
17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

Paper N° C002495 

Registration Code: S-XXXXXXXX

Automated Modeling of Virtual Structures using Hysteresis Loop Analysis 

C. Zhou(1), J.G. Chase(2), G.W. Rodgers(3)

(1) Post-doctoral Fellow, University of Canterbury, cong.zhou@canterbury.ac.nz
(2) Distinguished Professor, University of Canterbury, geoff.chase@canterbury.ac.nz
(3) Professor, University of Canterbury, geoff.rodgers@canterbury.ac.nz

…

Abstract 

Seismic damage is a major risk in seismic zones, and may have a significant impact on the overall health or state of the 

structure, which can increase the potential risk of building collapse and loss of lives in an aftershock or new event in the 

future. Structural health monitoring(SHM) provide damage detection and localization, but not a means of answering 

subsequent questions concerning immediate or long-term damage mitigation, risk, or safety in re-occupancy. Extending 

SHM from a damage monitoring role into a more comprehensive predictive digital model for forecasting structural 

performance and assessing risk of collapse would provide significant benefit in optimizing decision-making and reducing 

uncertainty. This work presents an automated modeling approach using machine learning to translate hysteresis loop 

analysis (HLA) SHM results into nonlinear computation models for damage assessment and collapse prediction. The 

computational model for creating digital clones are based on a new identifiable smooth hysteretic models able to capture 

essential dynamics, deterioration of nonlinear structures and predict collapse.  

A proof of concept case study is conducted to validate the accuracy and robustness of the automated modeling method in 

identifying model parameters for a three-story nonlinear numerical structure, where the exact values are known in the 

presence of 10% root mean square (RMS) noise. The identification errors for 12 model parameters are within 4.5%, and 

predicted response using the identified model parameters show a good match with the true response with the cross 

correlation coefficient Rcorrcoef greater than 0.96 for all stories. Performance of the proposed method in real world 

application is finally validated using a full scale three-story apartment building tested in E-defence facility in Japan. The 

predicted response using the identified digital clones also match well to the measured displacement response with the 

average Rcorrcoef  of 0.92 for the real building. The overall results clearly indicate the ability of the proposed automated 

modeling approach to create an accurate digital clone for further analysis of risk of damage and collapse with incremental 

dynamic analysis (IDA).  

Finally, the overall approach of creating digital clone and further implementing IDA are automated without requiring 

skilled engineering experience and input, thus taking SHM from a tool providing data into automated prediction analysis 

by “cloning” the structure using computational modelling, which in turn allows optimised decision making using existing 

risk analyses and tools. 
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1. Introduction 

Seismic damage is a major risk in seismic zones with significant follow-on social and economic impacts, and 

the resulting local damage may have a great impact on the overall health or state of the structure, which can 

increase the potential risk of building collapse and loss of lives in an aftershock or new event in the future. 

Therefore, post-earthquake assessment of damage and vulnerability to aftershocks based on a nonlinear 

dynamic analysis is considered essential to account for the evolution of material behaviours and structural 

properties under varying dynamic loads.  

Structural health monitoring (SHM) provides methods to detect, localise, and quantify damage after major 

events. However, it does not provide a ready, quantified means of assessing the ongoing safety of a structure 

or risk of collapse, as well as any need for immediate or longer term reinforcement or repair. Therefore, a 

computational model made from the SHM results, and existing building data or/and reasonable surrogates, 

would enable further analyses to significantly enhance decision-making. However, model creation can be 

complex, time consuming, and require significant human input. Hence, an automated or semi-automated means 

of turning SHM results into actionable, reasonably accurate computational models would provide potentially 

significant benefit. More critically, automated model creation would enable dynamic assessment, potentially 

also automated, within minutes or hours, providing better data to optimise decision and reduce uncertainty. 

To implement automated modelling predictions, an identifiable smooth hysteretic nonlinear model is proposed 

based on the Bouc-Wen model due to its ability to capture a wide range of hysteretic behaviours [1, 2]. The 

original Bouc-Wen model is widely used to achieve a good match of experimental data from hysteretic systems 

by adjusting the model parameters to minimize the error between the input data and model output. However, 

the model parameters have proven mathematically redundant, which might lead to an identical response with 

a multiplicity of parameters selection [3, 4]. Therefore, a modification is applied to the Bouc-Wen model to 

obtain a simplified hysteretic model with identifiable physical parameters. 

