ground-truth values at four selected 

Stages (I-IV) across two events for each method. The impact of sampling rate and sensor noise on accuracy 

are assessed. The conclusions are summarised: 

 HLA was robust to sampling rate with little change in accuracy. All other methods declined in accuracy

with lower sampling rate. These are best case results without noise to independently assess the effect of

sampling rate.
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 HLA was equally to more accurate in the presence of noise, particularly when avoiding maximum errors, 

which might impact decision-making. It was the most accurate method through Stages I-II when assessing 

damage. The overall results for all methods highlight the robustness of model-free methods and also show 

how methods can vary significantly despite similarities. 

 HLA is implemented in an automated function requiring no professional or engineering input, while all 

model-free PLR-based methods used here need a priori knowledge and human input to tune optimal 

thresholds for good accuracy. 
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