A parameter identification method is developed using support vector machines (SVMs) and hysteresis loop 

analysis (HLA) SHM results to identify the model parameters of the proposed nonlinear predictive model for 

a three-story building structure tested on the E-defence shake table in Japan [5]. Support vector machines 

(SVM) is a machine learning technique solving a convex quadratic optimization equation for nonlinear 

problems, thus avoiding the local minimum issues with neural networks [6]. Therefore, the use of SVM with 

available SHM results converts the identification of a nonlinear system to a relatively robust pattern recognition 

problem, avoiding the divergence issues in the traditional methods of nonlinear optimization [7].  

The primary goal of this work is a nonlinear structure model able to predict the response of subsequent 

nonlinear events to enable much greater detail in post event decision making. The proposed automated 

modelling method is validated against a numerically simulated structure with added noise and real 

experimental data from a full scale 3 story-building. Performance of the identified model in capturing the 

essential dynamics and predicting responses to future nonlinear events is assessed by cross correlation 

coefficients between the measured and reproduced response with the identified model. 

2. Methods 

2.1 differential hysteretic model 

The dynamic equation of motion for a multi-degree-of-freedom nonlinear system subjected to earthquake 

excitations can be described: 

 𝑭(𝑡) = −𝐌𝐈�̈�𝑔(𝑡) − 𝐌�̈�(𝑡) − 𝐂�̇�(𝑡) (1) 

where �̈�𝑔 is the input ground accelerations, �̈� and �̇� are vectors of structural accelerations and velocities, M 

and C are mass and damping matrices, respectively. F(t) is the time-varying restoring force vector, and can be 

decoupled to the hysteretic restoring force f(t) for each story/dof in HLA [5, 8]: 
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 𝑓𝑖(𝑡) = ∑ 𝑭𝒋(𝑡)
𝑛𝑑𝑜𝑓
𝑗=𝑖  (2) 

where the hysteretic restoring force f(t) is assumed to comprise a linear spring and a hysteretic component in 

parallel [2]: 

 𝑓(𝑡) = α𝑘0𝑥 + (1 − 𝛼)𝑘0𝑧 (3) 

where k0 is the initial stiffness, α is the post-yielding ratio, x is the inter-story displacement, and z is the 

hysteretic displacement. The differential form of Equation (3) can be expressed: 

 𝑑𝑓 = α𝑘0𝑑𝑥 + (1 − 𝛼)𝑘0𝑑𝑧 (4) 

Dividing dx on both sides of Equation (4), the instantaneous stiffness k(t) can be obtained: 

 𝑘(𝑡) =
𝑑𝑓

𝑑𝑥
= α𝑘0 + (1 − 𝛼)𝑘0  

�̇�

�̇�
 (5) 

where 
�̇�

�̇�
 is defined in the original Bouc-Wen model: 

 
�̇�

�̇�
=

A−(𝛽𝑠𝑖𝑔𝑛(�̇�𝑧)+𝛾)|𝑧|𝑝

𝜂
 (6) 

where A, β, λ, p are dimensionless loop parameters, sign is the signum, and η is the degradation function 

controlled by δη and total dissipated energy ε(t): 

 𝜂 = 1 + 𝛿𝜂𝜀(𝑡) (7) 

 𝜀(𝑡) = (1 − 𝛼)
𝑘

𝑚
∫ 𝑧�̇�𝑑𝑡

𝑡

0
 (8) 

The parameter A in Equation (6) has been found a redundancy parameter and can be fixed to one without 

changing the efficacy of the model [4]. The maximum value of z can be calculated by setting Equation (6) to 

zero, yielding: 

 𝑧𝑚𝑎𝑥 = (
1

𝛽+𝛾
)

1/𝑝
 (9) 

where zmax indicates the start of purely plastic phase, and can be defined by a yielding displacement parameter 

dy to account for the elastic-plastic performance in the hysteretic model. In addition, the loading and unloading 

slopes for steel and concrete structure are nearly in parallel if degradation is not considered [9, 10], which 

yields another constraint β=γ. Thus, Equation (5) can be rewritten: 

 𝑘(𝑡) = α𝑘0 + (1 − 𝛼)𝑘0

1−0.5(𝑠𝑖𝑔𝑛(�̇�𝑧)+1)|
𝑧

𝑑𝑦
|
𝑝

𝜂(𝑡)
 (10) 

Therefore, the unknown parameters for Equation (10) included k, k0, α, dy, p, δη, where k is the structural 

stiffness, k0 is the initial stiffness, α is the post-yielding ratio, dy is the yield displacement, p is the smoothness 

from elastic to plastic state and δη controls how the stiffness changes due to energy dissipation. 

 

2.2 Model parameter identification 

To identify the model parameters in Equation (10), the elastic stiffness ke(t) can be approximated by setting 

hysteretic displacement z=0 in Equation (10), yielding:  

 𝑘𝑒(𝑡) = α𝑘0 + (1 − 𝛼)𝑘0
1

𝜂(𝑡)
 (11) 
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The stiffness vectors ke(t), k(t), and k0 can be directly obtained from HLA results [5].  

Combining Equations (7), (8) and (11) gives: 

 𝑦 = 𝛿𝜂𝑢 (12) 

 𝑦 =
𝑚(𝑘0−𝑘𝑒)

(1−𝛼)𝑘𝑒(𝑘𝑒−𝛼𝑘0)
;  𝑢 = ∫ 𝑧�̇�𝑑𝑡

𝑡

0
 (13) 

Thus, the degradation coefficient δη can be calculated using regression analysis: 

 𝛿𝜂 =
∑ 𝑢𝑖𝑦𝑖

𝑁
𝑖=1

∑ 𝑢𝑖𝑢𝑖
𝑁
𝑖=1

 (14) 

In addition, for each half cycle in HLA, Equations (11)-(12) can give: 

 �̂� = 𝑑𝑦�̂� (15) 

 �̂� = |𝑧|;  �̂� = (
(𝑘𝑒−𝑘)

(𝑘𝑒−𝛼𝑘0)
)

1/𝑝
 (16) 

Similar to Equation (14), the yield parameter dy can also be calculated: 

 𝑑𝑦 =
∑ �̂�𝑖�̂�𝑖

𝑁
𝑖=1

∑ �̂�𝑖�̂�𝑖
𝑁
𝑖=1

 (17) 

Finally, the curve transition parameters α and p are identified using a SVM method. In particular, each half 

cycle is divided into n segments with feature vi (i=1,2,…,n) calculated: 

 𝑣𝑖 =
𝑘𝑒(𝑖)−𝑘(𝑖)

𝑘0
 (18) 

The calculated features within each half cycle are concatenated to train multi-class SVM models for various 

shapes of simulated half cycles with controlled α and p values in the proposed hysteretic model. The new 

feature vector from real data can then tested using the trained SVM model to identify the best match of α and 

p.  

The modified SMO algorithm is used to train the SVM model [11]. In addition, a Gaussian Radial Basis 

Function (RBF) kernel is employed to transform the feature vector v into a nonlinear space due to its strong 

learning ability in nonlinear cases [12]: 

 𝐾(𝑣𝑖, 𝑣𝑗) = exp (−
 ‖𝑣𝑖−𝑣𝑗‖

2

2𝜎2 ) (19) 

where σ is the kernel width, and a lower value leads to a more complex model fitting and allows for a smaller 

variance, thus less generalization, in measuring similarity. 

To identify a range of α and p parameters in this study, a Decision Directed Acyclic Graph (DDAG) method 
is conducted to form a binary learning architecture with m(m-1) nodes for the m-class SVM [13].The range of 

the post-yield ratio α is [0, 1], where α=0 indicates a total hysteretic behaviour and α=1 represents a purely 

elastic linear structure. However, the maximum range of αmax is restricted by the constraint (ke-αk0)>0 in 

Equation (13) to ensure a positive solution for δη. Thus, the selected range for α is αmin=0 and αmax =inf(ke/k0), 

where inf is the infimum maximum value. 

To ensure a unique solution, the inequality condition p≥1 is also applied [14]. In addition, due to its low 

sensitivity among the model parameters, p is commonly fixed to be p=1 or 2 in most of identification methods 

[15-17]. Hysteresis loops with p>3 are closer to a bilinear model, where the smoothness of the transition part 

.
8c-0050

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 8c-0050 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

5 

is hardly changed with the change of p for p>3 [18]. Therefore, the selected range for p is constrained to pmin=1 

and pmax=3.  

Finally, an inner loop is operated to update the selection of α and p with a smaller range, and an outer loop is 

then applied to the updated range to identify and calculate the model parameters of α, p, δη and dy for the 

modified hysteretic model. 

3. Proof of concept analysis  

3.1 Numerical simulated structure 

A numerical model structure is first simulated for a 3-story steel moment resisting frame (SMRF) building 

tested in the E-defence shake table in Japan [5] using the Runge-Kutta integration method with added 10% 

RMS noise to both ground and structural accelerations. A sampling rate of 200Hz is adopted to match the true 

measurement frequency. The velocities and displacements are obtained by direct and double integration of 

measurement accelerations after a band pass filtering.  

The model parameters α, dy, p, δη, of the numerical structure are defined in Table 1 for all three stories. The 

weight and stiffness for each story are m1=m2=171.85kN, m3=90kN, k1=1.94e4N/mm, k2=1.65e4N/mm and 

k3=1.37e4N/mm, which are the same as reported for the experimental test building. The peak ground 

acceleration (PGA) for the input earthquake in this numerical case study is 0.62g. The time history of the input 

earthquake is shown in Fig. 1. Table 1 summarizes the model parameters employed.  

Table 1 – Model parameters for the proof-of-concept numerical structure 

model parameters 1st story 2nd story 3rd story 

α 0.23 0.17 0.12 

p 2.5 1.5 1.9 

dy 7 6 3 

𝛿𝜂 0.7 0.66 1.54 

 

 

Fig. 1– Time history of the input earthquake 

 

3.2 Number of training samples for SVM 

Fig. 2 compares the test accuracy with different numbers of training samples (100, 300, 500, 700, 1000, 1500 

and 2000) for training the SVM model. Clearly, the test accuracy is increasing with the increasing number of 

training samples for both parameters α and p, as should be expected. Moreover, the test accuracy for α shows 
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better results than for p at the same number of samples, indicating α is a more sensitive parameter. However, 

the test accuracy of α and p are both greater than 94% when the number of training samples are greater than 

1500, which can be done with ~30minutes on a 16GB Intel Core i-7 machine.  

 

Fig. 2– Effect of number of training samples on the test accuracy for identifying α and p 

 

3.3 Identification for the numerical structure 

The HLA SHM results for ke(t), k(t), and k0 yield the selected ranges of α are [0, 0.6], [0, 0.6], [0, 0.55] for the 

first, second and third story, respectively. Thus, the target values of y for training the SVM model in the inner 

loop are set based on the identified values of α and p with a coarser resolution as listed in Tables 2 and 3. Each 

target value corresponds to a range of 0.05 for α in Table 2, and 0.04 for p in Table 3.  

Table 2 – Target values of y for α in the inner loop 

target value 1 2 3 4 5 6 

α value 0~0.05 0.05~0.10 0.10~0.15 0.15~0.20 0.20~0.25 0.25~0.30 

target value 7 8 9 10 11 12 

α value 0.30~0.35 0.35~0.40 0.40~0.45 0.45~0.50 0.50~0.55 0.55~0.60 

 

Table 3 – Target values of y for p in the inner loop 

target value 1 2 3 4 5 

p value 1.0~1.4 1.4~1.8 1.8~2.2 2.2~2.6 2.6~3.0 

 

The predicted target values for α using the trained SVM model are 5, 4 and 3 for the first, second, and third 

story, respectively, corresponding to the α range of [0.20~0.25], [0.15~0.20] and [0.10~0.15], respectively. 

Thus, the range of α are updated considering the boundary crossing effect with the identified smaller range 

[0.15, 0.3], [0.10, 0.25] and [0.05, 0.20] for each story with new target values assigned for a finer resolution. 

The new target values are y=1,2,…,15 for each story with each value representing ∆α=0.01. Similarly, the 

predicted target values for p are 4, 2 and 3 for the first, second, and third story, respectively. The new ranges 

for p are then updated to [1.8, 3.0], [1.0, 2.2] and [1.4, 2.6] with ∆p=0.1 for the new target values. 
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Finally, the values of α, p, dy, δη are identified in the outer loop, and compared to the true values in Table 4. 

The identification errors for all 12 parameters are smaller than 4.3% with average error of 2.8%, which 

indicates a very accurate identification with 10% RMS added noise in the simulated data.  

Displacement responses of each story are also compared between the true simulated response and the predicted 

response using the identified parameters, as shown in Fig. 3. The cross correlation coefficient Rcorrcoef  used to 

measure the similarity of two series are calculated for the response in Fig. 3, and the values of Rcorrcoef  for all 

stories are greater than 0.96, which thus shows a good match between the true and identified response 

trajectories over time. 

 

Table 4 – Identified model parameters compared to the true values 

model 

parameters 
story identified true error 

α 

1st 0.225 0.23 2.2% 

2nd 0.175 0.17 2.9% 

3rd 0.125 0.12 4.2% 

p 

1st 2.55 2.5 2.0% 

2nd 1.45 1.5 3.3% 

3rd 1.95 1.9 2.6% 

𝛿𝜂 

1st 0.73 0.7 4.3% 

2nd 0.68 0.66 3.0% 

3rd 1.54 1.54 0.0% 

𝑑𝑦 

1st 6.7 7 4.3% 

2nd 5.9 6 1.7% 

3rd 3.1 3 3.3% 

 

 

Fig. 3 – Comparing the true and predicted response for the numerical structure 
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4. Experimental results  

Hysteresis loops are constructed and stiffness evolutions are identified in HLA algorithm for the three floors 

of the full scale 3-story building. Model parameters are then identified for the developed model using the 

proposed SVM algorithm. The dynamic responses are finally predicted using the identified nonlinear hysteretic 

model to compare with the true measured response, as shown in Fig. 4. The calculated cross correlation 

coefficients Rcorrcoef between the measured and replicated response in Fig.4 are 0.94, 0.92, 0.89 for the first, 

second and third story, respectively, again showing a good prediction accuracy using the identified virtual 

model. Moreover, the predicted stiffness evolution also match the HLA SHM results well with average error 

of 2.1% in Fig. 5, thus providing a good cross-validation between the prediction and HLA SHM results.  

It is important to note the developed baseline model is an approximation of the physical system, which does 

not necessarily represent the exact ground truth due to the model uncertainty and mathematical assumptions 

[8]. Thus, the response comparison shows there may be some differences in the chosen baseline model and the 

actual structure, as should be expected. However, the results show a significant correlation despite the 

difference in peak values and trajectories, which thus validate the hysteretic model with the identified 

parameters successfully captures the essential dynamics and stiffness degradation of the test building. A more 

complex model might yield a more accurate results, while it would require much longer time to process, and 

may also suffer the identifiably and model mismatch issues. There is a potential trade off and compromise 

amongst increasing complexity, increasing accuracy, and simplicity / automation, while in this case the 

developed model and identification algorithm have proven good estimation with the algorithm implemented 

in an automated fashion.  

 

Fig. 4 – Comparing the true and predicted response for the experimental structure 

 

 

Fig. 5 – Comparing the HLA and predicted stiffness degradation for the experimental structure 
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5. Conclusion 

This work aims to create a nonlinear hysteretic model for use with model-free structural health monitoring 

HLA methods and SVM identification methods. The goal is to create accurate baseline models using data from 

SHM damage identification and localisation methods to create models suitable for further investigation and 

analysis on safety, damage mitigation, and thus re-occupancy. Such models would take SHM from being a 

tool for damage identification and extend them into further decision-making, creating far greater utility for 

engineers and owners, which could further spur impetus for investment in monitoring.  

The results of numerical case study show the model parameters are identified with average error of 2.8% across 

all stories with 10% added noise, indicating the accuracy and robustness of the identification. In addition, the 

modelled response with the identified parameters match the true response very well with cross correlation 

coefficients greater than 0.96, which thus validates the capability of the proposed algorithm to accurately model 

the seismic response in an automated fashion. The final experimental validation further proves the efficiency 

and accuracy of the overall approach. More importantly, the overall modelling approach is readily automated 

as it required no human input, thus suitable for a long-term in-site monitoring, considering its good or high 

accuracy. 
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